Raanking data are used in many fields to analyze preferences, but noise in the data---such as random or inconsistent rankings---can make interpretation tricky. This paper tackles the issue by introducing a boosting-based approach to improve the Mallows-Bradley-Terry model, making it more resistant to noise. The method works by iteratively adjusting weights based on how well individual rankings align with an estimated consensus. Through Monte Carlo simulations, we show that this approach leads to clearer, more consistent probabilities, even when the data contains a high percentage of noise.

Tackling Noise in Ranking Models with the Boosting Paradigm / Gismondi, Giuseppe; Coraggio, Luca; D'Ambrosio, Antonio. - III:(2025), pp. 345-349. ( SIS - Statistics for Innovation Genova 16-18 giugno 2025) [10.1007/978-3-031-95995-0_57].

Tackling Noise in Ranking Models with the Boosting Paradigm

Gismondi, Giuseppe
;
Coraggio, Luca;D'Ambrosio, Antonio
2025

Abstract

Raanking data are used in many fields to analyze preferences, but noise in the data---such as random or inconsistent rankings---can make interpretation tricky. This paper tackles the issue by introducing a boosting-based approach to improve the Mallows-Bradley-Terry model, making it more resistant to noise. The method works by iteratively adjusting weights based on how well individual rankings align with an estimated consensus. Through Monte Carlo simulations, we show that this approach leads to clearer, more consistent probabilities, even when the data contains a high percentage of noise.
2025
9783031959943
9783031959950
Tackling Noise in Ranking Models with the Boosting Paradigm / Gismondi, Giuseppe; Coraggio, Luca; D'Ambrosio, Antonio. - III:(2025), pp. 345-349. ( SIS - Statistics for Innovation Genova 16-18 giugno 2025) [10.1007/978-3-031-95995-0_57].
File in questo prodotto:
File Dimensione Formato  
GismondiEtAl - 2025 - Tackling Noise in Ranking Models with the Boosting Paradigm - In_ Statistics for Innovation III.pdf

solo utenti autorizzati

Descrizione: Pubblicazione
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 455.83 kB
Formato Adobe PDF
455.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/1004537
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact