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Abstract 

In literature several methods have been proposed for the service quality assessment. A large number of models have been 
proposed to evaluate Service Quality (Servqual, Normed Quality, Servperf etc.). Starting from the SERVPERF paradigm, in this 
paper we propose to use Odds Ratio analysis to evaluate Customer Satisfaction. In particular the data has been collected in t hree-
way contingency tables in which the crossed variables are perception evaluations, importance evaluations and dimensions. For 
each slice we computed the Odds Ratio. Thus a weighted version of log-Odds Ratio Analysis for three-way is proposed and 
analyzed by the Parafac/Candecomp algorithm. A case study on Patient Satisfaction (PS) survey that was carried out at a 
Neapolitan government hospital is presented in the last part of the paper in order to show the proposed methods. 
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1. Introduction 

During  the last twenty years , the strategy of firms has gradually shifted from market ing to Total Quality 
Management to Customer Sat isfaction (CS). Part icularly, for a company, the knowledge of the customer evaluation 
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of a given service represents an important starting point for every business strategy. In fact CS matters not only to 
the customer, but even more so to the business because it directly impacts a company’s bottom line profits. 
Furthermore, it is one of the most important components of a company’s positive brand image. In literature several 
methods have been proposed for the service quality assessment and many of them are based on the Gap Theory of 
Service Quality, which was proposed for the for-profit  sector by Parasuraman et al. (1994). Cronin and Taylor 
(1992) were the first to offer a theoretical justification for d iscarding the expectations from the Servqual and 
consider only the performance, and this model is known as  Servperf. The Servperf model considers twenty-two 
items and five quality dimensions, and such dimensions are: (1) the reliability of the service provider, (2) the 
responsiveness of the service provider, (3) the tangible aspects of the service, (4) the assurance provided by the 
service staff, and (5) the empathy shown to consumers.  

Starting from the Servperf paradigm, in this paper we propose to use Odds Ratio analysis to evaluate CS. In  
particular the data has been collected in three way contingency tables in which the crossed variables are the 
evaluation of the perception and importance for each dimension. Thus, Odds Ratio  of perception and importance for 
each dimension are arranged by rows and columns in  slices of a three-way table .  

The odds ratio (OR) is one of the main measures of association in  contingency tables. Also for  tables the 
ORs are commonly used to describe the relationship between the row and column variables. Start ing from the 
selected data table, several OR methods have been proposed. For example, Aitchison (1990) and Greenacre (2009) 
proposed to analyze contingency tables. On the other hand, De Roiij and Anderson (2007) proposed to analyze two-
way tables with the ORs, which has a total number of ORs equivalent to . Nevertheless the 
number of ORs needed to capture the association structure may still be too large for one to gain insight into the 
nature of the relationship between the variables. Also a general framework for connecting all these methods has been 
proposed by D’Ambra and al. (2013). 

In the statistical literature, the analysis of association for variables placed in  two-way contingency tables is a 
topic widely discussed. On the other hand, the analysis of the association in a three-way contingency table by ORs is 
rather limited. Several variants of the Parafac/Candecomp method (CP - Harshman, 1970; Caroll and Chang, 1970) 
has been proposed for the ORs by De Rooij and Anderson (2007). Following this approach, we focused our attention 
on the OR as association measure (Agresti and Coullb, 2002) and proposed to use a weighted log-odds ratio. Finally, 
to show that this new approach give richer results a full interpretation of a case study is presented in the last part of 
the paper.  
 

2. The association in a two-way contingency table through Odds Ratio 

Let  be a two-way contingency table that cross-classifies n units according to I row categories and 
J column categories of two crossed variables. Let  and  be the i-th and j-th categories of X and Y. The matrix of 
proportions is denoted by  with general term . The marginal relative frequencies of the i-th row and j-th 
column of P are  and  and they may be represented in vector form, particularly the vector r (resp. c) consists of  

 (resp. ), for  (resp. ).  
Let   be the OR, the complete set of ORs for table N can be 
placed in a two -way table, called , of dimension , where  and . 
Starting from the data tables N and S two different statistical methods have been developed. These methods are 
linked between them and with A ltham association measure. Moreover for improving the performance a weighing 
system can be considered. The main characteristics of these methods are summarized in table 1.  
The first is the unweighted Log  Rat io Analysis  (LRA), which  is proposed by Aitchison (1990). It starts from the 
logarithms of the matrix N, called , and 0.5 is added when an element of N is equal to 0. Then, let 1 be a vector 
of ones of appropriate order in each case, an SVD of the following matrix is performed  
 

       (1) 
 

a double-centered matrix respect to the geometric mean and with uniform weights. 
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Let  be the logarithm t ransformat ion of S, in this table the rows (resp. columns) are formed by all pairs of 
categories of X  (resp. Y). Performing an Uncentered Generalized  Principal Component Analysis (UGPCA) (Cadima 
and Jolliffe, 2009) of  with weight matrices B and D, we obtain a factorial representation in which pairs of 
categories of X and Y are drawn.  
The unweighted LRA is linked with UGPCA, in fact the sum of squares of (inertia) is equal to the trace of the 
matrix  and, consequently, it is jo ined with the association measure proposed by Altham 
(1970). This model can be improved through the introduction of a set of marginal weights for the rows and the 
columns. Given  independent random variab les , with a Poisson distribution and parameter , then 

. When  
 
has a very large value  it  is preferred to consider the Poisson random variable 

 with parameters  and , so it is appropriate to apply the 
logarithm transformat ion. Moreover, under the independence hypothesis , can be estimated by , which 
justifies the weighting system based on row and column marg inal totals of P . For these reasons the model proposed 
is 
 

  (2) 
 
where Z is a  double-centered with respect to  and , and the matrix A is the same used for estimat ing the 
bilinear part  in the RC(M) association model (Goodman, 1985), when the least square method is used for parameter 
estimations (D’Ambra, 1988). Moreover, the SVD of Z gives the weighted LRA proposed by Greenacre (2009): 

, where M is rank of Z,  is a diagonal matrix with singular value , and  are 
the m-th column of U and V, respectively.  

Table 1.The methods for association in a two-way contingency table through Odds Ratio 

The association between the categories of X and Y variables through the analysis of the table )(NL  
Version  Unweighted (Atchinson, 1990) Weighted (Greenacre, 2007; D’Ambra et al. 2013) 
Matrix  

Weighting 
System 

   
diagonal matrix with general term  
diagonal matrix with general term  

Standard 
Coordinates  

 
 
 

Principal 
Coordinates 

  

Factorial 
representation 

of OR 

Not available  

 

 
Association 

measure 
The inertia of  is equal to Altham measure. The inertia of Z is equal to weighted Altham measure 

  
two-way table of dimension containing the complete set of log ORs. 

 Un-weighted version (De Rooij and Anderson, 2007) Weighted version (D’Ambra et al., 2013) 
Matrix   

Weighted 
system 

 diagonal matrices of dimensions with general term  
 diagonal matrices of dimensions with general term  .  

Association 
measure 

The UGPCA is linked with Altham’s measure for 
, in fact:  

 

In this case we show that:  
 

WUGPCA decomposes a synthetic measure of the log ORs. It  could 
be a weighted version of Altham’s measure 
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In the same way the weighted system can  be used for the analysis of . It is possible to show that performing the 
UGPCA of  with weights  and gives the weighted analysis of the log OR  matrix (WUGPCA). In this case 
the trace of  is equal to . Therefore, the WUGPCA 
decomposes a synthetic measure of the log ORs, which is a weighted version of Altham’s measure. The weighted 
LRA is linked with WUGPCA; in fact, the total variance of Z is equal to the trace of the 
matrix . Start ing from weighted LRA, it is possible to have a direct and an indirect  factorial 
representation of log-ORs as proposed by D’Ambra et al. (2013).  
 

3. The association in a three -way contingency table through Odds Ratio 

Let  be the  three-way contingency table that can be sliced so as to get the k  frontal table . 
These slices can be concatenated between them, and consequently, one obtains the following matricizing of the 
three-way table as of dimensions . 
Defining A, H and C of dimensions ,  and  respectively, the loadings for the first, second and third 
mode, the CP model for log-odds ratio in a slice-wise form can be written as: 
 

          (3) 
 

where is a diagonal table containing the k-th row of C, and  is the k-th frontal slice of residual three-way table. 
The loading matrices of the CP model are estimated by min imizing the objective function  
 

          (4) 
 

To take into account the weight structures of each frontal slice  the objective function can be written as: 
 

         (5) 
 
where  and  of dimensions  and   respectively, are diagonal tables with rows and columns weight of 
frontal slice . 
The CP is only one of the models used to analyse multi tables, a more general approach is to analyse each frontal 
slice by singular value decomposition (SVD) 
 

          (6) 
 
where is the matrix of singular values,  and  are the left and right singular vectors. This approach has little  
to recommend it because the analysis of each frontal slice is independently related to that of another frontal slice. 
However, it is possible to observe that the equation (3) is given by the equation (6) with restrictions of loadings for 
the first and second mode, thus CP can be considered as a special case of SVD on each frontal slice. Moreover, 
restrictions can be imposed only on the left or right singular vectors, or on singular value, so several models can be 
considered. 
It is well known that a CP model g ives the best low-rank approximat ion of a three-way table in a least squares sense 
(Bro et al, 2001), but to investigate the structure of a three-way data set we consider the approach that assures the 
best mix of parsimony, interpretability and goodness to fit. Algorithms based on alternating least squares can be 
used to estimate the loading matrices of CP models (Smilde et  al., 2005), however in  order to  fit models to  mult iple 
tables with various combinations of restriction on ,  and  the algorithm proposed by De Rooij and Anderson 
(2007) is implemented in R 2.15.2.  
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4. Application and conclusions 

This study concerns a Patient Satisfaction (PS) survey that was carried out at a Neapolitan government hospital. 
One thousand two hundred questionnaire forms were delivered  to the patients during hospitalizat ion. The study 
could help the hospital management to improve service quality. The questionnaires were delivered to the patients in  
the hospital in order to  collect data from April 8th through April 30th, 2012;  while  the interviews were held from 
April 30th to May 7th, 2012. The questionnaire comprises in particu lar five  attribute-importance measurements and 
five corresponding performance measurements, each defined on a seven-points Likert scale. PS studies quality 
attributes on two dimensions: their performance level (satisfaction) and their importance to the patient, and that 
importance is defined by the Servperf d imensions. 

The nature of data should be considered before we carry out a multidimensional analysis. Part icularly, perception 
evaluation and, in this case, also importance evaluation, both have an ordinal scale. Th is scale establishes an explicit  
rank, but not all arithmet ic transformat ions are significant because the distances between points on an ordinal scale 
are not significant. Due to the non metric nature of this data, different approaches are proposed to quantify the 
ordinal data on a continuous scale. This transformation is necessary to perform quantitative multivariate analysis. In  
this research we overcome the problem of quantification by summarizing the collected data in a three-way 
contingency table (row, column and tube), specifically for each dimension (tube) we construct a two-way  
contingency table cross-classifying the importance (column) and performance (row) measurements.  

In the analysis we classified  the importance levels [I = 3; low (1);  medium (2); high (3)] against the performance 
levels [J = 3; low (1); medium (2); h igh (3)] fo r each Servperf d imension [K = 5; ‘Tangibles’ (1), ‘Reliab ility’ (2), 
‘Responsiveness’ (3), ‘Assurance’ (4), ‘Empathy’ (5)]. The question is whether the importance and perception levels 
are associated, and whether the association between importance and perception is different for all the dimensions. 
We hypothesized that the association between importance and performance measurements  is a direct measure of 
scarce financial and human resources that the management of the hospital has in order to improve the patient 
satisfaction. Thus, the managment priorit ize the aspects considered as the most important. The complete set of log-
ORs for each dimension has been computed and the used 3x3x5 table, and it is shown as an unfolder table (table 2) 

Table 2.complete set of log-ORs for each dimension 

 
 
 
 

 
The row (X) and column (Y) categories are P12, P13, P23 and W12, W13, W23 respectively; the tube categories 

are 1, 2, 3, 4 and 5. Since the variables importance and perception evaluation are ordinal, we analyzed the table of 
ORs for each slice.  

Based on the loss values presented in table 3, the choice of model to apply is not clear-cut. Thus, we can point out 
that each weighted model is better than their unweighted version. If the loss values are plotted against the number of 
parameters, it  is possible to show that the models with two d imensions have better of these with only one. 
Considering the goodness-of-fit of the model to data, parsimony, and interpretation, the models  and   stand out as good representations of the data. 

Table 3.Loss values for each method 

 
 
 
 
 
 
 

 

Model Weighted Unweighted 
 0.0000 0.0000 

 0.0392 0.9373 
 0.3016 2.9268 
 0.1253 0.9427 
 0.2665 2.7763 

 0.1628 1.5155 
 0.2051 2.2500 

 0.2810 2.9828 
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The interpretation of the first one is that there is a d ifferent association between perception and importance for 
each dimension, but the perception and importance levels have the same interpretation for all the dimensions. The 
interpretation of the second one is that the amount of association is different for each dimension, and the perception 
levels have different interpretations in the five dimensions. On the other hand, the importance levels have identical 
interpretations in each dimension. Here the first model will be examined in depth. It is possible to observe that the 
perception and importance categories have the same meaning for each of the five dimensions, although the amount 
of association is different (table 4).  

 
Table 4: Measures of association for dimensions 

Dimensions Association  
Tangibles 0,02740 
Reliability 0,05378 

Responsiveness 0,06216 
Assurance 0,10100 
Empathy 0,04717 

 
In figure 1 one can see that for the ‘Assurance’ and ‘Responsiveness’ dimensions the amount of association is 

much b igger than that for the others three dimensions. A factorial plan for Dk has been performed  in  order to 
confirm th is association structure. The two-dimensional plot reveals that for the ‘Assurance’ and ‘Responsiveness’ 
dimensions the association between the perception and importance levels is strong but with a d ifferent structure (i.e. 
for d ifferent pairs of modalit ies). On the other hand, for the ‘Tangibles’ and ‘Reliability’ d imensions the association 
is poor.  

 
FIGURE 1 - HERE 

 
The graphical display with XDk versus Y and X versus YDk are shown in figure 1a and 1b, respectively. These 

displays confirm that the association is strongest for the ‘Assurance’ and ‘Responsiveness’ dimensions since the 
vectors representing these slices are relatively long. In figure 1a, the vectors P12_4, P13_4, P23_3, P23_4, P13_3 
and P12_3 belonging to the ‘Assurance’ and ‘Responsiveness’ dimensions than those of the other dimensions. 
Similarly, in  figure 1b the longer vectors are W12_4, W13_4, W23_3, W23_4, W 13_3 and W12_3. By  contrast, the 
association between the ‘Reliability’ and ‘Tangib les’ dimensions is not very strong. Regarding the direction of the 
association we have that when the angle  is smaller than 90o a positive relat ionships exists, so there is not a main  
direction of the association. In other words, we have both positive and negative associations  and both positive and 
negative log-ORs for each dimension. In figure 1a the vectors P12_4 and P12_3 have a negative association, which 
means that the order of corresponding ORs is diametrically  opposite, therefore P12W12 > P12W 13 >P12W23 for 
the ‘Assurance’ dimension and P12W12 < P12W13 <P12W23 for the ‘Responsiveness’ dimension. 
 

FIGURE 2 - HERE 

 

In figure 1b  we point out that the pairs of vectors W23_3-W23_4, W 12_4-W13_4 and W12_3-W13_4 have a 
positive association, i.e. the order of their corresponding ORs is the same. The opposite happens as for the pairs of 
vectors W12_4-W12_3 and W13_4-W 13_3, where the association is negative.  

In order to verify the relationship between the association and the log-ORs for each table we can project, for 
example, the points W12 and W13 onto the vector P12_4, and see that  the point W12 pro jects higher, that is, it has a 
larger value of the log-OR (figure 1a). In the same way in figure 1b, we can project the points W12_3 and W13_3 
onto the vector P23, and see that the point W12_3 projects higher, which means that it has a larger value of the log-
OR. 

p
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Fig. 1. Two dimensional plot of customer satisfaction dimensions: ‘Tangibles’ (D1), ‘Reliability’ (D2),  

‘Responsiveness’ (D3), ‘Assurance’ (D4), ‘Empathy’ (D5) . 
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Fig. 2. (a) Two dimensional plot of perception for each dimension vs. fixed importance; (b) Two dimensional plot of importance for each 
dimension vs. fixed perception. 


