A subgroup H of a group G is said to be pronormal if H and H^g are conjugate in 〈H,H^g〉 for every element g of G. The behaviour of pronormal subgroups in finite or infinite groups has been often investigated and, in particular, the structure of (generalized) soluble groups in which all subgroups are pronormal is known. Here it is proved that any (generalized) soluble group in which non-pronormal subgroups fall into finitely many isomorphism classes either is minimax or a group in which all subgroups are pronormal.

Groups with finitely many isomorphism classes of non-pronormal subgroups / De Mari, F.. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 683:(2025), pp. 719-733. [10.1016/j.jalgebra.2025.07.004]

Groups with finitely many isomorphism classes of non-pronormal subgroups

De Mari F.
2025

Abstract

A subgroup H of a group G is said to be pronormal if H and H^g are conjugate in 〈H,H^g〉 for every element g of G. The behaviour of pronormal subgroups in finite or infinite groups has been often investigated and, in particular, the structure of (generalized) soluble groups in which all subgroups are pronormal is known. Here it is proved that any (generalized) soluble group in which non-pronormal subgroups fall into finitely many isomorphism classes either is minimax or a group in which all subgroups are pronormal.
2025
Groups with finitely many isomorphism classes of non-pronormal subgroups / De Mari, F.. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 683:(2025), pp. 719-733. [10.1016/j.jalgebra.2025.07.004]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0021869325003941-main.pdf

solo utenti autorizzati

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 821.98 kB
Formato Adobe PDF
821.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/1017600
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact