In this paper, using symmetrization techniques, we prove comparison results for solutions to Hessian equations with homogeneous Dirichlet boundary conditions. The rearrangements involved are those which preserve the so-called quermassintegrals of level sets of solutions and the main tools are the Aleksandrov-Fenchel inequalities. We also prove some kind of Moser inequalities related to Hessian integrals.

Comparison results for Hessian equations via symmetrization

BRANDOLINI, BARBARA;TROMBETTI, CRISTINA
2007

Abstract

In this paper, using symmetrization techniques, we prove comparison results for solutions to Hessian equations with homogeneous Dirichlet boundary conditions. The rearrangements involved are those which preserve the so-called quermassintegrals of level sets of solutions and the main tools are the Aleksandrov-Fenchel inequalities. We also prove some kind of Moser inequalities related to Hessian integrals.
File in questo prodotto:
File Dimensione Formato  
reprints.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 290.35 kB
Formato Adobe PDF
290.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/131526
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact