The paper is concerned with an application of a new chain rule formula to the lower semicontinuity in $W^{1,1}$ of integral functionals of this type $$F(u)=\int_{\Omega}f(x,u(x),\nabla u(x))dx.$$ A sufficient condition for lower semicontinuity is given. Essentially, the assumption of weak differentiability of f in x is replaced with a BV dependence on x.

A chain rule formula in $BV$ and application to lower semicontinuity

FUSCO, NICOLA;VERDE, ANNA
2007

Abstract

The paper is concerned with an application of a new chain rule formula to the lower semicontinuity in $W^{1,1}$ of integral functionals of this type $$F(u)=\int_{\Omega}f(x,u(x),\nabla u(x))dx.$$ A sufficient condition for lower semicontinuity is given. Essentially, the assumption of weak differentiability of f in x is replaced with a BV dependence on x.
File in questo prodotto:
File Dimensione Formato  
deciccofuscoverde1.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 275.87 kB
Formato Adobe PDF
275.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/168441
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact