The mannose 6-phosphate (M6P) pathway is critical for lysosome biogenesis, facilitating the trafficking of hydrolases to lysosomes to ensure cellular degradative capacity. Fibroblast Growth Factor (FGF) signaling, a key regulator of skeletogenesis, has been linked to the autophagy-lysosomal pathway in chondrocytes, but its role in lysosome biogenesis remains poorly characterized. Here, using mass spectrometry, lysosome immune-purification, and functional assays, we reveal that RCS (Swarm rat chondrosarcoma cells) lacking FGF receptors 3 and 4 exhibit dysregulations of the M6P pathway, resulting in hypersecretion of lysosomal enzymes and impaired lysosomal function. We found that FGF receptors control the expression of M6P receptor genes in response to FGF stimulation and during cell cycle via the activation of the transcription factors TFEB and TFE3. Notably, restoring M6P pathway—either through gene expression or activation of TFEB—significantly rescues lysosomal defects in FGFR3;4-deficient RCS. These findings uncover a novel mechanism by which FGF signaling regulates lysosomal function, offering insights into the control of chondrocyte catabolism and the understanding of FGF-related human diseases.
FGF Signaling Promotes Lysosome Biogenesis in Chondrocytes via the Mannose Phosphate Receptor Pathway / Cinque, Laura; Iavazzo, Maria; Di Bonito, Gennaro; Polishchuk, Elena; De Cegli, Rossella; Settembre, Carmine. - In: TRAFFIC. - ISSN 1600-0854. - 26:7-9(2025). [10.1111/tra.70013]
FGF Signaling Promotes Lysosome Biogenesis in Chondrocytes via the Mannose Phosphate Receptor Pathway
Cinque, Laura;Iavazzo, Maria;Settembre, Carmine
2025
Abstract
The mannose 6-phosphate (M6P) pathway is critical for lysosome biogenesis, facilitating the trafficking of hydrolases to lysosomes to ensure cellular degradative capacity. Fibroblast Growth Factor (FGF) signaling, a key regulator of skeletogenesis, has been linked to the autophagy-lysosomal pathway in chondrocytes, but its role in lysosome biogenesis remains poorly characterized. Here, using mass spectrometry, lysosome immune-purification, and functional assays, we reveal that RCS (Swarm rat chondrosarcoma cells) lacking FGF receptors 3 and 4 exhibit dysregulations of the M6P pathway, resulting in hypersecretion of lysosomal enzymes and impaired lysosomal function. We found that FGF receptors control the expression of M6P receptor genes in response to FGF stimulation and during cell cycle via the activation of the transcription factors TFEB and TFE3. Notably, restoring M6P pathway—either through gene expression or activation of TFEB—significantly rescues lysosomal defects in FGFR3;4-deficient RCS. These findings uncover a novel mechanism by which FGF signaling regulates lysosomal function, offering insights into the control of chondrocyte catabolism and the understanding of FGF-related human diseases.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


