Based on Peter's work from 2003, quadrilaterals can be characterized in the following way: "among all quadrilaterals with given side lengths , , and , those of the largest possible area are exactly the cyclic ones". In this paper, we will give the corresponding characterization for every polygon, by means of quasicyclic polygons properties.

Maximizing the Area of Polygons via Quasicyclic Polygons / Anatriello, Giuseppina; Vincenzi, Giovanni. - In: STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA. - ISSN 0081-6906. - 61:1(2024), pp. 43-58. [10.1556/012.2023.04304]

Maximizing the Area of Polygons via Quasicyclic Polygons

Anatriello, Giuseppina;Vincenzi, Giovanni
2024

Abstract

Based on Peter's work from 2003, quadrilaterals can be characterized in the following way: "among all quadrilaterals with given side lengths , , and , those of the largest possible area are exactly the cyclic ones". In this paper, we will give the corresponding characterization for every polygon, by means of quasicyclic polygons properties.
2024
Maximizing the Area of Polygons via Quasicyclic Polygons / Anatriello, Giuseppina; Vincenzi, Giovanni. - In: STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA. - ISSN 0081-6906. - 61:1(2024), pp. 43-58. [10.1556/012.2023.04304]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/1012834
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact