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Abstract The classical Eurocode-compliant ulti-

mate limit state (ULS) analysis of reinforced concrete

sections is investigated in the paper with the aim of

verifying if and how this well-established design

procedure can be related to plasticity theory. For this

reason, a comparative analysis concerning capacity

surfaces of reinforced concrete cross sections, com-

puted via a ULS procedure and a limit analysis

approach, is presented. To this end, a preliminary

qualitative discussion outlines modeling assumptions

aiming to reproduce the physical behavior of rein-

forced concrete cross sections with respect to ductility

and confinement issues. Besides the theoretical impor-

tance of the proposed approach, numerical experi-

ments prove that limit analysis yields not only very

accurate results but also a computationally effective

procedure that can be affordably used in common

design practice.

Keywords Ultimate limit state � Reinforced
concrete � Limit analysis � Capacity surface

1 Introduction

Still nowadays safety checks of reinforced concrete

(r.c.) sections, especially when subjected to seismic

loads, is a challenging problem [6, 7]. Actually a

complex behavior due to geometry, constitutive

nonlinearities and external loads has to be accounted

for in computational methods.

In the case of reinforced concrete framed structures,

provisions of several standard codes, including Euro-

code 2 [9], define ultimate limit states (ULS) associ-

ated with flexural behavior in terms of maximum

strain values for each material used in the structural

models. In particular, safety checks are performed by

capacity domains which characterize the attainment of

the ULS by internal forces defined as a combination of

the axial force and two bending moments.

In spite of their widespread use in structural

analysis, it is quite surprising to record that the
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mechanical context in which the safety checks are

actually carried out is substantially unknown or, at

least, unspecified. For instance, one does not even

know if the nonlinear analysis typically required by

ULS checks has to be considered as a nonlinear elastic

analysis or a plastic one; nor the above mentioned

theoretical drawbacks are somehow compensated by a

simple numerical procedure since calculation of the

points belonging to the ULS surface usually requires

iterative procedures performing computationally

demanding operations [24, 25].

Moreover, recently developed analysis typologies,

involving several load combinations [18] or seismic

envelopes [30, 31, 35], require a great amount of

capacity checks; thus, their use in common practice is

hampered by the great computational effort of deter-

mining a large set of points belonging to the ULS

surface.

Thus, one naturally wonders if an alternative

approach, grounded on a firm mechanical basis, can

actually be exploited. In this respect, the natural

candidate is represented by limit analysis [20, 32] and

shakedown [40], and related static [27] and kine-

matic [16]theorems, since it is capable to overcome

drawbacks affecting traditional procedures.

In particular, it allows one to evaluate limit values

of loads and material strength, neglecting transitory

loading phases, constitutive relationships and self-

equilibrated stress states [4].

With specific reference to reinforced concrete

structures, limit analysis is an affordable and reliable

procedure since their design is often based on simpli-

fied and conventional procedures [13] aiming to

characterize the structural model by catching the

essential aspects of its behavior and overcoming the

limited knowledge of the constitutive model [5]. An

excessive care for detailed modeling of the structural

behavior is often in contrast with lack of information

available to the designers so that accuracy improve-

ments, with respect to more concise and essential

strategies, can only be illusory.

Obviously, in order to correctly apply limit analysis

to r.c. sections, it is fundamental that Drucker

assumption on infinite ductility of the material is

ensured. In particular, ductility of structural members

should be sufficient to ensure stress redistribution so

that the collapse mechanism evaluated by limit

analysis can actually take place.

As a matter of fact, in the case of reinforced

concrete, several standard codes, including Euro-

codes [9], prescribe to properly design stirrups in

order to ensure sufficient ductility as a consequence of

the confinement effect. Due to its importance, this

topic has been extensively investigated over

years [2, 12, 14, 34].

Granted for this, a brilliant procedure for comput-

ing limit surfaces of r.c. sections has been formulated

in [21]. Originally oriented to finite-element shake-

down analysis of 3D framed structures [4], the proce-

dure has been recently enhanced in order to account

for Eurocode 8—compliant [10] load combina-

tions [18]. The algorithm reduces the computational

effort of the limit analysis by lowering redundant

constraints [36, 37], without affecting accuracy of the

results, and defining the capacity surface bymeans of a

Minkowski sum of ellipsoids.

This is an effective mathematical tool [3] which

computes points belonging to multi-dimensional sur-

faces as function of their gradient. When applied to

axial force—biaxial bending capacity checks, the

procedure turns out to be computationally more

efficient than the majority of classical algorithms.

Extending the approach based on the use of

Minkowski sums to ULS capacity check is somehow

compromised by the fact that a few support func-

tions [3] have to be calibrated on a set of points

belonging to the ULS surface. Although viable, at least

in line of principle, such a calibration becomes

difficult if the values of the gradient to the ULS

surface, computed at each calibration point, are

unknown; moreover, their evaluation by using finite

differences would compromise the efficiency of the

whole procedure.

On the contrary, when used to approximate limit

surfaces under the assumption of infinite ductil-

ity [18, 21], the calibration of support functions

becomes straightforward since the surface gradient is

known in closed form.

Based on the considerations detailed above, this

research aims to investigate at which conditions ULS

surfaces can be safely replaced by capacity domains

obtained in the hypothesis of infinite ductility.

This represents a quite original and innovative

approach with respect to the current state-of-the-art on

the subject [24–26, 35, 38] since, besides establishing

a firm theoretical basis for the ULS analysis of

sections, sets the stage for a computationally viable
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and numerically accurate merging of capacity surface

evaluation with limit and shakedown [4, 18, 21] anal-

yses of 2D [17] and 3D [1] mixed models aiming to

reliability [28] and nonlinear random vibration anal-

ysis of structures [8].

To this end, Sect. 2 introduces capacity surfaces for

both the ULS and limit analysis. In particular, ULS

domains, defined in terms of axial force and biaxial

bending, are computed by a fiber-free procedure [24].

Such an unconditionally convergent algorithm,

already extended to several typologies of nonlinear

analyses [25] and steel/aluminum sections [26], has

been chosen because of its capability of computing the

exact values of the internal force vector for which

ultimate limit states of reinforced concrete polygonal

cross sections are attained.

Ductility of concrete is addressed in Sect. 3 where a

Mander [22, 23] constitutive relationship is intro-

duced. In particular, the behavior of a rectangular

cross section subject to both uniaxial and biaxial

bending is analyzed in order to investigate the

influence of confinement and softening on the ultimate

limit states. Moreover, peculiar focus is dedicated to

the presence of non-confined concrete covers where

the first attainment of the compressive ultimate limit

state usually occurs.

Considerations reported in Sect. 3 support the

definition of a conventional procedure for approxi-

mating the capacity surface by elastic domains

computed by means of limit analysis based on infinite

ductility of concrete. A comparison between elastic

domains and ULS surfaces computed for two cross

sections is reported in Sect. 4 both in terms of internal

forces and collapse mechanisms. Numerical results

prove that such an approximation, oriented to safety

checks, turns out to be reasonably accurate even with

confinement ratios ordinarily assumed in common

practice structural design.

Closure reported in Sect. 5 discusses the limitation

of the proposed strategy and outlines future research

directions aiming to a wider use of the analyzed tools

in nonlinear structural analysis.

2 Capacity of reinforced concrete sections

Following the provisions of most of the national

building codes, evaluation of axial force—biaxial

bending capacity of reinforced concrete sections is

usually performed by means of conventional proce-

dures which assume both steel reinforcements and

concrete to present uniaxial behavior. This assumption

implicitly entails that flexural behavior of the frame

element that includes the section is not coupled with

shear and torque so that capacity checks with respect

to those latter loads can be neglected or computed

separately.

Moreover, Eurocode 8 [10] provisions prescribe

the employment of an elastic—perfectly plastic con-

stitutive law for steel reinforcement bars and a tensile-

only parabola–rectangle stress–strain relationship for

concrete. Although very popular, such relationships

are approximated, therefore, several alternatives have

been developed on years [2, 12, 14, 22, 23, 34].

Regardless of the peculiar constitutive relationships

assigned to the employed materials, the mechanical

properties of frames are modeled by means of

composite cross-sections X defined as polygonal

concrete regions reinforced by clustered steel bars,

as shown in Fig. 1.

Assuming a local reference system where axis x1 is

directed along the frame length and axes x2 and x3 lay

on the cross-section plane, the non-zero stress com-

ponent is addressed as r11. Moreover, each polygonal

region is defined by means of the coordinates of its nc
vertexes xc;j ¼ fx2 c;j; x3 c;jg while nr steel reinforce-

ments are characterized by their area Aj and location

xj ¼ fx2j; x3jg; j ¼ 1; . . .; nr.

Assuming that strain component �11 x2; x3ð Þ are

linearly distributed over X, it is possible to define the

generalized strain vector as:

Fig. 1 Tipical RC cross section
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e ¼ �0 v2 v3½ �T ð1Þ

where �0 is the value of strain component �11 at the

geometrical center of the cross section and v2 and v3
are the components of the cross-section curvature

around axes x2 and x3, respectively. The strain field is

therefore defined by linear combination of the gener-

alized strain:

�11 e; �xð Þ ¼ �0 þ v2x3 � v3x2 ¼ eT �x ð2Þ

where �x ¼ 1; x3; �x2½ �T includes the coordinates of a

generic point of the cross-section.

Stress component r11 is computed by a uniaxial,

non-linear constitutive law whose features will be

discussed below. Nevertheless, it is worth being

emphasized that stress–strain relationships can present

either perfect-plasticity, hardening or softening

behaviors.

Resultants of the acting stresses are collected in a

vector t eð Þ defined as:

t eð Þ ¼
N1

M2

M3

2
64

3
75 ¼

R
X r11 dXR

X þx3r11 dXR
X �x2r11 dX

2
64

3
75 ð3Þ

Stress integrals can be splitted in order to take

account of the concrete polygonal region and of the

reinforcing bars separately. In such a case, denoting

with rc �11 e; �xð Þ½ � and rs �11 e; �xð Þ½ �, respectively, the
uniaxial stress of concrete and steel as a function of the

strain, the section resultants can be expressed in a

compact form as

t e; �xð Þ ¼
Xnr
j¼1

rs �11 e; �xj
� �� �

�xj Xj

þ
Z

Xc

rc �11 e; �xð Þ½ � �xdX
ð4Þ

where Xc, represents the concrete compressed region;

it is initially unknown since it depends on e.

Supposing that limit values have been enforced to

�11, and hence to e according to (2), the associated

stress resultants belong to the so-called capacity

domain T eð Þ:

T eð Þ ¼ t eð Þ :U½t eð Þ� � 0f g: ð5Þ

where U½t eð Þ� is a yield function depending on

geometry and constitutive parameters of the section. In

particular, U½t eð Þ� is greater than 0 if the stress state

t eð Þ is not compatible with the capacity of the section.

For this reason, in a three-dimensional space, the

boundary oT eð Þ of the domain T eð Þ, defined by the

condition U t eð Þ½ � ¼ 0, will be denoted as capacity

surface.

It is worth being emphasized that shape and

amplitude of the stress domain depend on the nonlin-

ear stress–strain relationship, in presence of hardening

or softening behaviors, and are strongly related to the

limit values of �11 strain for concrete and steel.

In order to investigate the chance of applying limit-

analysis tools in analyzing reinforced concrete sec-

tions, the following subsections specialize the com-

putation of the capacity surfaces in two typologies:

1. Ultimate limit state domain T� eð Þ: compressive

and tensile boundaries are considered for strain of

steel and concrete, as in the classic ultimate limit

state analysis.

2. Elastic domain Ty eð Þ: materials are assumed to be

infinitely ductile, as usual in limit analysis of

structures.

While the ultimate limit domain is usually

employed in structural design, consistently with

several code provisions, the Elastic Domain intro-

duces, in general, a strong condition concerning

ductility which does not fulfill code requirements.

Nevertheless, it benefits of interesting properties so

that its employment in computational tools could be

more efficient than the ultimate limit domain.

2.1 Ultimate limit surface of RC beam sections

accounting for strain limit

According to Eurocode’s prescriptions the axial strain

of concrete is limited in compression by the value

ecu\0; hence, the boundary of the domain collecting

all admissible strain components is defined by

oEe ¼ e : min
x2Xc

�11 e; �xð Þ ¼ ecu

� �
ð6aÞ

The set of stress resultants oT� ¼ t½e; �x�, associated
with the admissible generalized strains e½�x� 2 oEe by

means of (4), define the ultimate limit state (ULS)

surface of the section which is used, in practical

applications, to carry out the cross section strength

checks.
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As shown in [24], fixed a trial generalized strain �ek,
it can be shrunk or amplified in order to fulfill Eq. (6a)

by means of a strain multiplier tk given by

tk ¼ max
x2Xc

�11 �ek; �x½ �
ecu

ð6bÞ

hence, the normal resultants t�k on the ULS surface of

the section, can be evaluated as a function of ecu and
the geometry of Xc for the assigned �ek, accordingly to
Eq. (4), as

t�k ¼ t½ek; �x�; 8k being ek ¼ tk�ek ð6cÞ

An effective approach for the evaluation of the

integrals on the right-hand side of Eq. (4) has been

proposed in [24, 25], to which we refer readers for

further details. Nevertheless, it must be emphasized

that stress integrals are computed in closed-form as a

functions of the position vectors xi of the nv vertices of

Xc and of the values that the primitives of the function

rc e; �xð Þ assume at these points.

Denoting as td and tl the section forces associated

with dead and live loads, respectively, capacity check

consists in computing the multiplier k fulfilling the

condition:

td þ ktl 2 oT� ð6dÞ

thus assuming that only live loads can actually be

increased by an amount measured by the positive

scalar quantity k.
As shown in [24], the computation of k is not

straightforward because the trial strain associated with

section forces is in general unknown; hence, a line-

search Newton–Raphson optimization procedure is

required. Although the evaluation of the whole

capacity surface is not required since it is sufficient

to compute a single point only to fulfill the capacity

check, this procedure turns out to be computationally

demanding because it requires the computation of all

stress integrals at each iteration of the optimization

procedure.

2.2 Yield surface of infinitely ductile sections

In case of infinitely ductile constitutive laws for both

concrete and steel, the computation of the limit

domain, which has been exploited in [18, 21], is

simpler and it turns out to be similar to the stress

blocks approach widely employed in the past.

In particular, if a trial strain ek is proportionally

amplified in order to ideally drive the uniaxial strain

�11 to infinity, then the uniaxial stress rc tends to its

limit value f 0cu for all points belonging to the

compressed region:

lim
�11 ek ; �xð Þ!�1

rc �11 ek; �xð Þ½ � ¼ f 0cu ð7aÞ

while reinforcing bars reach either the tensile or

compressive peak stress depending of their position

with respect to the neutral axis defined by ek:

lim
�11 ek ; �xjð Þ!�1

rs �11 ek; �xj
� �� �

¼ �fsu;j ð7bÞ

Eventually, the stress resultants are computed as:

tyk ¼ ty ekð Þ ¼
Z

Xc

f 0cu �xdXþ
Xnr
j¼1

fsu;j�xjXj ð7cÞ

where the first integral can be easily evaluated by the

numerical procedure described in [21].

Limit values of the stress computed by Eq. (7c) can

be directly used in limit and shakedown analyses

since, as shown in [18], they represent the yield values

associated with the plastic mechanism defined by

direction ek.

Specifically, the plastic mechanism corresponding

to the generalized strain ek is defined by the function:

pT ekð Þ ¼ max nTk t : t 2 T
� 	

with nk ¼
ek

jjekjj
:

ð7dÞ

where pT ekð Þ represents the signed distance from the

origin of the hyperplane tangent to T at the point with

normal nk, see, e.g. Fig. 2.

The vector tyk � ty ekð Þ 2 oT, evaluated using

Eq. (7c) and maximizing Eq. (7d), automatically

satisfies the condition:

tyk

tangent hyperplane

nk

N

M

capacity domain

π(
ε k)

Fig. 2 Support function of the the elastic domain
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nTk ðtyk � tÞ� 0 8t 2 T ð7eÞ

The boundary oTy of the elastic domain Ty, which

is characterized by the conditionU e; t eð Þ½ � ¼ 0, will be

named yield surface.

It is worth being emphasized that pT ekð Þ represents
the support function of Ty and benefits of several

algebraic features. In particular, as shown in [18]

and [21], the unitary vector nk, normal to the tangent

hyperplane at ty ekð Þ, is parallel to the gradient of the

overall trial strain ek with respect to the plastic strain

increment. For this reason, it is possible to establish a

closed-form relationship between trial strain and limit

stress.

2.3 Domain approximation by Minkowski sum

of ellipsoids

The support function represents an analytical tool that

can be conveniently used in approximating the elastic

domain. Specifically, the Minkowski sum of ellipsoids

is capable of defining n-dimensional surfaces by

means of a superposition of ellipsoids [39].

To better illustrate its properties, let us consider a

single ellipsoid defined in the generalized stress space

and centered at the origin. Its canonical equation is:

Mt � t ¼ 1 ð8aÞ

where t is a generic point of the ellipsoid, M is a

positive-definite 3	 3 square matrix and operator �
denotes scalar product.

It can be proved that the support function of the

ellipsoid, that can be interpreted as the distance of the

tangent hyperplane at t from the origin, is defined by

p tð Þ ¼ a tð ÞTM�1a tð Þ
� �0:5¼ M�1a tð Þ � a tð Þ

� �0:5
ð8bÞ

where a is the unit vector normal to the tangent

hyperplane.

If the matrix M is known, the vector a can be used

as a parameter for computing any point of the

ellipsoids by the relationship:

t að Þ ¼ M�1a

aTM�1a
� �0:5 : ð8cÞ

Complex domains are properly approximated by

the superposition of several ellipsoids. Specifically,

denoting as Mi; i ¼ 1; . . .;m, the canonic matrices of

m ellipsoids and as t0 the vector locating the domain

center with respect to the origin, theMinkowski sum is

defined as:

t að Þ ¼ t0 þ
Xm
i¼1

M�1
i a

aTM�1
i a

� �0:5 : ð8dÞ

Figure 3 shows an illustrative Minkowski sum

approximating the elastic domain of a reinforced

concrete cross section; specifically, blue bullets are the

points of the original domain while the white surface

represents its approximation obtained by the Min-

kowski sum of the red, green and blue ellipsoids.

Formulation of Eq. (8d) is particularly efficient for

computational implementations since the evaluation

of the generalized stress is performed by bilinear

operations regardless of the complexity of the domain

to be approximated. Nevertheless, the Minkowski sum

is an efficient tool as long as it is possible to determine

the canonical matricesMi. To this end, the higher ism,

the more accurate would be the sum; although, a large

number of ellipsoid makes the identification of

matrices Mi more difficult. Nevertheless, it has been

shown in [18] that, in case of reinforced concrete yield

surfaces, three ellipsoids usually provide a good

approximation.

A further issue concerns the calibration of the

Minkowski sum for a discrete number of points tj.

Identification of matrices Mi is usually performed by

optimization algorithms whose convergence is almost

Fig. 3 Illustrative 3-ellipsoids Minkowski sum

Meccanica

123



impossible if normal vectors aj at points tj are not

known.

For this reason, support functions of the elastic

domain, defined in Eq. (8b), make the Minkowski sum

calibration straightforward. On the contrary, a similar

approximation for the ULS domain, although possible,

requires a significant computational burden in order to

determine the normals by finite differences.

The computational convenience of the described

procedure encourages the purpose of replacing the

ultimate limit state domain with the elastic one.

However, for the reasons detailed in Sect. 4, the elastic

domain generally yields unconservative results unless

it is evaluated by neglecting the external cover.

3 Confinement effects on the behavior

of reinforced concrete frame cross sections

As previously stated, structural codes prescribe strain

limits to concrete and steel in order to define the

ultimate limit state of cross sections. In general, each

cross-section can be idealized as the superposition of

discrete reinforcement bars, the concrete confined core

(enclosed by the stirrups) and the external unconfined

cover. Assuming materials to be homogeneous and

following Eurocode 2 provisions, the cross-section

ULS depends on the attainment of the ultimate strain

either in the most stressed steel bar or at one of the

vertices of the concrete cover.

However, the actual behavior of r.c. cross-sections

can be sensibly different from the standard code

idealization because of two aspects:

1. the ultimate strain of the core concrete can be

sensibly greater than the limit imposed by codes

because of the confinement effect;

2. concrete cover is usually strongly damaged by

seismic actions although the cross-section still

preserves a significant strength.

The comparisons illustrated below aim to take into

account these two issues and amount to computing the

bending moment–curvature curves for a fixed value of

the axial force.

Investigations presented in this section are relevant

to the cross section shown in Fig. 4 subject to uniaxial

and biaxial bending. The section has size 300mm	
500mm; is endowed with strength concrete fcd ¼

8:3MPa; corresponding to an ultimate limit state

strain �SLUcu ¼ 0:0035, and is reinforced by 8£20mm

bars (4 at corners and 4 at midpoints of each side)

having strength fyd ¼ 450MPa. Transversal reinforce-

ment is composed of a rectangular stirrup and a cross

tie parallel to the section width; both have diameter of

8mm and spacing of 150mm.

Specifically, three analysis typologies have been

carried out. The first typology aims to accurately

model the actual behavior of the cross section by

assuming the Karthik–Mander (KM) model [13]

indifferently for concrete core and unconfined cover;

core confinement has been considered by conveniently

calibrating the constitutive parameters.

In particular, denoting by f 0c0 the characteristic

compressive strength of the unconfined concrete, the

relevant strength f 0cc of the confined concrete is

evaluated as

f 0cc ¼ f 0c0 �1:254þ 2:254

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 7:94

f 0l
f 0c0

s
� 2

f 0l
f 0c0

 !

ð9Þ

while the associated strain �cc can be evaluated as

�cc ¼ �c0 1þ 5
f 0cc
f 0c0

� 1

� �
 �
ð10Þ

The quantity f 0l depends on the transverse reinforce-

ment by means of the expression

300

50
0

8 Ø20 bars
B450 C

St
irr

up
s a

nd
 ti

es
 Ø

8

224

21
2

21
2

Concrete
C20/25

Fig. 4 Rectangular cross-section geometry
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f 0l ¼
1

2
keqsfyh ð11Þ

where ke depends on the section shape [23], qs is the
relevant volume ratio with respect to the confined

concrete core and fyh is the corresponding yielding

strength. Such parameters are then used to express the

stress–strain law of confined concrete

r11 �11ð Þ ¼

f 0cc 1� 1� xð Þn½ � 0� x� 1

f 0cc �
f 0cc � fcu

xu � 1
x� 1ð Þ 1� x� xu

fcu
x� xf

xu � xf
xu � x� xf

8>>>>>>><
>>>>>>>:

ð12Þ

where �11 is the longitudinal compressive strain of

concrete, evaluated in our case according to Eq. (2),

x ¼ �11=�cc; xu ¼ �cu=�cc and xf ¼ �f =�cc. Moreover,

�cc represents the peak strain, �cu the ultimate strain, �f
the failure strain, exponent n ¼ Ec�cc and elasticity

modulus Ec ¼ 5000
ffiffiffiffiffi
f 0c0

p
MPa.

The constitutive law (12) holds as long as the

compressive strain of concrete �11 is lower than the

limit value �cu; this last one, in turn, is influenced by

confinement. Actually, as shown in [23], �cu has to be

evaluated on the basis of an energy balance, as the

concrete longitudinal strain corresponding to the first

fracture of transverse reinforcement.

An alternative formulation, providing an accurate

estimation of �cu and adopted in the sequel, has been

suggested in [5, 33]

�cu ¼ 0:004þ 1:4
qsfyh�su
f 0cc

; �su ¼ 0:06 ð13Þ

where qs; fyh and c are the volume ratio of the

transversal reinforcements, the corresponding yield

strength and c ¼ kefyh=f
0
c0, respectively.

In order to show the dependence of �cu upon the

confinement rate, Fig. 5 shows the ultimate strain of

the rectangular cross section shown in Fig. 1 depend-

ing on the distance between two consecutive stirrups

computed by following the procedure introduced by

Mander et al. [23] and the one proposed by Priesley

et al. [33] summarized in Eq. (13).

The softening branch of the confined concrete

stress–strain curve, i.e. the one between �cc and �cu,

terminates at the ultimate strength of confined

concrete f 0cu see, e.g. Fig. 6. It is evaluated from (12)

as the stress corresponding to the longitudinal strain

�c ¼ �cu.

In order to investigate the influence of the concrete

cover on the cross section strength, a second typology

of analyses has been carried out by neglecting the

cover contribution and adopting the KM model for

confined concrete.

Finally, the third typology models the concrete core

by a parabola–rectangle constitutive model whose

parameters are calibrated to account for confinement

while concrete cover is neglected.

In particular the assumed constitutive law is defined

by
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Fig. 5 Dependence of ultimate strain �cu of confined concrete

upon longitudinal distance ds between two consecutive stirrups
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Fig. 6 Stress–strain relationships of the Kurtik–Mander and

parabola–rectangle constitutive models
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r11 �11ð Þ ¼

0 if 0\�11

a�11 þ b�11
2 if �cp\�11\0

rcu if �cu\�11\�cc

0 if �11\�cu

8>>><
>>>:

ð14Þ

where r11 denotes concrete stress, �cc is the yield strain
and �cu is the ultimate strain. Coefficients a and b in

Eq. (14) are given by a ¼ �1000rcu and b ¼ 250a

where peak stress rcu ¼ �0:85fck=1:6 is defined by

means of the concrete characteristic compression

strength fck.

The Kurtik–Mander and parabola–rectangle con-

stitutive models are shown comparatively in Fig. 6.

For the above mentioned analysis typologies, two

ultimate limit states have been defined for both

concrete core and unconfined cover as the attainment

of the same value of ultimate strain.

By exploiting the relationships reported in Equa-

tions (9)–(13), the reinforcement set-up in Fig. 4

makes confined concrete to attain f 0cc ¼ 11:947MPa as

peak stress, f 0cu ¼ 11:817MPa as ultimate strength and

�cu ¼ 0:0198 as ultimate strain.

Moment–curvature curves of the analyzed cross

section are reported in Fig. 7a, b. Specifically, blue

and red curves correspond to the Karthik–Mander

concrete constitutive model [13] while the black one is

associated with the concrete parabola–rectangle

stress–strain relationship. Contribution of the concrete

cover has been taken into account for the blue curve

only. Moreover, the attainment of the ultimate limit

strain at the concrete cover and at the section core are

indicated by bullet markers.

Both the uniaxial and biaxial tests have been carried

out by proportionally increasing the curvature and

computing the total bending moment as internal force

in equilibrium with the assigned curvature. In the case

of uniaxial bending, illustrated in Fig. 7a, curvature

has been assigned about the horizontal axis while in

the case of biaxial bending, see, e.g. Fig. 7b, curvature

is assigned by means of two equal components acting

about both axes so that the neutral axis turns out to be

rotated of p=4 with respect to the horizontal axis.

The presence of the unconfined concrete cover only

influences the initial part of the curves, while the

plateau that characterizes all curves corresponds to

approximatively the same value of bending moment.

Additionally, since the beneficial effect of confine-

ment is such that the corresponding stress–strain law is

characterized by a very low softening, the curvature

values for which the parabola–rectangle constitutive

law over-estimates the bending moment with respect

to the Karthik–Mander curves are very high and, in the

examples illustrated in the sequel, greater than the

value corresponding to the attainment of the ultimate

limit states both in the core and the cover. For this

reason, the parabola–rectangle constitutive law well

predicts the ultimate value of bending moment.

This phenomenon is clarified by Figs. 8 and 9,

where the stress distributions corresponding to the

core ultimate limit states (identified by red bullets in
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Fig. 7 Bending moment: curvature curves. a Uniaxial bending and b biaxial bending. (Color figure online)
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Figs. 7a, b) are illustrated for all the considered

constitutive relationships. In particular, Fig. 8 refers to

uniaxial bending while Fig. 9 corresponds to biaxial

bending. All stress distributions have been plotted in

order to attain compression at the top of the section.

Considering the Karthik–Mander concrete consti-

tutive model, a comparison between Fig. 8a, b shows

how the contribution of the unconfined core is quite

limited. Moreover, the stress distribution concerning

the cover is clustered close to the neutral axis since its

far region has reached the collapse in the sense that

stress is zero.

The very same phenomenon is shown by comparing

Fig. 9a, b in case of biaxial bending where the right-

top corner, although compressed, has zero stress

because ultimate limit state has been attained in the

concrete cover.

Fig. 8 Normal stress (MPa) distribution at the core ULS—uniaxial bending. a KM law with cover, b KM law without cover and c PR
law without cover

Fig. 9 Normal stress (MPa) distribution at the core ULS—biaxial bending. aKM lawwith cover, bKM lawwithout cover and c PR law

without cover
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Such comparisons show how the contribution of the

unconfined cover to the global strength of the cross

section is almost negligible. For this reason, it is

reasonable to neglect the presence of the cover when

carrying out ULS analyses by adopting either the KM

or the PR model.

Further comparisons between Fig. 8b, c, in case of

uniaxial bending, and Fig. 9b, c, in case of biaxial

bending, show how the stress distributions computed

by the Karthik–Mander concrete constitutive model

(Figs. 8b, 9b) and the parabola–rectangle law

(Figs. 8c, 9c) present almost negligible differences.

This is due to the peculiar softening phase of the

Karthik–Mander relationship: since the confinement

ensures a very low softening tangent stiffness, the

curve is almost coincident with the parabola–rectangle

plateau.

Influence of ultimate limit states on the capacity of

the cross section depend on the kind of internal force

that is taken into account. Specifically, in case of

uniaxial bending, bending moment–curvature rela-

tionship presents a well-defined peak and both the

concrete core and cover attain their respective ultimate

limit states after that the maximum value of the

bending moment has been attained.

On the contrary, in the case of biaxial bending, the

bending moment–curvature relationship is monoton-

ically non-decreasing and ultimate limit states for

concrete core and cover correspond to sensibly

different values of the bending moment.

In other words biaxial bending curves in Fig. 7

show how the attainment of the ultimate limit strain of

cover does not correspond to the actual bending

strength of the section. Conversely, the limit value of

the bending moment is well represented by the

attainment of the ultimate limit strain at the section

core.

The previous results naturally prompt some con-

siderations related to the everlasting conflict between

strength and ductility of structural elements. Actually,

one is induced to think that neglecting concrete cover

is a conservative approach since a certain amount of

material is disregarded.

However, this spontaneous path of reasoning can

contrast with code prescriptions since concrete cover

is distributed along the outer part of the section where

strains are likely to attain the utmost values since the

relevant points are the farthest ones from the neutral

axis.

Considering also that concrete cover is character-

ized by a lower value of the ultimate strain limit, since

concrete is unconfined, one infers that ignoring

concrete cover in the section analysis can lead to

unconservative results, as Fig. 7 suggests, since the

ultimate limit state in presence of cover (blue bullet) is

attained well before than the analogous condition

when concrete cover is ignored (red bullet).

Nevertheless we state that nonlinear analysis of r.c.

structures has to be carried out by neglecting concrete

cover basically for two reasons. First, ULS analysis of

the r.c. sections, and the relevant value of the ultimate

strain, have been calibrated in Eurocode 2 for uniaxial

bending, a situation that is realistic only for beams. In

passing we notice from Fig. 7b that the ultimate

bending moment in presence of biaxial bending is not

properly evaluated when conventional ULS analysis is

carried out.

A second reason for ignoring concrete cover in

nonlinear sectional analysis lies in the fact that

Eurocodes prescriptions in terms of reinforced bars

layout and quantity, as well as in terms of constructive

details, are explicitly established with the main

purpose of ensuring confinement and ductile behavior

of reinforced concrete. In turns this is consistent with

design methodology in earthquake engineering

according to which the value of the structural factor

increases for a more pronounced post-yield behavior

of structural members. Coherently with such assump-

tions, analysis has to contemplate the complete

damage of concrete cover, whose collapse is fragile,

while the core section preserves a significant strength.

The previous considerations validate the use of the

parabola–rectangle constitutive law, whose parame-

ters are calibrated to account for confinement and

section ductility, yet keeping the ultimate strain at the

value �cu ¼ 0:0035, prescribed by Eurocode 2, for the

evaluation of the ultimate strength of confined rein-

forced concrete sections. To this end, since the cover

can collapse before the attainment of the cross section

core ultimate limit state, its contribution shall be

neglected.

4 Comparison between the ULS surface

and the yield surface

As anticipated in the introduction, this work aims to

investigate the chance of surrogating the nonlinear

Meccanica

123



response of reinforced concrete cross sections by

means of the elastic domain.

For brevity, we discuss the results of just two cross

sections although in our study we have analyzed

several kinds of sections, differing both for geometry

and dimensions. Numerical experiments have shown

that the results illustrated in the sequel hold indepen-

dently from the section geometry, reinforcement

layout and constitutive properties. Specifically, the

first cross section has been introduced in Fig. 4 while

the results of further analyses concern the L-shaped

cross section represented in Fig. 10.

Steel reinforcement bars and unconfined concrete

have the same constitutive parameters as the ones

introduced in Sect. 3, while parameters of the confined

region are summarized in Table 1. Specifically, con-

fined concrete peak stress f 0cc is evaluated by consid-

ering the stirrups and ties, of diameter / 8mm and

setup depicted in Fig. 10, having spacing equal to

150 mm.

It is worth to be emphasized that parameter ke of

Eq. (11), depending on the section shape [23], is

characterized for rectangular or circular sections only.

For this reason, f 0cc of the L-shaped section has been

computed separately for each rectangular wing and the

relevant results are summarized in Table 1. Moreover,

in order to define a unique constitutive model for

confined concrete, it has been assumed

f 0cc ¼ 19:132MPa.

Figure 11 shows the ULS surface and the yield

surface associated with the rectangular cross section

depicted in Fig. 4. The contribution of the unconfined

concrete cover has been neglected in computations,

according to the conclusions drawn in Sect. 3.

All surfaces have been obtained by considering a

value of the concrete strength equal to the ultimate

strength of confined concrete, while increasing values

of ultimate strain have been considered for each

comparison.

A qualitative examination of the two surfaces

clearly shows how the ULS surface tends to the yield

surface as the ultimate value of the strain increases.

This is expected because, as long as the maximum

value of the allowed compressive strain increases, the

internal forces are computed for a generalized strain

which becomes closer to the infinite ductility condi-

tion. Moreover, it can be observed, particularly in

Fig. 11a, that the higher discrepancies are attained for

compressive values of the axial force. This makes

sense since the compressed region of the ULS domain

correspond to stress states for which the cross section

attains the compressive limit state in concrete. On the

contrary, for tensile axial forces, for which the

ultimate limit state is ruled by steel, the greater

ductility of the material makes the points of the ULS

surface to be closer to the yield surface.

A similar behavior can be observed by considering

Fig. 12a for the L-shaped cross section in Fig. 10. It is

worth to be emphasized that asymmetry of the cross

section influences the shape of both domains. Again,

the higher discrepancies between the limit surfaces are

observed for compressive values of the axial force;

moreover, the effect of confinement on concrete

ductility is sufficient to make the ultimate limit surface

of the section almost indistinguishable from the

relevant yield surface, as already observed for the

rectangular section.
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Fig. 10 L-shaped cross section. Geometry and data

Table 1 Mechanical properties of the L-shaped cross section

Rck f0c0 Wing A Wing B

ecu f0cu ecu f0cu

15 8.300 0.0178 10.844 0.01781 11.09595

30 16.600 0.0106 19.132 0.010656 19.441320
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Such qualitative comparisons, although encourag-

ing, are not yet capable of providing reliable engi-

neering information since it is necessary to

numerically analyze the difference between the yield

and ultimate limit domain. This will be addressed in

the following two subsections by focusing on two

different aspects of the stress response. Specifically,

while Sect. 4.1 focuses on the distance between the

two boundary surfaces expressed in terms of internal

forces, Sect. 4.2 investigates the response difference

associated with the same strain mechanism.

4.1 Comparison in terms of internal forces

The first comparison between the ULS surface and the

yield surface, defined in Sects. 2.1 and 2.2 respec-

tively, analyzes the differences in terms of stress

resultants.

These analyses investigate about the role played by

the ultimate limit strain value assumed for concrete on

the strength values of the section forces. In this respect

it is expected that the ultimate limit surface asymp-

totically tends to the yield surface as the ultimate value

of the strain is increased. In particular, this section

aims to show that, considering confinement degrees

commonly experienced in real structures, the yield

surface approximates, with sufficient accuracy, the

ULS surface in all possible directions.

For brevity, we discuss the results of the two cross

sections already considered in Sect. 4.2, specifically,

the rectangular section depicted in Fig. 4 and the

L-shaped one depicted in Fig. 10.

A numerical comparison between the surfaces can

be carried out by computing the relative error defined

as:

E ty½ek�
� �

¼ min
t� � ty½ek�
�� ��

t�k k


 �
ð15Þ

where ty½ek� is the points belonging to the yield surface
corresponding to a generalized strain ek while t� is a

Fig. 11 Comparison

between the yield surface

(red) and the ultimate limit

state surfaces (blue) of the

rectangular cross section of

Fig. 4 for increasing values

of ultimate strain of

concrete. Concrete cover

neglected. a ecu = 0.0035.

b ecu = 0.0060. c ecu = 0.0085.

d ecu = 0.0110. (Color

figure online)
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generical point belonging to the ultimate limit surface.

In this sense the error is defined as the ratio of the

distance between a point belonging to the yield surface

ty½ek� and the point t� belonging to the ultimate limit

surface closest to ty½ek�, points representative of sets of
internal forces associated with the same strain value,

and the norm of the internal forces vector belonging to

the ultimate limit surface.

In order to provide a qualitative idea of the error

distribution, Figs. 15 and 16 report error colormaps

plotted on the limit domains.

It can be observed how the greatest error is strongly

influenced by the axial force. In particular, error is

clustered at the edge of the compressive regions and

tend to decrease for lower axial forces.

This is expected in the light of the considerations

developed in Sect. 3. In fact, in case of high

compressive axial forces, section would likely attain

concrete ultimate limit state for which it is significant

the discrepancy between the elastic domain (with

infinite ductile behavior) and the ULS domain (with

limited ultimate strains). Attainment of the ultimate

limit state for small values of the generalized strain is

indicative of the fact that the stress has not reached the

peak value of the constitutive model over a large

region of the cross section.

On the contrary, regions with tensile axial forces

correspond to the attainment of steel ultimate limit

state and the cross section exhibits a greater ductility;

in this case stress reaches the yield value over a large

region of the cross section so that stress resultants turn

out to be closer to the values computed in case of

infinite ductility.

It is also interesting to notice that errors affecting

the compressive region of the limit surfaces are in

inverse proportionality with respect to the concrete

ultimate strain. Specifically, for the rectangular sec-

tion, in case of ecu ¼ 0:0035, shown in Fig. 15a, error

peaks are significant and concern almost the whole

compressive half of the surface. As ecu assumes greater

Fig. 12 Comparison

between the yield surface

(red) and the ultimate limit

state surfaces (blue) of the

L-shaped cross section of

Fig. 10 for increasing values

of ultimate strain of

concrete. Concrete cover

neglected. a ecu = 0.0035.

b ecu = 0.0060. c ecu = 0.0085.

d ecu = 0.0110. (Color

figure online)
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values, error tends to decrease and, in case of ecu ¼
0:0110 (Fig. 15b), it turns out to be smaller than 5%.

Concerning the L-shaped section, error colormaps

plotted in Fig. 16 present higher errors. In particular,

in case of ecu ¼ 0:0035 error is clustered on the

compressive region of the domain; such a phe-

nomenon is expected since such a discrepancy can

be observed already in Fig. 12a. Moreover, for

ecu � 0:0060, the error is clustered on an oblique wake

which approximately follows the plane M2 ¼ M3.

These points correspond to internal forces for which

compressive ultimate limit state is attained either at

the corner of the cross section or at the ends of the

wings.

A quantitative summary of the error trend, com-

puted for all the considered cross sections, is reported

in Tables 2 and 3 where peak and average error are

reported as function of the ultimate strain for the

rectangular and L-shaped section, respectively. It is

worth being emphasized how, for the rectangular

section, the average error results less than 3% even for

ecu ¼ 0:0035 that corresponds to the compressive

ultimate limit state of unconfined concrete. As

expected, higher values of the ultimate strain corre-

spond to lower error averages since these last ones

result less than 1% already for ecu ¼ 0:0085.

On the contrary, peak values of the error exhibits a

more erratic behavior; in particular, its trend is not

monothonic with respect to the ultimate strain. Nev-

ertheless, this drawback does not affect a substantial

equivalence between the domains at least in an

average sense: but for the case of ecu ¼ 0:0035, the

peak results lower than 5%.

The error computed for the L-shaped cross section,

reported in Table 3, presents a similar trend and

slightly higher values with respect to the rectangular

section. In particular, the average error becomes less

than 1% for ecu ¼ 0:0085.

It should be emphasized that, following the proce-

dure introduced by Mander et al. [23] and Priesley

et al. [33] and observing Fig. 5, the ultimate strain

value ecu ¼ 0:0085 is reached with stirrups distanced

at ds ¼ 0:2m which is a far higher value than the

stirrup spacings usually required by standard codes for

the most stressed frame regions, typically the nodes.

The previous comparisons show encouraging

results since a reasonable matching between the

elastic and ultimate limit state domains can be

appreciated. Moreover, the difference between the

relevant boundaries becomes reasonably small for

values of ecu assumed as typical ultimate limit strain of

ordinary confined concrete. For this reason, both

definitions of limit surfaces can be reasonably used

without distinction in practical applications.

4.2 Comparison in terms of strain mechanisms

A further comparison between the yield and the

ultimate limit state surface concerns the values of the

generalized forces obtained for a set of strain mech-

anisms. Its purpose is to investigate the chance of

surrogating the nonlinear response of cross sections in

performing path-following analyses by an elastic–

perfectly plastic behavior of the section. To this end, it

is necessary to compare the responses in terms of

generalized stresses for given values of the general-

ized strains.

In particular, fixed a set of strain mechanisms ek, the
generalized stresses ty½ek� and t�½ek; ecu� are computed

for the elastic and the ultimate limit state domain,

respectively:

ty½ek� ¼
F1;y ekð Þ
M2;y ekð Þ
M3;y ekð Þ

2
64

3
75; ð16Þ

t�½ek; ecu� ¼
F1;� ek; ecuð Þ
M2;� ek; ecuð Þ
M3;� ek; ecuð Þ

2
64

3
75 ð17Þ

Figure 13 shows the projection of the domains on the

F1–M3 plane computed with a value of the ultimate

Table 2 Relative error

between yield and ultimate

limit state surfaces:

rectangular section in Fig. 4

ecu Epeak Eavg

0.0035 0.1022 0.0259

0.0060 0.0540 0.0099

0.0085 0.0333 0.0052

0.0110 0.0417 0.0042

Table 3 Relative error

between yield and ultimate

limit state surfaces:

L-shaped section in Fig. 10

ecu Epeak Eavg

0.0035 0.1040 0.0304

0.0060 0.0669 0.0138

0.0085 0.0592 0.0097

0.0110 0.0533 0.0079
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limit strain ecu ¼ 0:0035. Points of the ultimate limit

state surface are plotted as blue squares while the yield

surface is represented by red circles. The black arrows

link points ty½ek� and t�½ek; ecu� corresponding to the

same strain mechanism ek.
In general, the points belonging to both the

rectangular and the L-shaped cross section present a

drift towards smaller values of the axial force while the

error concerning the bending moments looks to be

correlated to the one affecting the axial force.

It is worth being emphasized that, for ecu ¼ 0:0035

and regardless of the proximity between the yield and

the ULS surface, all the computed strain mechanisms

show non negligible drifts. In this sense, fixed a point

t�½ek; ecu� of the ULS surface, the closest point

belonging to the yield surface does not necessarily

correspond to the same strain mechanism.

Such a difference becomes sensibly smaller for

greater values of ecu, as shown in Fig. 14 which refers
to ecu ¼ 0:0085.

It is worth being emphasized that the use in seismic

analysis of a ultimate strain value of ecu ¼ 0:0035 is in

contrast with the philosophy of structural provisions,

and in particular Eurocode 8, which define the seismic

action by means of a structural value. This is

introduced in order to take into account the post-

yielding behavior of the structural members which

occurs far after strains of ecu ¼ 0:0035.

A numerical estimate of the domain drift can be

performed by evaluating the specific internal works

associated with each point of the yield and the ULS

surfaces; they are given by, respectively

wy½ek� ¼ ty½ek� � ek ð18Þ

w�½ek; ecu� ¼ t�½ek; ecu� � ek ð19Þ

Analogously to Eq. (15) we define the relative error

Ee ekð Þ as the ratio:

Ee ekð Þ ¼ wy½ek� � w�½ek; ecu�
w�½ek; ecu�

ð20Þ

and compute in accordance the maximum Ee;max,

average �Ee and mean-square Êe values as:

Ee;max ¼ max
wy½ek� � w�½ek; ecu�

w�½ek; ecu�

����
���� ð21Þ

�Ee ¼
1

n

Xn
k¼1

wy½ek� � w�½ek; ecu�
w�½ek; ecu�


 �
ð22Þ

Êe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
k¼1

wy½ek� � w�½ek; ecu�
w�½ek; ecu�

� �2
" #vuut ð23Þ

where n represents the number of sampled points

(Figs. 15, 16).

Values of Ee;max; �Ee and Êe, computed for the

rectangular cross section in Fig. 4 and for the

L-shaped cross section in Fig. 10, are reported in

Tables 4 and 5, respectively.

As expected errors decrease, almost proportionally,

with respect to the ultimate strain; moreover, for both
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Fig. 13 Projection of the domain drift for ecu ¼ 0:0035. a Rectangular section in Fig. 4 and b L-shaped section in Fig. 10
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the considered cross sections, error average turns out

to be less than 5% already for ecu ¼ 0:006.

It can be observed that values of Êe turn out to be

greater than the error averages, though having the

same order of magnitude. This is not surprising since

mean square Êe is a more conservative measure of the

distance between the two surfaces since it overcomes

the possible presence of points with positive and

negative errors.
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Fig. 14 Projection of the domain drift for ecu ¼ 0:0085. a Rectangular section in Fig. 4 and b L-shaped section in Fig. 10

Fig. 15 Rectangular section in Fig. 4. Contour plot of the differences between the yield surface and the ultimate limit state surfaces for

increasing values of concrete ultimate strain. a ecu = 0.0035. b ecu = 0.0060. c ecu = 0.0085. d ecu = 0.0110
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Recalling that ultimate strain value ecu ¼ 0:0085

can be reasonably adopted for the considered sections

because of the stirrup configuration (see, e.g. Fig. 5),

the relative error average turns out to be less than 2%

while the maximum error results less than 5% for both

sections.

In conclusion, the results presented in this subsec-

tion point out how the error between the generalized

forces computed by the yield and the ULS surfaces for

a given strain mechanism is sufficiently low to justify

the use of the yield surface for nonlinear frame

analysis.

5 Conclusions

It has been presented a comparison between the

capacity domains of two reinforced concrete cross

sections obtained by the classical ultimate limit state

procedure and by a limit analysis performed under the

hypothesis of infinite ductility.

In particular, the yield surface, i.e. the capacity

surface obtained via limit analysis, has been computed

Fig. 16 L-shaped section in Fig. 10. Contour plot of the differences between the yield surface and the ultimate limit state surfaces for

increasing values of concrete ultimate strain. a ecu = 0.0035. b ecu = 0.0060. c ecu = 0.0085. d ecu = 0.0110

Table 4 Specific internal work relative error: rectangular

section in Fig. 4

ecu Average Mean-square Maximum
�Ee (%) Êe (%) Ee;max (%)

0.0035 8.99 10.82 19.05

0.0060 2.95 3.51 6.81

0.0085 1.49 1.84 2.94

0.0110 0.86 1.12 2.13

Table 5 Specific internal work relative error: L-shaped section

in Fig. 10

ecu Average Mean-square Maximum
�Ee (%) Êe (%) Ee;max (%)

0.0035 10.22 11.85 21.71

0.0060 3.53 4.16 8.11

0.0085 1.78 2.13 4.53

0.0110 1.03 1.24 2.68
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by neglecting the contribution of the unconfined

concrete cover. Such an assumption has been justified

by an investigation concerning the bending moment–

curvature curves of a rectangular cross section in case

of uniaxial and biaxial bending, showing that the

concrete cover has a very limited influence of the ULS

generalized stress. Moreover, the usual assumptions

underlying the conventional strength safety checks

provided by Eurocodes [9], aiming at ensuring suffi-

cient ductility to the concrete core, unavoidably results

in the cover collapse.

A numerical comparison between the yield and the

ULS surfaces proves that, in case of confinement ratios

usually enforced by codes, the ductility is sufficient

enough to make the yield surface approximate the

ULS surface with a maximum error of about 5%.

Moreover, considering that the error averages result

less than 1%, the yield surface can reasonably

approximate the ULS surface in procedures aiming

to perform force-based safety checks of reinforced

concrete cross sections.

Moreover, a comparison based on consistent strain

mechanisms shows that the relative error of the virtual

work, computed at all points of the yield and ULS

surfaces for the corresponding strain mechanisms,

turns out to be limited. This result is encouraging for

using the yield surface to surrogate the response of the

cross section for a given value of the generalized

strain, in performing path-following analyses, and,

more in general, in performing plastic analyses

although further investigations are required.

However, this possible extensions does not impair

the chance of a wider use of elastic domains in

common practice. In particular, safety checks usually

introduced in standard codes are based on internal

forces obtained via spectral analyses. To this end,

results presented in Sect. 4.1 present errors which are

far less than approximations introduced by limited

knowledge of the real structures as well as by

randomness and uncertainties of both constitutive

laws and external actions.

In the authors’ opinion, simplified or conventional

analysis approaches, capable of evaluating structural

safety factors in a reliable way and providing essential

information strictly related to the design process, are

fare more convenient in common practice than

excessively detailed procedures. In fact, a complex

modeling process is often in contrast with the lack of

knowledge of the physical phenomenon and can

uselessly compromise a thorough control of designers

on the analysis process.

Future research will focus on the characterization of

a surrogate model, based on limit analysis, capable of

reproducing the nonlinear response of reinforced

concrete cross sections for a given value of the

generalized strain. Such a tool would permit fast path-

following analyses of complex structures, particularly

appealing for computationally demanding applica-

tions. In particular, the convenient representation of

the yield surface by Minkowski sum can be efficiently

employed in sensitivity algorithms required by relia-

bility [15, 28] and nonlinear random vibration anal-

ysis of structures [8]. Moreover, yield surface features

can be profitably used in implementing mixed beam

models capable of modelling non-uniform warping

and buckling.

Finally, a further research outline will concern

safety checks [19, 29] of recently developed shell

elements [11, 38] in order to provide reliable and

affordable tools oriented to common practice

applications.
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