The new electric system restructuring requires more and more restrictive power quality requirements to be satisfied. The problem of disturbances compensation therefore becomes of noticeable importance, both in terms of device allocation and control strategy. The paper deals with active compensators, whose utilization is rapidly growing in modern power system, whereas power electronic devices play a fundamental role in controlling system behavior. An optimal control strategy for active compensators, particularly useful for distribution companies in a deregulated framework, is proposed with the aim of improving power quality. The proposed strategy is based upon a frequency domain approach for solving a linear quadratic regulator problem, without exceeding compensator rating. The proposed procedure is able to properly consider the buses sensitivity to different power quality disturbances. The methodology relies upon a Kalman filter based estimation technique, which enables an accurate tracking of relevant network state variables, as well as of harmonic disturbances injected into the power system. In the last part of the paper a numerical application with reference to a 18-busbar distribution network is presented, showing the feasibility and the effectiveness of the proposed methodology.

An Optimal Control Strategy for Power Quality Enhancement in a Competitive Environment

CARPINELLI, GUIDO;GRIFFO, ANTONIO;LAURIA, DAVIDE;
2007

Abstract

The new electric system restructuring requires more and more restrictive power quality requirements to be satisfied. The problem of disturbances compensation therefore becomes of noticeable importance, both in terms of device allocation and control strategy. The paper deals with active compensators, whose utilization is rapidly growing in modern power system, whereas power electronic devices play a fundamental role in controlling system behavior. An optimal control strategy for active compensators, particularly useful for distribution companies in a deregulated framework, is proposed with the aim of improving power quality. The proposed strategy is based upon a frequency domain approach for solving a linear quadratic regulator problem, without exceeding compensator rating. The proposed procedure is able to properly consider the buses sensitivity to different power quality disturbances. The methodology relies upon a Kalman filter based estimation technique, which enables an accurate tracking of relevant network state variables, as well as of harmonic disturbances injected into the power system. In the last part of the paper a numerical application with reference to a 18-busbar distribution network is presented, showing the feasibility and the effectiveness of the proposed methodology.
File in questo prodotto:
File Dimensione Formato  
Lauria_3.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 539.88 kB
Formato Adobe PDF
539.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/101988
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact