Clustering stability is a popular approach to cluster validation, where the stability of clustering solutions is evaluated across resamples to select the most stable structure. However, there are few empirical studies that analyze clustering stability methods. This paper investigates the use of the Mirkin distance for evaluating the stability of clustering solutions, across non-parametric bootstrap resamples. The proposed strategy is validated with an extensive experimental analysis, providing useful insights in clustering stability for practical applications.

Analysis of the Mirkin’s Distance on Binary Relations for Clustering Stability / Coraggio, Luca; D'Ambrosio, Antonio; Mirkin, Boris. - 1:(2025), pp. 496-502. ( SIS - Statistics for Innovation Genova 16-18 giugno 2025) [10.1007/978-3-031-96736-8_82].

Analysis of the Mirkin’s Distance on Binary Relations for Clustering Stability

Coraggio, Luca
Primo
;
D'Ambrosio, Antonio;
2025

Abstract

Clustering stability is a popular approach to cluster validation, where the stability of clustering solutions is evaluated across resamples to select the most stable structure. However, there are few empirical studies that analyze clustering stability methods. This paper investigates the use of the Mirkin distance for evaluating the stability of clustering solutions, across non-parametric bootstrap resamples. The proposed strategy is validated with an extensive experimental analysis, providing useful insights in clustering stability for practical applications.
2025
9783031967351
9783031967368
Analysis of the Mirkin’s Distance on Binary Relations for Clustering Stability / Coraggio, Luca; D'Ambrosio, Antonio; Mirkin, Boris. - 1:(2025), pp. 496-502. ( SIS - Statistics for Innovation Genova 16-18 giugno 2025) [10.1007/978-3-031-96736-8_82].
File in questo prodotto:
File Dimensione Formato  
CoraggioEtAl - 2025 - Analysis of the Mirkin’s Distance on Binary Relations for Clustering Stability - In_ Statistics for Innovation I.pdf

solo utenti autorizzati

Descrizione: Pubblicazione
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 921.04 kB
Formato Adobe PDF
921.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/1004536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact