Abstract Choroid plexuses (CPs) play pivotal roles in a wide range of processes that establish, survey, and maintain the biochemical and cellular status of the central nervous system. Mammalian CPs contain a very high density of serotonin receptors, and serotonin has been shown to affect CP functions. The serotonin transporter (SERT) regulates the entire serotonergic system, including serotonin receptors by means of modulation of serotonin concentration in the extracellular fluid. In this study, the expression of SERT in the CPs from the brain of a mammalian species, Bubalis bubalis, was established. By immunogold labeling in scanning electron microscopy, SERT immunoreactivity was found to be localized on the apical surface of the choroid epithelium. In particular, SERT positivity was detected on the apical portion of villi, and both on the membrane and in the cytoplasm of grouped cells on the surface of the choroid epithelium. Significantly, no SERT was detected in blood vessels irrigating the CPs. The expression of SERT mRNA transcripts of 440 bp in the CPs was detected by reverse-transcription polymerase chain reaction, and Western blotting analysis revealed the presence of three isoforms of the protein with molecular masses of approximately 70, 80, and 140 kDa, respectively, probably corresponding to differently glycosylated SERT. Our findings provide the first report of SERT detection in the CPs of buffalo brain and indicate that this protein is locally synthesized from the choroid epithelial cells. We suggest that SERT might have an important role in mammalian CPs, possibly regulating the serotonin flow between brain and rest of the body.

Expression of the Serotonin Transporter (SERT) in the Choroid Plexuses from Buffalo Brain

PAVONE, LUIGI MICHELE;TAFURI, SIMONA;MASTELLONE, VINCENZO;DELLA MORTE, ROSSELLA;LOMBARDI, PIETRO;AVALLONE, LUIGI;STAIANO, NORMA;SCALA, GAETANO
2007

Abstract

Abstract Choroid plexuses (CPs) play pivotal roles in a wide range of processes that establish, survey, and maintain the biochemical and cellular status of the central nervous system. Mammalian CPs contain a very high density of serotonin receptors, and serotonin has been shown to affect CP functions. The serotonin transporter (SERT) regulates the entire serotonergic system, including serotonin receptors by means of modulation of serotonin concentration in the extracellular fluid. In this study, the expression of SERT in the CPs from the brain of a mammalian species, Bubalis bubalis, was established. By immunogold labeling in scanning electron microscopy, SERT immunoreactivity was found to be localized on the apical surface of the choroid epithelium. In particular, SERT positivity was detected on the apical portion of villi, and both on the membrane and in the cytoplasm of grouped cells on the surface of the choroid epithelium. Significantly, no SERT was detected in blood vessels irrigating the CPs. The expression of SERT mRNA transcripts of 440 bp in the CPs was detected by reverse-transcription polymerase chain reaction, and Western blotting analysis revealed the presence of three isoforms of the protein with molecular masses of approximately 70, 80, and 140 kDa, respectively, probably corresponding to differently glycosylated SERT. Our findings provide the first report of SERT detection in the CPs of buffalo brain and indicate that this protein is locally synthesized from the choroid epithelial cells. We suggest that SERT might have an important role in mammalian CPs, possibly regulating the serotonin flow between brain and rest of the body.
File in questo prodotto:
File Dimensione Formato  
ID167940.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 474.99 kB
Formato Adobe PDF
474.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/167940
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact