Motivated by a typical and well-known problem of neurobiological modeling, a parallel algorithm devised to simulate sample paths of stationary normal processes with rational spectral densities is implemented to evaluate first passage time probability densities for time-varying boundaries. After a self-contained outline of the original problem and of the involved computational framework, the results of numerous simulations are discussed and conclusions are drawn on the effect of a periodic boundary and a Butterworth-type covariance on determining quantitative and qualitative features of first passage time probability densities.

Vectorized simulations of normal processes for first-crossing-time problems

PIROZZI, ENRICA;RICCIARDI, LUIGI MARIA;RINALDI, SILVANA
1997

Abstract

Motivated by a typical and well-known problem of neurobiological modeling, a parallel algorithm devised to simulate sample paths of stationary normal processes with rational spectral densities is implemented to evaluate first passage time probability densities for time-varying boundaries. After a self-contained outline of the original problem and of the involved computational framework, the results of numerous simulations are discussed and conclusions are drawn on the effect of a periodic boundary and a Butterworth-type covariance on determining quantitative and qualitative features of first passage time probability densities.
9783540638117
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/174829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact