The Goodman-Kruskal tau index is a popular measure of asymmetry for two-way contingency tables where there is a one-way relationship between the variables. Numerous extensions of this index for multi-way tables have been considered in the statistical literature. These include the Gray-Williams measures, Simonetti's delta index and the Marcotorchino index. This paper looks at the partition of the Marcotorchino index for a three-way contingency table with one, two and three ordered categorical variables. Such a partition makes use of orthogonal polynomials and identifies two-way measures of asymmetry (akin to the Goodman-Kruskal tau index) and three-way measures generalisation. These partitions provide information about the structure of the asymmetric relationship between the categories in terms of location, dispersion and higher order moments.

Partitioning a non-symmetric measure of association for three-way contingency tables

D'AMBRA, LUIGI
2007

Abstract

The Goodman-Kruskal tau index is a popular measure of asymmetry for two-way contingency tables where there is a one-way relationship between the variables. Numerous extensions of this index for multi-way tables have been considered in the statistical literature. These include the Gray-Williams measures, Simonetti's delta index and the Marcotorchino index. This paper looks at the partition of the Marcotorchino index for a three-way contingency table with one, two and three ordered categorical variables. Such a partition makes use of orthogonal polynomials and identifies two-way measures of asymmetry (akin to the Goodman-Kruskal tau index) and three-way measures generalisation. These partitions provide information about the structure of the asymmetric relationship between the categories in terms of location, dispersion and higher order moments.
File in questo prodotto:
File Dimensione Formato  
marco-190905.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 201.4 kB
Formato Adobe PDF
201.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/103239
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 17
social impact