Splicing regulatory sequences are cornerstones for exon recognition. Mutations that modify them can severely compromise mRNA maturation and protein production. A wide range of mutations, including SNPs and InDels, can influence splicing regulatory signals either directly (e.g., altering canonical donor and acceptor dinucleotides) or indirectly (e.g., creating cryptic splice sites). CSN1S1 and CSN1S2 genes encode for the two main milk proteins, αs1 and αs2 caseins, respectively. They represent a remarkable and unique example of the possibilities for alternative splicing of individual genes, both due to the high number of alternative splices identified to date and for recognized allele-specific splicing events. To date, at least 13 alleles of CSN1S1 originating from mutations that affect canonical splice sites have been described in Bos taurus (CSN1S1 A, A1, and H), Ovis aries (E, H, and I), Capra hircus (D and G), Bubalus bubalis (E, F) and Camelidae (A, C, and D). Similarly, allele-specific splicing events have been described at the CSN1S2 locus in B. taurus. (CSN1S2 D), C. hircus (CSN1S2 D), B. bubalis (CSN1S2 B, B1, and B2), Equus asinus (CSN1S2 I B), and Camelidae. This review highlights that mutations affecting canonical splice sites, particularly donor sites, are significant sources of genetic variation impacting the casein production of the main dairy livestock species. Currently, a key limitation on this topic is the lack of detailed functional and proteomic studies. Future research should leverage advanced omics technologies like long-read transcriptomics and allele-resolved RNA sequencing to characterize these splicing mechanisms, guiding precision breeding strategies.
CSN1S1 and CSN1S2: Two Remarkable Examples of Genetically Modulated Alternative Splicing via Identification of Allele-Specific Splicing Events / Cosenza, Gianfranco; Fulgione, Andrea; D'Anza, Emanuele; Albarella, Sara; Ciotola, Francesca; Pauciullo, Alfredo. - In: GENES. - ISSN 2073-4425. - 16:9(2025), pp. 1011-1030. [10.3390/genes16091011]
CSN1S1 and CSN1S2: Two Remarkable Examples of Genetically Modulated Alternative Splicing via Identification of Allele-Specific Splicing Events
Cosenza GianfrancoPrimo
Conceptualization
;Fulgione AndreaWriting – Original Draft Preparation
;D’Anza EmanueleWriting – Original Draft Preparation
;Albarella Sara
Conceptualization
;Ciotola FrancescaWriting – Original Draft Preparation
;
2025
Abstract
Splicing regulatory sequences are cornerstones for exon recognition. Mutations that modify them can severely compromise mRNA maturation and protein production. A wide range of mutations, including SNPs and InDels, can influence splicing regulatory signals either directly (e.g., altering canonical donor and acceptor dinucleotides) or indirectly (e.g., creating cryptic splice sites). CSN1S1 and CSN1S2 genes encode for the two main milk proteins, αs1 and αs2 caseins, respectively. They represent a remarkable and unique example of the possibilities for alternative splicing of individual genes, both due to the high number of alternative splices identified to date and for recognized allele-specific splicing events. To date, at least 13 alleles of CSN1S1 originating from mutations that affect canonical splice sites have been described in Bos taurus (CSN1S1 A, A1, and H), Ovis aries (E, H, and I), Capra hircus (D and G), Bubalus bubalis (E, F) and Camelidae (A, C, and D). Similarly, allele-specific splicing events have been described at the CSN1S2 locus in B. taurus. (CSN1S2 D), C. hircus (CSN1S2 D), B. bubalis (CSN1S2 B, B1, and B2), Equus asinus (CSN1S2 I B), and Camelidae. This review highlights that mutations affecting canonical splice sites, particularly donor sites, are significant sources of genetic variation impacting the casein production of the main dairy livestock species. Currently, a key limitation on this topic is the lack of detailed functional and proteomic studies. Future research should leverage advanced omics technologies like long-read transcriptomics and allele-resolved RNA sequencing to characterize these splicing mechanisms, guiding precision breeding strategies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


