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ON THE EXISTENCE OF NON-GOLDEN SIGNED GRAPHS

MAURIZIO BRUNETTI *

ABSTRACT. A signed graph is a pair I' = (G, 0), where G = (V(G),E(G)) is a graph
and 0 : E(G) — {+1,—1} is the sign function on the edges of G. For a signed graph we
consider the least eigenvalue A (T) of the Laplacian matrix defined as L(T') = D(G) — A(T),
where D(G) is the matrix of vertices degrees of G and A(I') is the signed adjacency matrix.
An unbalanced signed bicyclic graph is said to be golden if it is switching equivalent to a
graph I satisfying the following property: there exists a cycle C in I"and a A (T")-eigenvector
x such that the unique negative edge pq of I" belongs to C and detects the minimum of the
set
Fx([,C) = { |xyxs| | rs € E(C) }.

In this paper we show that non-golden bicyclic graphs with frustration index 1 exist for each
n>>35.

1. Introduction

A signed graph T is a pair (G, ), where G = (V(G),E(G)) is a graph and ¢ : E(G) —
{+1,—1} is a sign function (or signature) on the edges of G. The (unsigned) graph G
of I' = (G,0) is called the underlying graph. Each cycle C in I has a sign given by
sign(C) =Tl.ec o(e). A cycle whose sign is 1 (resp. —1) is called positive (resp. negative).
A signed graph is said to be balanced if all cycles are positive, and unbalanced otherwise
(Harary 1953). If all edges in I are positive, then I" is denoted by (G,+). The reader is
referred to see Cvetkovic et al. (2009) for basic results on the graph spectra and Zaslavsky
(2010) for basic results on the spectra of signed graphs.

Many familiar notions related to unsigned graphs directly extend to signed graphs. For
example, a signed graph is k-cyclic if the underlying graph is k-cyclic, which means that it
is connected and |E(G)| = |V(G)|+k— 1. A 2-cyclic signed graph is equivalently called
bicyclic.

ForI'= (G,0) and U C V(G), let TV be the signed graph obtained from I by reversing
the signature of the edges in the cut [U,V (G) \ U], namely orv (e¢) = —or(e) for any edge
e between U and V(G) \ U, and opv (e) = or(e) otherwise. The signed graph I'V is said to
be switching equivalent to I', and we write TV ~ T or v ~ or. It is worthy to notice that
I'Y and T share the set of positive cycles.
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The signatures of two switching equivalent signed graphs are said to be equivalent. By
o ~ + we say that the signature o is equivalent to the all-positive signature.

Like the unsigned ones, signed graphs too can be studied by means of matrix theory.
In this paper, we consider the Laplacian matrix L(I') = D(T') — A(T"), where D(T') is
the diagonal matrix diag(dy,ds, . ..,d,) of vertex degrees, and A(T") = (a;;) is the signed
adjacency matrix, where a;; = (i) if vertices i and j are adjacent, and O otherwise.

Since L(I") is a real positive semi-definite symmetric matrix, then the roots of the
characteristic polynomial det(x] — L(T")) are real and non-negative. We shall denote by
A(T) the least among the L(T)-eigenvalues.

Switching equivalent signed graphs have similar adjacency and Laplacian matrices. In
fact, the switching related to the vertex subset U is uniquely determined by the diagonal
matrix Sy = diag(sy,s2,...,s,) with s; = 1 for each i € U, and s; = —1 otherwise. It is easy
to see that A(T') = SyA(TY)Sy and L(T') = Sy L(T'Y)Sy. The effects of sign switching on
the eigenspaces are easily seen: if x is an L(I")-eigenvector of A for I, then Syx and —Syx
are L-eigenvectors of A for I'V.

Also note that sign switching preserves moduli of the eigenvector components: being Sy
diagonal with values in {1,—1}, the components of Syx (resp. —Syx) corresponding to the
vertices in U (resp. '\ U) are left unaffected, whereas the others change sign.

The least Laplacian eigenvalue A (I") has a special role in the Spectral Theory of Signed
Graphs. In fact, a connected signed graph I" = (G, o) with A (I") = 0 is switching equivalent
to (G, +), and L(T") is similar to L(G) = D(G) —A(G), where D and A are the degree matrix
and the adjacency matrix of the unsigned graph G (Zaslavsky 1982). In a sense made precise
by Belardo (2014), the eigenvalue A (I") measures how far is " from being balanced. In
particular, A(I") is bounded above by the so-called graph frustration number and the graph
frustration index, i.e. the number of vertices and the number of edges respectively to be
deleted from I" in order to get a balanced signed graph (Belardo 2014; Martin 2017).

Belardo et al. (2018) studied the least Laplacian eigenvalue of graphs I" belonging to the
set Z(n) of unbalanced bicyclic signed graphs of order n. When n > 5, it turned out that
A(T) is minimal for I" = I'(n), the graph consisting in two triangles, only one of which is
unbalanced, connected by a path of length n — 5 (cf. Figure 1, the dashed line represents
the only negative edge). Such graph minimizes the least eigenvalue even in the larger set
A (n) of non necessarily connected graphs whose Laplacian eigenvalues are all positive
and |E(G)| = [V(G)| + 1.

FIGURE 1. The unbalanced bicyclic I" = I'(n) minimizing the least Laplacian
eigenvalue in the set .4 (n).
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In order to get such result, the three authors proved that a graph in %(n) with minimal
least Laplacian eigenvalue had to be ferreted out in %(n)1, the set of bicyclic graphs having
frustration index equal to 1. Moreover, such “minimal” graph lies in a convenient subset
U (n) of $(n); whose definition is postponed to Section 3. Belardo et al. (2018) claimed,
but not proved, that % (n) is actually a proper subset of %(n); for each n > 5. If this were
not the case the lengthy proof to seek I'(1) out would be considerably shorter.

The main result of this paper consists in showing the existence of a family of graphs in
the complement #(n); \ % (n) for each n > 5.

As proved by Belardo et al. (2018), signed graphs in % (n) enjoy a very nice property
shared with all unbalanced unicyclic graphs (see Lemma 4.4 of Belardo and Zhou 2016):
in their switching equivalence class there exists a kind of privileged signature & with just
one negative edge such that I' = (G, &) admits a A (I')-eigenvector with all non-negative
components. Arguments in the following sections suggest that such privileged signature —
whose number of negative edges equals the frustration index — exists when the underlying
graph G has any positive cyclomatic number and all its cycles are edge-disjoint, while
remains dubious if G contains theta-graphs as subgraph.

2. Preliminaries on Signed Bicyclic Graphs

As recalled in Section 1, a signed graph I = (G, o) is said to be 2-cyclic (or bicyclic as

well) if it is connected and
E(G)|=[V(G)[+1.

Let %(n) the set of unbalanced bicyclic signed simple graphs of order n. Since signed
graphs of that kind have no loops or multiple edges, the set .Z(n) is not empty only for
n > 4. The base of T, denoted by I, is the (unique) minimal bicyclic signed subgraph of T.
It is easy to see that [ is the unique bicyclic subgraph of I" containing no pendant vertices
(i.e. vertices whose degree is 1) and I' can be obtained from I by attaching signed trees to
some vertices of I,

Let k, [ and m be three non-negative integers such that 3 < k < m. The underlying
unsigned graph G of I is one of the following three types:

e the graph B(k,0,m) obtained from two vertex-disjoint cycles C; and C,, by identi-
fying vertices u of Cy and v of C,,;

e the graph B(k,[,m) obtained from two vertex-disjoint cycles C; and C,, by joining
vertices u = ugp of Cy, and v of C,, by a new path ugu; - --u;_ ;v with length / > 1.

e the theta-graph B(P,, P;, P,,) obtained from three pairwise internal disjoint simple
paths from a vertex x to a vertex y. These three paths are

Pe=vovivy - vieivie Br=uouyuz ---w—yu; and By =wowiwa -+ Wy—1 Wi,
)]
where x = uy = vo = wp and y = vy = u; = w,. Here we suppose that 1 <1 <k <m,
where only / can possibly be 1 (in fact no multiple edges are allowed).

The cycles
VOVI V2 e Ve Vi1 - ui g and  WoW{ Wy - Wi | Wy Mg -+ Uy Ug

inside B(P, Py, P,) will be respectively denoted by PkPl_1 and PmPl_l. These graphs are
depicted in Figure 2.
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Vk—1

B(Py, Pi, Pry) g

FIGURE 2. The three bicyclic bases.

We now define several subsets of the set %8(n) of unbalanced bicyclic graphs of order n:
B 1m)(n) = {T € B(n)| G =B(k,1,m) and (sign(Cy),sign(Cy)) = (-1,1)},  (2)
Bkim)(n) = {T € B(n)|G = B(k,I,m)and (sign(Cy),sign(C)) = (1,-1)},  (3)

Bk 1) (n) = {T € B(n)| G = B(k,l,m)and (sign(C),sign(Ca)) = (~1,-1)}, 4

where we are assuming that 3 <k <m, [ >0,and k+1+m <n+1.

We also define
‘%)(P;,PI,Pm) (n) = {T" € #(n)| G = B(P, P, P,,) and the only negative edge of I"is in P} };
(%)
Pp, P P) ( ) ={C € B(n)|G = B(P, P, P,)and the only negative edge of 'is in P, };
(6)
B poppr) (1 (n) = {I" € #(n)|G = B(P, P, P,,) and the only negative edge of I"is in P,, }.
(7

where 1 </ <k<m,k+1+m<n+1, and only / can possibly be 1.

Proposition 3.2 of Zaslavsky (1982) says, in particular, that all graphs in a fixed set of
type (2)-(7) are switching equivalent. For each of them the number of pendant vertices is at
most

n+l—k—Il—m
The same result by Zaslavsky also implies that every unbalanced bicyclic graph of order n
is switching equivalent to a graph belonging to the union of all sets of the form (2)-(7).

Denote by €(I') the frustration index, i.e. the smallest number of edges whose deletion

leads to a balanced graph. It is now not hard to prove that, for each I € #(n),

®)

£(T) = 2 if ' is switching equivalent to a graph of type (4),
|1 otherwise.

Denoted by %(n); the set of bicyclic graphs whose frustration index is s, by Equation (8)
we get
HB(n) = HB(n)UAB(n),
where, as usual, the symbol LI denotes the disjoint union.
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3. The golden property

Each signed graph I" € #(n); has up to two different unbalanced cycles. Supposing that
I has just one negative edge, we select the cycle C in the following way.

Ck ifI"e '%)(k’l,m)o/l);

Cn ifI"'e B(k,l,m’)(n);

PkP171 ifre%(P/:J:’lvpm)U%(Pk-,Pfme)(n);
RP," T € By ppy ().

(@]
Il

C))

Let I' be a graph in %(n)1, and x be a unit A (I')-eigenvector. The cycle C, together with
x, determines the following set of nonnegative real numbers
F(T,C) = { |xxs| | rs € E(C) }. (10)
Belardo et al. (2018) gave a variant of the following definition.
Definition 3.1 (Golden Property). A graphI' = (G,0) € %(n) (and its signature as well)

is said to satisfy the golden property if it has just one negative edge pq, and, for a suitable
A(T)-eigenvector x, the edge pq detects the minimum of (T, C).

The requirement of Belardo et al. (2018) for x to be unit is not really relevant here, hence
it has been dropped out.

Remark 3.2. If T satisfies the golden property for the eigenvector X, it also satisfies the
golden property for the eigenvector fx, where 3 is any non-zero real number. In fact the
map
xpxs| € F4(T,C) — B2|x,x] € Sy (T, C).

is an order-preseving bijection.

Consider now the subset % (n) C % (n); whose elements I are switching equivalent to a
certain signed graph (G, o) satisfying the golden property.

We say that a signed bicyclic graph is golden if and only if it belongs to % (n).

Proposition 3.3. All graphs in %(4), are golden.

Proof. For n =4, we see that #(4), = %(4) contains just two graphs up to switching
equivalence. They are known as (signed) diamonds:

e B ppy@) and T'€Bp pop)(4). (a1

The two diamonds are depicted in Figure 3 (the dashed lines represent the negative edges).

FIGURE 3. The unbalanced diamonds.
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A direct analysis of their Laplacian polynomial shows that

AT =2-V2 < 2(I")=3-V5. (12)

Moreover
11 V5—-1 V5-1
VA A A R AN /N N
y _(yp7yq7yr7ys)_(ﬁvﬁao7l) and y _(yp7yqayr7ys)_( 2 ’ 2 7131)
are a A (I")-eigenvector for I” and a A (I"")-eigenvector for I respectively. We get
- = 1 ~ A 3—v5 V5-1
yy/(F’,C) = 07 = and L§ﬂy//(r//7C) = \[, \f .
2 2 2

In both cases the minimum is achieved in correspondence of the negative edge. g

Lemma 3.4. Let ' = (G,0) and I = (G, 6") be two signed graphs in B ; ,(n) each
having a single negative edge. Fixed any unit ),(l")-eigenve_ctor x of L(T') and any unit
A(T")-eigenvector X' of L(I") , the two sets of numbers Sx(T',C) and Sy (I",C) are equal.

Proof. By Proposition 3.2 of Zaslavsky (1982), T and I"” are switching equivalent, therefore
A(T) = A(T"”). As noted in Section 1, |x,| = |x}| for each u € G. The equality of the two
sets Sx(I",C) and Sy (I",C) now comes from their definition. O

Proposition 3.5. For each n > 5, all graphs in
H(n) = U (B 1) (W)U Bie g (n)) (13)

3<k<m
0<I<n+1—k—m

are golden.

Proof. When I belongs to the set (13), it just contains one unbalanced simple cycle. By
Proposition 3.2 of Zaslavsky (1982), we can possibly replace I" by a switching equivalent
graph having just one negative edge, and there is no obstruction to rotate such negative
edge all around the unbalanced cycle, remaining in the same switching equivalence class
and leaving the total number of negative edges equal to 1. One of such signatures surely
satisfies the Golden Property since, by Lemma 3.4, the corresponding sets (10) remain the
same, provided that the defining eigenvectors are unit. 0

From Proposition 3.5 and the classification of signed bicyclic graph proposed in Section 2,
it follows that the basis of each potentially non-golden graph in #(n); is a theta-graph. In
order to show that non-golden signed graphs of order n actually exist for each n > 5, two
classical tools will come in handy.

The first one is the so-called eigenvalue equation.

Let x = (x1,X2,...,%,) | be a A-eigenvector of L(I'). If we read row-wise the equation
Ax = L(T")x then we have a vertex-based view of the components of x. The following
expression is known as the eigenvalue equation of x at vertex v:

Ax, =deg(v)x, — Z o (uv)xy, (14)
u~y

where u ~ v means that u is adjacent to v.
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A second important tool is the Interlacing Theorem for the eigenvalues of the Laplacian
characteristic polynomial of signed graphs in the edge variant. A proof is given by Belardo
and Petecki (2015).

Theorem 3.6 (Interlacing Theorem - edge variant). Let I' = (G, 6) be a signed graph and
' — e be the signed graph obtained from I by deleting the edge e. Then

M) 2 A=) 2 () 2 (T —e) =+ > 4(T) = Ay(T — o).

We now state a Lemma that extends Lemma 4.1 of Belardo and Zhou (2016) to a more
general context.

Lemma 3.7. Let T = (G,0) be in %(n), and let X = (x1,X2,...,X,) be one of the A(T')-
unit eigenvectors. Assume that there is tree T attached to the base I and a vertex u € T
such that x,, = 0. Then x,, =0 for everyv € T.

Proof. According to Lemma 3.1 of Zaslavsky (1982), each switching equivalence class

of signed graphs has a unique representative inducing the all-positive signature on a fixed

maximal forest. Since a pending tree T belongs to the each existing maximal forest, if

necessary after a suitable switching, we can assume that o(uv) = 1 for each edge uv € T..
If u is a pendant vertex, we get x,, = 0 directly from the eigenvalue equation

dyxy — Z X =Xy — Xy = A(F)xw
wruel’
Consider now the case degu > 1. We define two subsets of vertices Uy and U, by setting
Up={veT:v~ux,>0} and U={vel:v~uyv¢U,}.
Assume that U, is not empty. Since
duxyu— Y, Xp— Y, Xy =Ax,, (15)
welU4 weU,
the assumption x, = 0 yields
Z Xy = — Z X, <0,
welU, wely
and U, is also not empty. For each v € U, there is a unique (connected) component 7, in
' —u containing v. Let U, := U, ¢y, Ty. Define a vector X' = (x},x),...,x,) by
’. —Xi ifi € U+,
"7\ x;  otherwise.
We now recall that
A(D) < Z2(x) Vx#0, (16)
where Z(x) denotes the so-called Rayleigh quotient, i.e. the number
xL()x
x'x
It is well-known that equality in 16 is achieved if and only if x is a A(T)-eigenvector.
Moreover, for every vector X,

xX'LM)x= Y (x—o(wx,)” 17)
wEeE(G)
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It is easy to see that x| = 1 and Z(x’) = Z(x), which implies that X’ is another A (T')-
eigenvector. Hence y := x+ X' is again a A (I')-eigenvector. The eigenvalue equation for u
becomes

dyx, — Z 2x,, = A(T)xy,
weU,
i.e. Yyey, xw = 0, which contradicts (15). Hence U, = 0. Similarly, we can also show that
{veT:v~u,x, <0} isan empty set. Therefore for all neighbors v of  in T, x, = 0. By
induction, we obtain the assertion. O

Lemma 3.8. Let I'7 € %(n), be a graph obtained by attaching a tree T (of order n—3) to
the vertex r of T" (see Fig. 3). The least Laplacian eigenvalue A(I'T) is strictly less that

2—2.

Proof. Let A be the subgraph of I' of order n obtained by deleting a pendant vertex v.
Denoted by e the only edge adjacent to v, we have

F—e=AUv, and AA)=X-1(T—e)
It follows by Theorem 3.6 that A(I') < A(A). Such inequality allows to use induction on
the number of edges of T. For |E(T)| = 1, consider the graph T2 € %(5) obtained by
attaching the path with two vertices P; to the vertex r of I”. A direct computation shows
that
A(TP) < 0.486 <2 —V/2.

Theorem 3.9. For each tree T, the graph T'T is not golden.

Proof. Let T be a fixed tree of order n — 3. We simply set A = A(I'7). Since the base of
[T € %B(n), is obviously I € %(4), we can name its vertices like in Figure 3.

The components of a A-eigenvector X = (x,,Xg,Xr, Xy, . . )T satisfy the following eigen-
value equations:

Axp, = 3x, — xg+ X, — X, (18)
Axg = 3xy —xp —Xp — Xy, (19)
Axg = 2x5 — (xp +xg). (20)
By adding Equations (18) and (19), and taking into account (20), we get
(2=2)*=2)x,=0. @3}

Lemma 3.8 says that A < 2— /2, hence Equation (21) implies that x; = 0. Note now that Xp
is necessarily non-zero. If this were not the case, the eigenvalue equations (18)-(20) would
lead to x; = x, = x, = x, = 0. Furthermore, by Lemma 3.7, all the remaining components
of x should be null as well.

Remark 3.2 ensures now that the assumption x, = 1 is not restrictive. In such hypothesis,
from Equations (18)-(20) we easily get

xp,=1, x,=-1; x,=A-4, and x,=0.

Therefore, the set Sx(I",C) contains just two numbers: |x,x,| =1 and [x,x,| = |x,x,| =4—24.
By Lemma 3.8 the minimum in Sx(I',C) is |xpx,| = 1.
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A graph T sharing with I'7 the underlying unsigned graph and having pq as only negative
edge is not switching equivalent to I'7. This means that the graph I'” is not golden. g

FIGURE 4. A non-golden graph in %(11);.

Along the proof of Theorem 3.9, another important feature of graphs I'7 arouse. Contrar-
ily to what happens for graphs enjoying the golden property (see Lemma 5.9 of Belardo
et al. 2018), no A (I'T)-eigenvector has all non-negative components.
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