We consider an autonomous, second order Hamiltonian system having a saddle-center stationary point whose center manifold is foliated in periodic orbits and we prove existence of infinitely many, multi-bump solutions asymptotic, as time goes to +∞ and -∞ to some of such periodic orbits. The proof is based on critical point theory.

MULTIBUMP SOLUTIONS HOMOCLINIC TO PERIODIC ORBITS OF LARGE ENERGY IN A CENTRE MANIFOLD

COTI ZELATI, VITTORIO;
2005

Abstract

We consider an autonomous, second order Hamiltonian system having a saddle-center stationary point whose center manifold is foliated in periodic orbits and we prove existence of infinitely many, multi-bump solutions asymptotic, as time goes to +∞ and -∞ to some of such periodic orbits. The proof is based on critical point theory.
File in questo prodotto:
File Dimensione Formato  
CotiZelati_Macri_2005.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 348.69 kB
Formato Adobe PDF
348.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/11728
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 7
social impact