We apply the techniques of monotone and relative rearrangements to the nonrearrangernent invariant spaces $L^{p()}(\Omega)$ with variable exponent. We obtain pointwise relations for the relative rearrangement which are applied to derive the Sobolev embedding theorem with eventually discontinuous exponents.
Relative rearrangement and Lebesgue spaces $L^{p()}$ with variable exponent / Fiorenza, Alberto; J. M., Rakotoson. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 88:(2007), pp. 506-521.
Relative rearrangement and Lebesgue spaces $L^{p()}$ with variable exponent
FIORENZA, ALBERTO;
2007
Abstract
We apply the techniques of monotone and relative rearrangements to the nonrearrangernent invariant spaces $L^{p()}(\Omega)$ with variable exponent. We obtain pointwise relations for the relative rearrangement which are applied to derive the Sobolev embedding theorem with eventually discontinuous exponents.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
FiorenzaJMPA07.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
203.29 kB
Formato
Adobe PDF
|
203.29 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.