The paper introduces a refinement of maximality, called secure maximality, and a refinement of secure maximality, called perfect maximality. The effectivity of these refinements and the connection with other relevant optimality notions are investigated. Furthermore, necessary and sufficient conditions are provided for the secure maximality of all maximals and for the perfect maximality of all maximals as well as for the perfect maximality of all secure maximals. Several sufficient conditions for (as well as two characterizations of) the existence of secure and perfect maximals are established. The precise structure of the entire sets of secure and perfect maximals is examined for some specific classes of relations like interval orders that admit a certain type of representability by means of two real-valued functions, relations induced by cones and relations that admit linear multi-utility representations.
Secure and perfect maximality / Quartieri, Federico. - In: JOURNAL OF MATHEMATICAL PSYCHOLOGY. - ISSN 0022-2496. - 125:(2025). [10.1016/j.jmp.2025.102922]
Secure and perfect maximality
Quartieri, Federico
2025
Abstract
The paper introduces a refinement of maximality, called secure maximality, and a refinement of secure maximality, called perfect maximality. The effectivity of these refinements and the connection with other relevant optimality notions are investigated. Furthermore, necessary and sufficient conditions are provided for the secure maximality of all maximals and for the perfect maximality of all maximals as well as for the perfect maximality of all secure maximals. Several sufficient conditions for (as well as two characterizations of) the existence of secure and perfect maximals are established. The precise structure of the entire sets of secure and perfect maximals is examined for some specific classes of relations like interval orders that admit a certain type of representability by means of two real-valued functions, relations induced by cones and relations that admit linear multi-utility representations.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025 JMP.pdf
accesso aperto
Descrizione: 2025 JMP
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.88 MB
Formato
Adobe PDF
|
2.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


