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Ultrasound-promoted N-aminomethylation of indoles can beachieved in basic medium
using sodium hydride and dichloromethane (DCM) as C1 donor source. This innovative
amino methylation protocol results in good to excellent yields of multifunctional indole
derivatives. The procedure is also applicable to other aza-heterocyclic compounds and,
interestingly, affords direct access to aminomethyl-substituted aryl alcohols.

Keywords: aminomethylation, ultrasound assisted, dichloro methane, indole N-1 selectivity, aza-heterocyclic
compounds

INTRODUCTION

The indole nucleus is present in a wide range of bioactive natural products and it is considered
as privileged structure in the �elds of pharmaceutical and material chemistry (Barden, 2010).
Research of new synthetic metal- or organo-catalyzed methodologies for the rapid construction
of functionalized indole has seen relevant progress in recent years (Patil and Yamamoto, 2008;
Bandini and Eichholzer, 2009; Bartoli et al., 2010; Cacchi and Fabrizi, 2011; Dalpozzo, 2015;
Leitch et al., 2017). Indole amino methylation, one of the most important methods for the direct
formation of C–C and C–N bonds (Hwang and Uang, 2002; Ibrahem et al., 2004; Murai et al., 2012;
Fujii et al., 2014; Nagae et al., 2015; Xu et al., 2015; Kim andHong, 2017; Mastalir et al., 2017;
Mondal et al., 2017), continues to be a challenge for chemists, especially indole aminomethylation
at N-1 position. Mannich and Mannich-type Friedel–Crafts reactions, the later using imines, N,O
acetals or N,N aminals in the presence of a Lewis acid, constitute the most commonly used
chemical approaches for the construction of aminomethylatedindoles (Chart 1; Swaminathan
and Narasimhan, 1966; Katritzky et al., 1990; Matsumoto et al., 1993; Arend et al., 1998; Saaby
et al., 2000; Speckamp and Moolenaar, 2000; Sakai et al., 2003,2010, 2014; Jiang and Huang,
2005; Lindquist et al., 2006; Wang et al., 2006; Kang et al., 2007; Rowland et al., 2007; Alonso
et al., 2008; Zou et al., 2015; Xie et al., 2018). However, both approaches are limited by the well-
known regioselectivity toward the C-3 position when 1,3-non-substituted indoles are used (Sakai
et al., 2014). The classic Mannich reaction at low temperatures (0–5� C) resulted in the high-yield
synthesis of isogramines and derivatives (Katritzky et al., 1990). Under tBuOK-promoted basic
conditions,Love and Nguyen (1998)and Love (2007)described the regioselective formation of
the N-1 derivative using the reaction of unprotected indole with 1-(N,N'–dialkylaminomethyl)
benzotriazoles as alkylating agents.Sakai et al. (2010)showed that, in the reaction of indoles with
N,O acetals, the use of Hf(OTf)4 as Lewis acid regioselectively promoted N-aminomethylation.
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CHART 1 | Aminomethylation of N-1 indole position.

Mastalir et al. (2017)obtained an N1 derivative in basic medium
by reaction of indole with a secondary amine using a manganese-
based catalyst and methanol as C1 donor source. However,
all these methods require highly controlled conditions or the
presence of speci�c catalysts.

MATERIALS AND METHODS

General Informations
Reagents, starting materials, and solvents were purchased from
Sigma-Aldrich (Milan, Italy) and used as received. Reactions
were carried out with magnetic stirring in 25 mL round-
bottomed or in falcon tubes (10 mL). Ultrasonication was
performed in a Bandelin Sonorex Digital 10P ultrasonic bath with
a frequency of 60 Hz and power of 240 W. Microwave assisted
closed vessel reactions were performed in a Biotage InitiatorC

reactor, using 10 mL vials type and external temperature sensor.
Analytical thin layer chromatography (TLC) was performed
on pre-coated glass silica gel plates 60 (F254, 0.25 mm, VWR
International). UHPLC analyses were performed on a Nexera
UHPLC system (Shimadzu, Kyoto, Japan) consisting of a
CBM-20A controller, two LC-30AD dual-plunger parallel-�ow
pumps, a DGU-20 AR5 degasser, an SPD-M20A photo diode
array detector (equipped with a 2.5mL detector �ow cell
volume), a CTO-20A column oven, a SIL-30AC autosampler. The
chromatographic pro�le was obtained on a KinetexTM C18 150�
2.1 mm� 2.6mm (100 Å) column (Phenomenex, Bologna, Italy).
The optimal mobile phase consisted of 0.1% TFA/H2O v/v (A)
and 0.1% TFA/ACN v/v (B). Analysis was performed in gradient
elution as follows: 0–13.00 min, 5–65% B; 13–14.00 min, 65–95%
B; 14–15.00 min, isocratic to 95% B; 15–15.01 min, 95–5% B;
then 3 min for column re-equilibration. Flow rate was 0.5 mL
min� 1. Column oven temperature was set to 45� C. Injection
volume was 2mL of sample. The following PDA parameters were
applied: sampling rate, 12.5 Hz; detector time constant, 0.160s;

cell temperature, 40� C. Data acquisition was set in the range
190–800 nm and chromatograms were monitored at 254 nm. For
the quanti�cation of main chromatographic peaks, indole was
selected as external standard. Stock solution (1 mg mL� 1) was
prepared in methanol, the calibration curve was obtained in a
concentration range of 250–10.0mg mL� 1 with six concentration
levels and triplicate injection of each level were run. Peak
areas of indole derivatives were plotted against corresponding
concentrations (mg mL� 1) and the linear regression was used
to generate calibration curve (yD 0.00024x� 1.39094) with
R2 values was� 0.9999. Puri�cations were conducted on
the Biotage Isolera One �ash puri�cation system, using pre-
packed KP-sil columns (Biotage, Uppsala, Sweden). 1D and 2D
NMR spectra were recorded with Bruker Avance (400 MHz)
spectrometer, at room temperature. Spectra were referenced
to residual chloroform (7.24 ppm, 1H; 77.23 ppm, 13C) or
methanol (3.31 ppm, 1H; 49.15 ppm, 13C). Chemical shifts are
reported in d values (ppm) relative to internal Me4Si, and J
values are reported in hertz (Hz). The following abbreviations
are used to describe peaks: s (singlet), d (doublet), dd (double
doublet), t (triplet), bs (broad singlet), and m (multiplet).HR-
MS experiments were performed by an LTQ-Orbitrap-XL-ETD
mass spectrometer (Thermo Scienti�c, Bremen, Germany), using
electrospray ionization. Elemental analysis was performed by
the FlashSmart Elemental Analyzer (Thermo Fisher Scienti�c,
Waltham, MA USA).

Method Optimization
Indole (1 mmol), base (2 mmol), piperidine (1.5 mmol) were
mixed in di�erent solvents (5 mL) under the conditions reported
in Table 1. After the time indicated inTable 1, the reaction
was quenched with 5 mL of a 10% citric acid solution and
the organic solvents were evaporated in vacuo. The crude
was dissolved in DCM (20 mL) and extracted with water
(3 � 20 mL). Compounds2, 3, and 4 were obtained after
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TABLE 1 | Reaction of indole with piperidine using different approachesa.

Entry Time (min) Reaction conditions Yields (%) c

2 3 4

1 20 USb (50� C) 21 24 –

2 40 US (50� C) 30 39 –

3 80 US (50� C) 39 44 –

4 120 US (50� C) 40 51 –

5 180 US (50� C) 40 37 12

6 120 T D 25� C 31 16 2

7 120 T D 80� C 52 34 6

8 10 mW (100� C) 26 39 10

aReaction conditions: 1.0 mmol of indole, 1.5 mmol of piperidine, 2.0 mmol ofbase, 4 mL
of DCM, 1 mL of DMF.
bUltrasound irradiation.
cYields were calculated with standardized HPLC method.

�ash chromatography, using 1/4 ethyl acetate/n-hexane as
eluent mixture.

Application of the Optimized Procedure
Substrates (1 mmol) were dissolved in acetonitrile (5 mL) in a
falcon tubes (10 mL) and sodium hydride (2 mmol), amines (1.5
mmol), and dichloromethane (3 mmol) were added. The mixture
was introduced in an ultrasonic bath setting the temperature
at 50� C and irradiating for 120 min. Then, the work up of the
reaction and the puri�cation of �nal compounds were performed
as described above. The NMR spectra of synthesized compounds
are depicted inFigures S1–S60.

Di(1H-Indol-1-yl)Methane (2)
Rf D 0.70 (ethyl acetate/n-hexane 1/4). (YieldD 81.2 mg, 33%).
1H NMR (CDCl3, 400 MHz):d: 6.37 (s, 2H, CH2); 6.57 (s 2H,
aryl); 7.15–7.19 (m, 4H, aryl); 7.27 (t, 2H, aryl,J D 6.9 Hz); 7.49
(d, 2H, aryl,JD 8.2 Hz); 7.65 (d, 2H, aryl,JD 7.9 Hz).13C NMR
(CDCl3, 100 MHz)d: 56.4; 103.4; 109.2; 120.3; 121.3; 122.5; 127.0;
129.1; 135.8. Elemental analysis calcd (%) for C17H14N2: C 82.90,
H 5.73, N 11.37; found: C 83.06, H 5.70, N 11.31.

1-(Piperidin-1-Ylmethyl)-1H-Indole (3)
Rf D 0.40 (ethyl acetate/n-hexane 1/4). (YieldD 130.6 mg, 61%).
1H NMR (CDCl3, 400 MHz):d: 1.29 (bs, 2H, CH2 piperidin);
1.48–1.51 (m, 4H, CH2 piperidin); 2.45 (t, 4H, CH2 piperidin,
JD 4.7 Hz); 4.78 (s, 2H, CH2); 6.43 (d, 1H, aryl,JD 3.0 Hz); 7.02
(t, 1H, aryl,J D 7.1 Hz); 7.07 (d, 1H, aryl,J D 3.0 Hz); 7.13 (t,
1H, aryl,J D 7.1 Hz); 7.40 (d, 1H, aryl,J D 8.2 Hz); 7.55 (d, 1H,
aryl,JD 7.8 Hz).13C NMR (CDCl3, 100 MHz)d: 23.9; 25.8; 51.8;
68.6; 101.3; 110.1; 119.5; 120.7; 121.6; 128.5; 128.8; 137.1. HR-MS
m/z: calcd for C14H19N2, [(MCH)C ]: 215.1543; found 215.1550.

Elemental analysis calcd (%) for C14H18N2: C 78.46, H 8.47, N
13.07; found: C 78.54, H 8.40, N 13.11.

3-((1H-Indol-1-yl)Methyl)-1-(Piperidin-1-Ylmethyl)-1 H-
Indole (4)
Obtained from indole and piperidine at 180 min. Rf D 0.15
(ethyl acetate/n-hexane 1/4). (YieldD 41.2 mg, 12%).1H NMR
(CDCl3, 400 MHz):d: 1.31–1.37 (m, 2H, CH2 piperidine); 1.51–
1.57 (m, 4H, CH2 piperidine); 2.46 (bs, 4H, CH2 piperidine);
4.77 (s, 2H, CH2); 5.45 (s, 2H, CH2); 6.46 (d, 1H, aryl,J D
3.08 Hz); 7.02 (s, 1H, aryl); 7.04–7.13 (m, 3H, aryl); 7.16–7.21
(m, 2H, aryl); 7.42–7.46 (m, 3H, aryl): 7.62 (d, 1H, aryl,J D
7.8 Hz).13C NMR (CDCl3, 100 MHz)d: 23.9; 25.7; 41.9; 51.8;
68.5; 101.1; 109.6; 110.4; 118.8; 119.3; 119.8; 120.9; 121.3; 122.2;
127.0; 127.7; 127.8; 128.8; 137.7. HR-MSm/z: calcd for C23H26N3,
[(MCH)C ]: 344.2121; found 344.2130. Elemental analysis calcd
(%) for C23H25N3: C 80.43, H 7.34, N 12.23; found: C 80.51, H
7.29, N 12.25.

1,10-(Piperidin-1-Ylmethylene)Bis(1H-Indole) (6)
Rf D 0.55 (ethyl acetate/n-hexane 1/9). (YieldD 62.7 mg,
19%).1H NMR (CDCl3, 400 MHz):d: 1.52–1.54 (m, 2H, CH2
piperidin); 1.64 (t, 4H, CH2 piperidin, J D 5.0 Hz); 2.48 (t, 4H,
CH2 piperidin, J D 5.0 Hz); 6.57 (d, 2H, aryl,J D 3.0 Hz); 6.85
(s, 1H, CH); 7.15 (t, 2H, aryl,J D 7.6 Hz); 7.23 (t, 2H, aryl,
J D 7.6 Hz); 7.48 (d, 2H, aryl,J D 3.1 Hz); 7.53 (d, 2H, aryl,
J D 8.2 Hz); 7.63 (d, 2H, aryl,J D 7.8 Hz).13C NMR (CDCl3,
100 MHz) d: 24.5; 25.7; 50.5; 82.4; 103.4; 109.9; 120.3; 121.1;
122.3; 124.9; 129.0; 135.9. HR-MSm/z: calcd for C22H24N3,
[(MCH)C ]: 330.1965; found 330.1977. Elemental analysis calcd
(%) for C22H23N3: C 80.21, H 7.04, N 12.76; found: C 80.29, H
6.99, N 12.83.

4-((1H-Indol-1-yl)Methyl)Morpholine (7)
Obtained from indole and morpholine. Rf D 0.35 (ethyl
acetate/n-hexane 1/4). (YieldD 147.0 mg, 68%).1H NMR
(CDCl3, 400 MHz):d: 2.57 (t, 4H, CH2 morpholine,JD 4.3 Hz);
3.72 (t, 4H, CH2 morpholine, J D 4.3 Hz); 4.81 (s, 2H, CH2);
6.56 (d, 1H, aryl,J D 3.0 Hz); 7.14–7.18 (m, 2H, aryl); 7.27 (t,
1H, aryl, J D 8.4 Hz); 7.50 (d, 1H, aryl,J D 8.2 Hz); 7.67 (d,
1H, aryl, J D 7.7 Hz). 13C NMR (CDCl3, 100 MHz) d: 50.9;
66.7; 68.3; 101.9; 110.1; 119.8; 120.9; 121.8; 128.4; 128.8; 135.2.
HR-MSm/z: calcd for C13H17N2O, [(MCH)C ]: 217.1335; found
217.1339. Elemental analysis calcd (%) for C13H16N2O: C 72.19,
H 7.46, N 12.95, O 7.40; found: C 72.16, H 7.51, N 13.04, O 7.47.

N-((1H-Indol-1-yl)Methyl)-1-Phenylmethanamine (8)
Obtained from indole and benzylamine. Rf D 0.25 (ethyl
acetate/n-hexane 1/6). (YieldD 163.0 mg, 69%).1H NMR
(CDCl3, 400 MHz):d: 3.59 (s, 2H, CH2 benzyl); 4.99 (s, 2H,
CH2); 6.45 (d, 1H, aryl,J D 3.1 Hz); 7.04–7.08 (m, 2H, aryl);
7.12–7.31 (m, 7H, aryl); 7.59 (d, 1H, aryl,JD 7.8 Hz).13C NMR
(CDCl3, 100 MHz)d: 50.0; 59.8; 101.5; 109.3; 119.7; 121.2; 121.7;
127.2; 127.9; 128.2; 128.5; 129.1; 135.8; 139.2. HR-MSm/z: calcd
for C17H19N2, [(MCH)C ]: 251.1543; found 251.1548. Elemental
analysis calcd (%) for C16H16N2: C 81.32, H 6.82, N 11.85, found:
C 81.41, H 6.90, N 11.87.
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N-((1H-Indol-1-yl)Methyl)-2-Phenylethanamine (9)
Obtained from indole and phenethylamine. Rf D 0.30 (ethyl
acetate/n-hexane 1/4). (YieldD 177,6 mg, 71%).1H NMR
(CDCl3, 400 MHz):d: 2.72 (t, 2H, CH2 ethyl, J D 6.8 Hz); 2.83
(t, 2H, CH2 ethyl, J D 6.8 Hz); 5.08 (s, 2H, CH2); 6.53 (d, 1H,
aryl, J D 3.0 Hz); 7.11 (d, 2H, aryl,J D 7.2 Hz); 7.14–7.28 (m,
6H, aryl); 7.39 (d, 1H, aryl,J D 8.2 Hz); 7.68 (d, 1H, aryl,J D
8.0 Hz).13C NMR (CDCl3, 100 MHz)d: 36.2; 47.6; 60.7; 101.5;
109.2; 119.7; 121.1; 121.7; 126.3; 127.7; 128.5; 128.7; 129.0; 135.8;
139.4. HR-MSm/z: calcd for C17H19N2, [(MCH)C ]: 251.1543;
found 251.1548. Elemental analysis calcd (%) for C17H18N2: C
81.56, H 7.25, N 11.19; found: C 81.50, H 7.31, N 11.14.

N-((1H-Indol-1-yl)Methyl)-4-Methoxyaniline (10)
Obtained from indole and 4-methoxyaniline. Rf D 0.50 (ethyl
acetate/n-hexane 1/4). (YieldD 106.0 mg, 42%).1H NMR
(CDCl3, 400 MHz):d: 3.75 (s, 3H, OCH3); 5.50 (s, 2H, CH2);
6.50 (d, 1H, aryl,J D 2.9 Hz); 6.66 (d, 2H, aryl,J D 8.8 Hz); 6.78
(d, 2H, aryl,J D 8.8 Hz); 7.17 (t, 1H, aryl,J D 7.3 Hz); 7.22 (d,
1H, aryl,J D 3.0 Hz); 7.27 (t, 1H, aryl,J D 7.6 Hz); 7.47 (d, 1H,
aryl,JD 8.2 Hz); 7.66 (d, 1H, aryl,JD 7.8 Hz).13C NMR (CDCl3,
100 MHz) d: 55.7; 57.5; 101.8; 109.3; 115.0; 115.8; 119.8; 121.2;
121.8; 126.8; 129.2; 135.4; 139.7; 153.5. HR-MSm/z: calcd for
C16H17N2O, [(MCH)C ]: 253.1335; found 253.1341. Elemental
analysis calcd (%) for C16H16N2O: C 76.16, H 6.39, N 11.10, O
6.34; found: C 76.18, H 6.42, N 11.03, O 6.40.

5-Iodo-1-(Piperidin-1-Ylmethyl)-1H-Indole (11)
Obtained from 5-iodoindole and piperidine. Rf D 0.45 (diethyl
ether/n-hexane 1/1). (YieldD 200.6 mg, 59%).1H NMR (CDCl3,
400 MHz):d: 1.36–1.41 (m, 2H, CH2 piperidine); 1.56–1.61 (m,
4H, CH2 piperidine); 2.50 (t, 4H, CH2 piperidine,J D 4.6 Hz);
4.82 (s, 2H, CH2); 6.44 (d, 1H, aryl,J D 2.5 Hz); 7.13 (d, 1H,
aryl, JD 3.1 Hz); 7.28 (d, 1H, aryl,JD 8.1 Hz); 7.46 (d, 1H, aryl,
J D 8.6 Hz); 7.97 (s, 1H, aryl).13C NMR (CDCl3, 100 MHz)d:
23.9; 25.8; 51.8; 68.8; 83.0; 100.6; 112.2; 129.5; 129.9; 131.1; 136.5.
HR-MS m/z: calcd for C14H18IN2, [(MCH)C ]: 341.0509; found
341.0514. Elemental analysis calcd (%) for C14H17IN2: C 49.43,
H 5.04, I 37.30, N 8.23, found: C 49.47, H 5.08, I 37.20, N 8.28.

5-Methyl-1-(Piperidin-1-Ylmethyl)-1H-Indole (12)
Obtained from 5-methylindole and piperidine. Rf D 0.55 (ethyl
acetate/n-hexane 1/4). (YieldD 150.6 mg, 66%).1H NMR
(CDCl3, 400 MHz):d: 1.37–1.42 (m, 2H, CH2 piperidine); 1.58–
1.63 (m, 4H, CH2 piperidine); 2.50 (s, 3H, CH3); 2.55 (t, 4H, CH2
piperidine, J D 5.0 Hz); 4.86 (s, 2H, CH2); 6.47 (d, 1H, aryl,J
D 3.0 Hz); 7.08 (d, 1H, aryl,J D 8.3 Hz); 7.15 (d, 1H, aryl,J D
3.0 Hz); 7.40 (d, 1H, aryl,JD 8.4 Hz); 7.45 (s, 1H, aryl).13C NMR
(CDCl3, 100 MHz) d: 21.4; 23.9; 25.9; 51.8; 68.7; 100.7; 109.8;
120.4; 123.2; 128.7; 128.9; 135.6. HR-MSm/z: calcd for C15H21N2,
[(MCH)C ]: 229.1699; found 229.1705. Elemental analysis calcd
(%) for C15H20N2: C 78.90, H 8.83, N 12.27; found: C 78.88, H
8.79, N 12.35.

5-Methoxy-1-(Piperidin-1-Ylmethyl)-1H-Indole (13)
Obtained from 5-methoxyindole and piperidine. Rf D 0.50
(acetate/n-hexane 2/3). (YieldD 183.0 mg, 75%).1H NMR

(CDCl3, 400 MHz):d: 1.25–1.31 (m, 2H, CH2 piperidine); 1.46–
1.52 (m, 4H, CH2 piperidine); 2.43 (t, 4H, CH2 piperidine,J D
5.2 Hz); 3.78 (s, 3H, CH3); 4.72 (s, 2H, CH2); 6.34 (d, 1H, aryl,J
D 3.0 Hz); 6.79 (dd, 1H, aryl,J1 D 2,4 Hz;J2 D 6.5 Hz); 7.00 (d,
1H, aryl,J D 2.4 Hz); 7.03 (d, 1H, aryl,J D 3.0 Hz); 7.29 (d, 1H,
aryl,JD 8.9 Hz).13C NMR (CDCl3, 100 MHz)d: 23.9; 25.8; 51.8;
55.8; 68.8; 100.8; 102.3; 110.9; 111.9; 128.9; 129.3; 132.4; 154.0.
HR-MSm/z: calcd for C15H21N2O, [(MCH)C ]: 245.1648; found
245.1655. Elemental analysis calcd (%) for C15H20N2O: C 73.74,
H 8.25, N 11.47, O 6.55; found: C 73.77, H 8.19, N 11.53, O 6.59.

Tert-Butyl((1-(Piperidin-1-Ylmethyl)-1H-Indol-5-
yl)Methyl)Carbamate (14)
Obtained from tert-butyl ((1H-indol-5-yl)methyl)carbamate and
piperidine. Rf D 0.35 (dichlorometane/acetate 9/). (YieldD
240.2 mg, 70%).1H NMR (CDCl3, 400 MHz): d: 1.28 (bs,
2H, CH2 piperidine); 1.40 (s, 9H, CH3); 1.49 (bs, 4H, CH2
piperidine); 2.43 (bs, 4H, CH2 piperidine); 4.33 (d, 2H, CH2, J
D 2.9 Hz); 4.75 (s, 2H, CH2); 6.39 (bs, 1H, aryl); 7.05–7.07 (m,
2H, aryl); 7.35 (d, 1H, aryl,J D 8.2 Hz); 7.45 (s, 1H, aryl).13C
NMR (CDCl3, 100 MHz) d: 23.9; 25.8; 28.4; 51.8; 68.7; 101.3;
110.4; 119.9; 121.8; 128.6; 129.4; 129.9; 136.5; 155.9. HR-MSm/z:
calcd for C20H30N3O2, [(MCH)C ]: 344.2333; found 344.2340.
Elemental analysis calcd (%) for C20H29N3O2: C 69.94, H 8.51,
N 12.23, O 9.32; found: C 69.99, H 8.45, N 12.18, O 9.37.

Tert-Butyl (2-(1-(Piperidin-1-Ylmethyl)-1H-Indol-3-
yl)Ethyl)Carbamate (15)
Obtained from tert-butyl (2-(1H-indol-3-yl)ethyl)carbamate and
piperidine. Rf D 0.35 (ethyl acetate/n-hexane 2/1). (Yield%D
221.5 mg, 62%).1H NMR (CDCl3, 400 MHz):d: 1.37–1.40 (m,
2H, CH2 piperidine); 1.47 (s, 9H, CH3); 1.56–1.62 (m, 4H, CH2
piperidine); 2.54 (bs, 4H, CH2 piperidine); 2.97 (t, 2H, CH2, JD
6.2 Hz); 3.48 (bs, 2H, CH2); 4.64 (s, 1H, NH); 4.82 (s, 2H, CH2);
7.01 (s, 1H, aryl); 7.13 (t, 1H, aryl,JD 7.6 Hz); 7.24 (t, 1H, aryl,J
D 8.0 Hz); 7.46 (d, 1H, aryl,J D 8.1 Hz); 7.61 (d, 1H, aryl.J D
7.7 Hz).13C NMR (CDCl3, 100 MHz)d: 23.9; 25.8; 28.4; 51.8;
68.5; 110.2; 111.9; 118.8; 119.1; 121.8; 126.8; 127.9; 137.6; 156.0.
HR-MSm/z: calcd for C21H31N3O2, [(MCH)C ]: 358.2489; found
358.2492. Elemental analysis calcd (%) for C21H31N3O2: C 70.55,
H 8.74, N 11.75, O 8.95; found: C 70.43, H 8.69, N 11.74, O 9.01.

2-Methyl-1-(Piperidin-1-Ylmethyl)-1H-Indole (16)
Rf D 0.40 (dichloromethane). (YieldD 50.4 mg, 22%).1H NMR
(CDCl3, 400 MHz):d: 1.35 (bs, 2H, CH2 piperidin); 1.44–1.45 (m,
4H, CH2 piperidin); 2.39 (bs, 7H, CH2 piperidin and CH3); 4.53
(s, 2H, CH2); 6.17 (s, 1H, aryl); 7.00 (t, 1H, aryl,JD 7.5 Hz); 7.04
(d, 1H, aryl,JD 7.0 Hz); 7.32 (d, 1H, aryl,JD 8.0 Hz); 7.42 (d, 1H,
aryl,JD 7.6 Hz).13C NMR (CDCl3, 100 MHz)d: 13.0; 24.4; 25.7;
51.9; 65.7; 100.7; 109.8; 119.3; 119.4; 120.4; 128.0; 137.5; 138.0.
HR-MS m/z: calcd for C15H21N2, [(MCH)C ]: 229.1699; found
229.1708. Elemental analysis calcd (%) for C14H18N2: C 78.90, H
8.83, N 12.27; found: C 78.81, H 8.85, N 12.45.

Bis(2-Methyl-1H-Indol-1-yl)Methane (17)
Rf D 0.70 (dichloromethane). (YieldD 85.0 mg, 31%).1H NMR
(CDCl3, 400 MHz):d: 2.30 (s, 6H, CH3); 6.31–6.33 (m, 4H, CH2
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and aryl); 7.10–7.12 (m, 4H, aryl); 7.19–7.21 (m, 2H, aryl); 7.54–
7.56 (m, 2H, aryl).13C NMR (CDCl3, 100 MHz)d: 13.3; 52.7;
102.5; 109.2; 120.0; 121.4; 128.4; 136.4; 137.0. Elementalanalysis
calcd (%) for C19H18N2: C 83.18, H 6.61, N 10.21; found: C
83.256, H 6.48, N 10.55.

1-((1H-Pyrrol-1-yl)Methyl)Piperidine (18)
Obtained from pyrrole and piperidine. Rf D 0.40 (ethyl
acetate/n-hexane 1/3). (YieldD 99.0 mg, 74%).1H NMR (CDCl3,
400 MHz):d: 1.38–1.41 (m, 2H, CH2 piperidineJD 4.1 Hz); 1.57–
1.63 (m, 4H, CH2 piperidine); 2.49 (t, 4H, CH2 piperidine J D
4.8 Hz); 4.65 (s, 2H, CH2); 6.18 (bs, 2H, aryl); 6.70 (bs, 2H, aryl).
13C NMR (CDCl3, 100 MHz)d: 23.8; 25.9; 51.3; 71.8; 107.8; 121.6.
HR-MS m/z: calcd for C10H17N2, [(MCH)C ]: 165.1386; found
165.1392. Elemental analysis calcd (%) for C10H16N2: C 73.13, H
9.82, N 17.06, O 8.95; found: C 73.08, H 9.90, N 17.10.

9-(Piperidin-1-Ylmethyl)-9H-Carbazole (19)
Obtained from carbazole and piperidine. Rf D 0.40 (ethyl
acetate/n-hexane 1/3). (YieldD 235.1 mg, 89%).1H NMR
(CDCl3, 400 MHz):d: 1.43 (bs, 2H, CH2 piperidine); 1.57–1.63
(m, 4H, CH2 piperidine); 2.64 (bs, 4H, CH2 piperidine); 4.97
(s, 2H, CH2); 7.28 (t, 2H, aryl,J D 7.2 Hz); 7.49 (t, 2H, aryl,
J D 7.2 Hz); 7.59 (d, 2H, aryl,J D 8.2 Hz); 8.13 (d, 2H, aryl,
J D 8.2 Hz). 13C NMR (CDCl3, 100 MHz) d: 24.2; 25.8; 52.3;
66.1; 109.8; 119.2; 120.1; 123.1; 125.7; 141.5. HR-MSm/z: calcd
for C18H21N2, [(MCH)C ]: 265.1699; found 265.1706. Elemental
analysis calcd (%) for C18H20N2: C 81.78, H 7.63, N 10.60; found:
C 81.88, H 7.60, N 10.66.

Bis(1H-Benzo[d]Imidazol-1-yl)Methane (20)
Obtained from benzimidazole and piperidine. Rf D 0.30 (ethyl
acetate/methanol 5/1). (YieldD 94.3 mg, 38%).1H NMR (CDCl3,
400 MHz):d: 6.43 (s, 2H, CH2); 7.24–7.29 (m, 4H, aryl); 7.36–
7.38 (m, 2H, aryl); 7.74–7.77 (m, 2H, aryl); 8.09 (s, 2H, aryl). 13C
NMR (CDCl3,100 MHz)d: 53.5; 109.2; 121.1; 123.4; 124.3; 132.7;
142.1; 143.9. Elemental analysis calcd (%) for C15H12N4: C 72.56,
H 4.87, N 22.57; found: C 72.48, H 4.93, N 22.54.

2-(Piperidin-1-Ylmethyl)Phenol (21)
Obtained from phenol and piperidine. Rf D 0.40
(dichlorometane/methanol 9/1). (YieldD 105.0 mg, 55%).1H
NMR (CDCl3, 400 MHz):d: 1.42 (bs, 2H, CH2 piperidine); 1.55–
1.59 (m, 4H, CH2 piperidine); 2.43 (bs, 4H, CH2 piperidine);
3.59 (s, 2H, CH2); 6.69 (t, 1H, aryl,J D 7.4 Hz); 6.73 (d, 1H,
aryl, J D 8.0 Hz); 6.88 (d, 1H, aryl,J D 7.2 Hz); 7.08 (t, 1H, aryl,
J D 7.6 Hz). 13C NMR (CDCl3, 100 MHz) d: 24.0; 25.9; 53.9;
62.2; 116.0; 118.9; 121.7; 128.4; 158.1. HR-MSm/z: calcd for
C12H18NO, [(MCH)C ]: 192.1383; found 192.1389. Elemental
analysis calcd (%) for C12H17NO: C 75.35, H 8.96, N 7.32, O
8.36; found: C 75.40, H 9.02, N 7.27, O 8.30.

2-Methyl-6-(Piperidin-1-Ylmethyl)Phenol (22)
Obtained from o-cresol and piperidine. Rf D 0.40 (n-
hexane/ethere 2/1). (YieldD 119.0 mg, 58%).1H NMR (CD3OD,
400 MHz): d: 1.46 (bs, 2H, CH2 piperidine); 1.57–1.61 (m,
4H, CH2 piperidine); 2.09 (s, 3H, CH3); 2.62 (bs, 4H, CH2
piperidine); 3.73 (s, 2H, CH2); 6.61 (t, 1H, aryl,JD 7.5 Hz); 6.82

(d, 1H, aryl,JD 7.3 Hz); 6.95 (d, 1H, aryl,JD 7.4 Hz).13C NMR
(CD3OD, 100 MHz)d: 14.6; 23.0; 24.8; 53.2; 59.9; 118.8; 119.6;
124.4; 127.1; 130.3; 155.3. HR-MSm/z: calcd for C13H20NO,
[(MCH)C ]: 206.1539; found 206.1543. Elemental analysis calcd
(%) for C13H19NO: C 76.06, H 9.33, N 6.82, O 7.79; found: C
76.00, H 9.39, N 6.75, O 7.87.

4-Methyl-2-(Piperidin-1-Ylmethyl)Phenol (23)
Obtained from p-cresol and piperidine. Rf D 0.40 (ethyl
acetate/n-hexane 1/3). (YieldD 125.1 mg, 61%).1H NMR
(CDCl3, 400 MHz):d: 1.42 (bs, 2H, CH2 piperidine); 1.54–1.58
(m, 4H, CH2 piperidine); 2.16 (s, 3H, CH3); 2.43 (bs, 4H, CH2
piperidine); 3.55 (s, 2H, CH2); 6.63 (d, 1H, aryl,JD 8.1 Hz); 6.69
(s, 1H, aryl); 6.88 (d, 1H, aryl,J D 8.0 Hz).13C NMR (CDCl3,
100 MHz)d: 20.4; 24.0; 25.9; 53.9; 62.2; 115.7; 121.3; 127.9; 128.9;
155.7. HR-MSm/z: calcd for C13H20NO, [(MCH)C ]: 206.1539;
found 206.1547. Elemental analysis calcd (%) for C13H19NO: C
76.06, H 9.33, N 6.82, O 7.79; found: C 76.14, H 9.36, N 6.87,
O 7.70.

2,4-Dichloro-6-(Piperidin-1-Ylmethyl)Phenol (24)
Obtained from 2,4-dichlorophenol and piperidine. Rf D 0.50
(ethyl acetate/n-hexane 1/3). (YieldD 108.8 mg, 42%).1H NMR
(CD3OD, 400 MHz):d: 1.46–1.50 (m, 2H, CH2 piperidine); 1.59–
1.64 (m, 4H, CH2 piperidine); 2.62 (bs, 4H, CH2 piperidine);
3.75 (s, 2H, CH2); 6.91 (d, 1H, aryl,J D 2.5 Hz); 7.16 (d, 1H,
aryl, J D 2.5 Hz).13C NMR (CD3OD, 100 MHz)d: 22.9; 24.8;
52.9; 60.0; 121.6; 123.0; 127.2; 128.3; 154.6. HR-MSm/z: calcd for
C12H16Cl2NO, [(MCH)C ]: 260.0603; found 260.0608. Elemental
analysis calcd (%) for C12H15Cl2NO: C 55.40, H 5.81, Cl 27.25, N
5.38, O 6.15; found: C 55.44, H 5.74, Cl 27.30, N 5.43, O 6.11.

2-(Tert-Butyl)-4-(Piperidin-1-Ylmethyl)Phenol (25)
Obtained from o-tert-butylphenol and piperidine. Rf D 0.50
(ethyl acetate/n-hexane 1/3). (Yield%D 163.0 mg, 66%).1H
NMR (CD3OD, 400 MHz):d: 1.29 (s, 9H, CH3); 1.44–1.50 (m,
2H, CH2 piperidine); 1.60–1.66 (m, 4H, CH2 piperidine); 2.73
(bs, 4H, CH2 piperidine); 3.72 (s, 2H, CH2); 6.65 (d, 1H, aryl,JD
8.1 Hz); 6.95 (d, 1H, aryl,JD 8.1 Hz); 7.15 (s, 1H, aryl).13C NMR
(CD3OD, 100 MHz)d: 22.5; 23.7; 28.5; 34.2; 52.9; 61.8; 115.8;
122.1; 129.1; 136.2; 157.0. HR-MSm/z: calcd for C16H26NO,
[(MCH)C ]: 248.2009; found 248.2013. Elemental analysis calcd
(%) for C16H25NO: C 77.68, H 10.19, N 5.66, O 6.47; found: C
77.72, H 10.22, N 5.63, O 6.50.

Bis(2-(Tert-Butyl)Phenoxy)Methane (26)
Obtained from o-tert-butylphenol and piperidine. Rf D 0.65
(ethyl acetate/n-hexane 1/3). (YieldD 34.3 mg, 11%).1H NMR
(CDCl3, 400 MHz):d: 1.47 (s, 18H, CH3); 5.87 (s, 2H, CH2); 7.00–
7.04 (m, 2H, aryl); 7.22–7.26 (m, 2H, aryl); 7.32 (d, 2H, aryl,JD
7.2 Hz); 7.37 (dd, 2H, aryl,J1 D 6.4 Hz;J2 D 1.4 Hz).13C NMR
(CDCl3, 100 MHz)d: 30.1; 34.9; 91.5; 114.8; 122.0; 126.9; 127.2;
138.6; 156.5. Elemental analysis calcd (%) for C21H28O2: C 80.73,
H 9.03, O 10.24; found: C 80.59, H 9.12, O 10.28.

Bis(2,6-Diisopropylphenoxy)Methane (27)
Obtained from 2,6-diisopropylphenol and piperidine. Rf D 0.55
(ethyl acetate/n-hexane 1/4). (YieldD 246.7 mg, 67%).1H NMR
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(CDCl3, 400 MHz):d: 1.24 (d, 24H, CH3, J D 6.8 Hz); 3.40–3.47
(m, 4H, CH); 5.26 (s, 2H, CH2); 7.18 (s, 6H, aryl).13C NMR
(CDCl3,100 MHz)d: 23.9; 26.7; 100.8; 124.0; 125.2; 142.2; 151.0.
Elemental analysis calcd (%) for C25H36O2: C 81.47, H 9.85, O
8.68; found: C 81.60, H 9.79, O 8.59.

2-(Piperidin-1-Ylmethyl)Naphthalen-1-ol (28)
Obtained from 1-naphthol and piperidine. Rf D 0.50 (ethyl
acetate/n-hexane 1/5). (YieldD 217.0 mg, 90%).1H NMR
(CDCl3, 400 MHz):d: 1.45 (bs, 2H, CH2 piperidine); 1.59–1.62
(m, 4H, CH2 piperidine); 2.50 (bs, 4H, CH2 piperidine); 3.74
(s, 2H, CH2); 6.98 (d, 1H, aryl,J D 8.2 Hz); 7.20 (d, 1H, aryl,
J D 8.5 Hz); 7.35–7.37 (m, 2H, aryl); 7.67 (d, 1H, aryl,J D
5.2 Hz); 8.16 (d, 1H, aryl,J D 5.2 Hz).13C NMR (CDCl3, 100
MHz) d: 24.1; 25.9; 62.4; 113.9; 118.0; 122.0; 124.7; 125.0; 125.8;
126.5; 127.3; 133.8; 153.8. HR-MSm/z: calcd for C16H20NO,
[(MCH)C ]: 242.1539; found 242.1546. Elemental analysis calcd
(%) for C16H19NO: C 79.63, H 7.94, N 5.80, O 6.63; found: C
79.70, H 8.03, N 5.72, O 6.59.

1-(Piperidin-1-Ylmethyl)Naphthalen-2-ol (29)
Obtained from 2-naphthol and piperidine. Rf D 0.50 (ethyl
acetate/n-hexane 1/5). (YieldD 226.7 mg, 94%).1H NMR

TABLE 2 | Optimization of the conditions for the reaction of1 with piperidinea.

Entry Solvent Base Yields (%) b

2 3

1 DMFc NaH 42 51

2 DMFc n-Bu-Li – –

3 DMFc DBU – 7

4 THFd KHMDS – 2

5 H2Od NaOH/TBAB 5 11

6 CH3CNd NaH 37 55

7 CH3CNe NaH 33 61

8 CH3CNd – – 16

9 CH3CNd Cs2CO3 – 29

10 CH3COCHd
3 Cs2CO3 – 23

aReaction conditions: indole (1.0 mmol), piperidine (1.5 mmol, 1.5 equiv.),base (2.0 mmol,
2.0 equiv.), 5 mL of solvents, US irradiation, 120 min, 50� C.
bYields were calculated by HPLC.
cDMF/DCM ratioD 1/4 (v/v).
dSolvent/DCM ratioD 1/1 (v/v).
eDCM D 3 mmol (3 equiv., 0.192 mL).

(CDCl3, 400 MHz):d: 1.46 (bs, 2H, CH2 piperidine); 1.61–1.65
(m, 4H, CH2 piperidine); 2.52 (bs, 4H, CH2 piperidine); 4.05 (s,
2H, CH2); 7.01 (d, 1H, aryl,J D 8.8 Hz); 7.21 (d, 1H, aryl,J D
7.8 Hz); 7.35 (t, 1H, aryl,JD 8.1 Hz); 7.60 (d, 1H, aryl,JD 8.8 Hz);
7.67 (d, 1H, aryl,J D 8.0 Hz); 7.72 (d, 1H, aryl,J D 8.6 Hz).13C
NMR (CDCl3, 100 MHz)d: 23.9; 25.8; 57.1; 111.0; 119.3; 120.9;
122.3; 126.2; 128.4; 128.9; 129.1; 132.7; 156.8. HR-MSm/z: calcd
for C16H20NO, [(MCH)C ]: 242.1539; found 242.1548. Elemental
analysis calcd (%) for C16H19NO: C 79.63, H 7.94, N 5.80, O 6.63;
found: C 79.68, H 8.00, N 5.83, O 6.67.

6-(Piperidin-1-Ylmethyl)Isoquinolin-5-ol (30)
Obtained from isoquinolin-5-ol and piperidine. Rf D 0.40
(ethyl acetate/n-hexane 1/3). (YieldD 210.7 mg, 87%).1H NMR
(CDCl3, 400 MHz):d: 1.47 (bs, 2H, CH2 piperidine); 1.61–1.63
(m, 4H, CH2 piperidine); 2.51 (bs, 4H, CH2 piperidine); 3.78
(s, 2H, CH2); 7.10 (d, 1H, aryl,J D 8.0 Hz); 7.31 (d, 1H, aryl,J
D 8.0 Hz); 7.91 (d, 1H, aryl,J D 8.0 Hz); 8.41 (d, 1H, aryl,J D
8.0 Hz); 9.07 (s, 1H, aryl).13C NMR (CDCl3, 100 MHz)d: 23.9;
25.8; 62.3; 115.1; 117.4; 118.1; 127.6; 127.8; 128.9; 142.0; 151.8;
153.2. HR-MSm/z: calcd for C15H19N2O, [(MCH)C ]: 243.1492;
found 243.1500. Elemental analysis calcd (%) for C15H18N2O: C
74.35, H 7.49, N 11.56, O 6.60; found: C 74.41, H 7.62, N 11.48,
O 6.65.

Bis(Phenylthio)Methane (31)
Obtained from thiophenol and piperidine. Rf D 0.40 (n-hexane).
(Yield%D 92.8 mg, 40%).1H NMR (CDCl3, 400 MHz):d: 4.38
(s, 2H, CH2); 7.28 (t, 2H, aryl,J D 7.1 Hz); 7.33 (t, 4H, aryl,J
D 7.2 Hz); 7.46 (d, 4H, aryl,J D 7.5 Hz).13C NMR (CDCl3,100
MHz) d: 40.7; 127.2; 129.0; 130.8; 135.0. Elemental analysis calcd
(%) for C13H12S2: C 67.20, H 5.21, S 27.60; found: C 67.33, H
5.18, S 27.79.

RESULTS AND DISCUSSION

When we performed N-methylation reactions of non-substituted
indole using CH3I in sodium hydride/DCM/DMF solution
assisted by ultrasound irradiation (US), we observed the almost
exclusive formation of 1-diindolylmethane (86% of yield), which
suggested that DCM is a bridging agent in the formation of
this N-aminomethylated compound (Mills et al., 1987, 2009;
Matsumoto et al., 1993; Souquet et al., 2006; Rudine et al., 2010;
Zhou et al., 2011). In an attempt to capitalize on DCM behavior,
we introduced a secondary amine, speci�cally piperidine, in

SCHEME 1 | Reaction of 1 with piperidine in the presence of CHCl3.
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the reaction. In this case, we observed the formation of 1-
diindolylmethane2 and -(piperidin-1-ylmethyl)-1H-indole3,
which were isolated in yields of 40 and 51%, respectively. Here
we describe an e�cient approach to the synthesis of 1-indolyl
methanamines, starting from di�erent indole substrates and
amines under basic conditions.

An initial analysis of time, temperature, and irradiation
conditions (Table 1) for the reaction of indole with piperidine, in
DMF/DCM (1/4; 5 mL) using 2.0 equiv. of NaH, con�rmed the
e�cacy of operating ultrasound (Baig and Varma, 2012; Cravotto
et al., 2013) as reaction catalyst, and 2 h at 50� C as optimal
time reaction and temperature conditions (Table 1). However,

CHART 2 | Aminomethylation of Aromatic Compounds with DCM and Aminesa,b. aReaction conditions: 3.0 mmol of CH2Cl2, 1.0 mmol of substrate, 1.5 mmol of
amine, 2.0 mmol of NaH, 5 mL of CH3CN, under ultrasound irradiation at room temperature for 120 min. b Isolated yield.
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under these conditions we did not observe any selectivity vs. the
formation of 3 (2/3 ratio in the range 1–2, entries 1–8,Table 1
and entry 1,Table 2). When we increased the reaction time to
3 h (entry 5,Table 1) we observed the progressive formation
of the 3-((1H-indol-1-yl)methyl)-1-(piperidin-1-ylmethyl)-1H-
indole (4), probably as a result of the attack of 1-methylene-1H-
indol-1-ium at C-3 position of compound3(entry 5,Table 1). An
increase of temperature in batch andmW irradiation also favored
the formation of4 (entries 6–8,Table 1).

As shown inTable 2(entries 2–10), the substitution of NaH
by di�erent bases (entries 2–5, 9, and 10) resulted in a strong
decrease of3 yields, while acetonitrile was the solvent of choice
(entries 6 and 7). Interestingly, the absence of NaH in CH3CN
(entry 8) resulted in the aminomethylation of N-1 in a yield of
16%, while Cs2CO3 did not improve the reaction performance in
terms of either CH3CN or acetone (entries 9 and 10).

We also found that the 3-(piperidin-1-ylmethyl)-1H-indole
regioisomer was not formed under any of the conditions
used, which suggests that 1-methylene-1H-indol-1-ium, but
not 1-methylenepiperidine-1-ium, is the active intermediate of
this reaction (Mills et al., 1987). In fact, 1-methylindole was
recovered unchanged when it replaced indole as starting material.
The greater reactivity of N-1 vs. C-3 in indoles under the
above reaction conditions has been also observed replacing
dichloromethane with chloroform. In fact, the reaction of indole
in CH3CN/3 eq. CHCl3 with piperidine, gives both indole-3-
aldheyde (5) and 1,1'-(piperidin-1-ylmethylene) bis(1H-indole)
(6) in yields of 11 and 19%, respectively (Scheme 1).

The formation of these products can be explained considering
the dichlorocarbene generated from chloroform in basic
conditions as electrophilic species (Hine et al., 1953; Saunders
and Murray, 1960; Kirmse et al., 1990; Wynberg and Meijer,
2005). The addition of the dichlorocarbene to positions 2 and
3 of indole leads to the well-known Reimer-Tiemann (Wynberg
and Meijer, 2005) formylated derivative5, while, according to
literature (Hine et al., 1953; Saunders and Murray, 1960; Kirmse
et al., 1990), compound6 could be obtained from a halogenated
alkyl adduct, which quickly undergoesb-elimination leading to a
reactive chloromethylene indolinium intermediate, as shown in
Scheme S1. Addition of a nucleophile and regeneration of the
indolium species followed by a second nucleophilic attack leads
to the major compound6.

Besides these results con�rm the halogenated solvents
as appropriate C1 sources, the low yields obtained using
CHCl3 discouraged further investigations. Therefore, we next
explored the scope of the reaction using DCM as C1 source
under the optimized reaction conditions (entry 7,Table 2),
by varying the amine partners, using alkyl, and aryl amines
as the second reaction component. Given the incidence
of nitrogen heterocycles in chemistry and pharmaceuticals
(Vitaku et al., 2014; Blakemore et al., 2018), we used various
substituted indoles and other N-heterocycles in combination
with piperidine (Chart 2). The reactions of indole with another
secondary amine, morpholine, or with primary alkyl and
aryl amines such as benzyl and phenylethyl amines resulted
in N-((1H-indol-1-yl)methyl) derivatives7–9 in high yields
(68–71%,Chart 2).

TABLE 3 | Selectivity of the aminomethylation reaction.

Compound A/B or C/D ratio a Compound A/B or C/D ratio a

7 9/1 18 1/ �

8 7/3 19 1/ �

9 2/1 21 1/ �

10 7/3 22 1/ �

11 9/1 23 1/ �

12 1/� 24 1/�

13 9/1 25 9/1

14 9/1 28 1/ �

15 1/� 29 1/�

16 2/3 30 1/ �

aThe A/B or C/D ratio was calculated as isolated yields.

However, the reaction with anilines can only be performed
with anilines containing an electron donor group. Therefore,
using 4-methoxy aniline, we obtained the amino methylene
derivative 10 in a yield of 42%. Biologically relevant 3- or
5- substituted indoles (Bertamino et al., 2016; Musella et al.,
2016) reacted with piperidine to provide the N-aminomethyl
derivatives11–15in a yield range of 59–75% and high selectivity,
especially in the case of indoles substituted with electron donor
groups (Table 3).

Compounds14 and 15 containing a Boc-protecting group
are stable under classical acid deprotection conditions, thus
becoming e�ective intermediates in the synthesis of more
complex derivatives. Using 2-methyl indole as starting material,
we also obtained the aminomhetylated product (16) in 22% of
yield, and its related dimeric compound (17) in 31% of yield.
Next, the reaction of piperidine with pyrrole and carbazole
generated a high yield of the corresponding aminomethyl
derivatives18 (74%) and19 (89%), which were also obtained
with high selectivity (Table 3). However, benzoimidazole yielded
only bis-benzoimidazolylmethane (20, 38%) while pyridine and
pyridinol derivatives did not react in our conditions (Mastalir
et al., 2017).

Given the chemist community's interest in the chemistry
of phenol and its derivatives, in particular for the activation
of C-H bonds to generate new C-C bonds (Nair et al., 1994;
Joshi et al., 2004; Roman, 2015; Dai et al., 2017; Mastalir
et al., 2017), we applied the above described methodology
to phenols as well as to other heterocycles namely, 1- and
2-napthol, 5-hydroxyisoquinoline, thiophene, and thiophenol,
again using piperidine and DCM as the other two reaction
components (Chart 2).
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Phenol, 2- and 2,4- electron-donating substituted
phenols selectively produced the 2-(piperidin-1-ylmethyl)
phenol derivatives 21–23 in a yield range of 55–61%.
Reaction with 2,4-dichlorophenol led to 42% of 2,4-
dichloro-6-(piperidin-1-ylmethyl)phenol (24, Table 3 for the
selectivity ratio). Reaction from bulky substituted phenol
orto t-butyl phenol gave the expected 2-(tert-butyl)-6-
(piperidin-1-ylmethyl)phenol25 in a yield of 66% and also
bis(2-(tert-butyl)phenoxy)methane26 in a yield of 11%,
while with 2,6-di-isopropylphenol the diphenoxymethane
derivative27 was exclusively obtained (Bauerle and Brodbelt,
1995). 1- or 2-naphtol, and 5-isoquinolinol produced
selectively the 2-(piperidin-1-ylmethyl)naphthalen-1-ol (28),
1-(piperidin-1-ylmethyl)naphthalen-2-ol (29), and 8-(piperidin-
1-ylmethyl)isoquinolin-5-ol (30), in very high yields (90, 94, and
87%, respectively). As we expected, the reaction with thiophene
led to degradation products, while the same conditions applied
to thiophenol led to bis(phenylthio)methane31in a yield of 40%.

CONCLUSIONS

In conclusion, we have developed a practical and sustainable
three-component aminomethylation method using di�erent N-
heterocycles in combination with a wide range of amines and
DCM as C1 source. Thanks to the full N- vs. C- regioselectivity
observed in this reaction, this method is an attractive alternative
approach to the synthesis of 1-aminomethyl indole derivatives,
a class of compounds hitherto poorly accessible. This atom-
e�cient reaction exploits the potential of ultrasound waves to
provide new highly functionalized indoles that are stable both
over time and in common synthetic transformations thereby
increasing the molecular diversity of this important template.

The methodology may also be suitable for other aza-heterocycles,
phenols, and some of its derivatives as aryl alcohols, which
suggests its potential in the chemistry of materials and medicines,
as well as in the life sciences.
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