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Abstract

In the framework of a QCD relativistic potential model we evaluate the form factors describing the exclusive decay
B™pp lln . The calculation is performed in a phase space region far away from the resonances and therefore is
complementary to other decay mechanisms where the pions are produced by intermediate particles, e.g. in the chiral

yy q yŽ .approach. We give an estimate of the contribution of the non resonant channel of the order of BB B ™p p ll n ,2.2ll

=10y4. q 1999 Published by Elsevier Science B.V. All rights reserved.

In this letter we shall study the B-meson decays
yy q yB ™p p ll n , 1Ž .ll

y0 q 0B ™p p ll n . 2Ž .ll

From the experimental side these decays are inter-
esting in view of the future programs at the B-facto-
ries. For example, some of the preliminary studies on

w xthe CP violations at these machines 1 have exam-
ined the possibility to extract the angle a of the
unitarity triangle by the B™rp non leptonic decay
channel. The non-resonant decay mode B™ 3p

would be interesting to analyze in this context, as it
might provide a significant background to the main
decay process. While a calculation from first princi-
ples is not available at the moment, a useful approxi-
mation might be the factorization approximation and,

Ž . Ž .within this approximation, the decay modes 1 , 2
would provide the crucial hadronic matrix elements
needed to compute the relevant amplitudes. In pass-

ing we note that there is another channel, i.e. the
yy 0 0B ™p p ll n decay mode, which will not bell

examined here because it is less interesting from an
experimental point of view.

From a theoretical standpoint semileptonic B-me-
son decays with two hadrons in the final state repre-
sent a formidable challenge as they involve hadronic
matrix elements of weak currents with three hadrons.
They can be studied by pole diagrams, which amounts
to a simplification because only two hadrons are
involved in the hadronic matrix elements. This is the
approach followed in some papers where these de-
cays have been examined in the framework of the
chiral perturbation theories for heavy meson decays
w x2,3 . This method is based on an effective theory
implementing both heavy-quark and chiral symmetry
w x3–6 and allows to achieve, for systems comprising

Ž . Ž .both heavy Q and light q quarks, rigorous results
in the combined m ™`, m ™0 limit. HoweverQ q
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the range of validity of this approach is limited by
the requirement of soft pion momenta. In the soft
pion limit the amplitude is dominated by a few tree
diagrams with resonances as intermediate states, and
some clear predictions can be made, but, at least for
B decays, the actual phase space is relatively large
and the phenomenological interest of these predic-
tions is modest. The aim of this letter is to examine

Ž . Ž .the decays 1 , 2 in the framework of a QCD
w xrelativistic potential model 7 and to extend the

kinematical range where theoretical predictions are
possible. We shall present a detailed analysis of the

Ž .four form factors relevant to 1 ; for reasons of space
we shall only give a prediction for the width of the

Ž .decay 2 . We shall not include final state interac-
tions in our calculation since no consistent way to
compute them is presently available. It is clear how-
ever that they can modify our numerical calculations
w x8 .

w xIn two recent papers 9,10 we have presented an
analysis of some semileptonic and rare B decays into
one light hadron employing the relativistic potential
model in an approximation that renders the calcula-
tions simpler. We wish to exploit here this approxi-
mation in the study of the B™pp lln decays.

ŽLet us start with a description of the model for
w x.more details see Refs. 7,9,10 . In this approach the

mesons are described as bound states of constituent
quarks and antiquarks tied by an instantaneous po-

Ž .tential V r , which has a confining linear behaviour
at large interquark distances r and a Coulombic

Ž .behaviour ,ya r rr at small distances, withs
Ž . Ža r the running strong coupling constant thes

w xRichardson potential 11 is used to interpolate be-
1.tween the two regions . Due to the nature of the

interquark forces, the light quarks are relativistic; for
this reason one employs for the meson wave function

w xC the Salpeter 12 equation embodying the rela-
tivistic kinematics:

2 2 2 2( (y= qm q y= qm qV r C rŽ . Ž .1 1 2 2

sMC r , 3Ž . Ž .

1 Ž .Spin terms are not included in V r , which, for heavy mesons,
is justified by the spin symmetry in the limit m ™`. TheirQ

neglect cannot be justified for light mesons, which is one of the
reasons why one does not use the constituent quark picture for the
pions.

where the index 1 refers to the heavy quark and the
index 2 to the light antiquark; M is the heavy meson
mass that is obtained by fitting the various parame-
ters of the model, in particular the b-quark mass, that
is fitted to the value m s4890 MeV, and the lightb

quark masses m ,m s38 MeV, m s115 MeV.u d s
Ž .The B-meson wave function C r in its rest frame is

Ž .obtained by solving Eq. 3 ; a useful representation
w xin Fourier momentum space was obtained in Ref. 9

and is as follows:

3 ya k(c k s4p m a e , 4Ž . Ž .B

y1 < <with as2.4 GeV and ks k the quark momen-
tum in the B rest frame; this is the first approxima-

w xtion introduced in Ref. 9 .
The constituent quark picture used in the model is

rather crude. There are no propagating gluons in the
instantaneous approximation: the Coulombic interac-
tion is assumed to be static. Moreover, the complex
structure of the hadronic vacuum is simplified: the
confinement can be introduced by the linearly rising
potential at large distances, but the chiral symmetry
and the Nambu-Goldstone boson nature of the p ’s
cannot be implemented by the constituent quark
picture. For these reasons, while there are good

Ž .reasons to believe that Eq. 3 may describe the
quark distribution inside the heavy meson, one can-
not pretend to apply it to light mesons. Therefore
pion couplings to the quark degrees of freedom are
described by effective vertices.

To evaluate the amplitude for semileptonic de-
cays, it is useful to follow some simple rules, similar
to the Feynman rules by which the amplitudes are
computed in perturbative field theory. The setting of
these rules is the main innovation introduced in Ref.
w x w x Ž . Ž .9 as compared to Ref. 7 . For the decays 1 , 2
we draw a quark-meson diagram as in Fig. 1 and we
evaluate it according to the following rules:
1. For a charged pion of momentum p we writep

the coupling

N N X
q q

y pu g , 5Ž .p 5fp

where f s130 MeV. The normalization factorsp

N , N X for the quark coupled to the meson areq q

discussed below.
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Fig. 1. The Feynman diagram for By
™pqpy semileptonic

decay.

2. For the heavy meson B in the initial state one
introduces the matrix

1 m mq b
Bs c kŽ .(' m m qq Pq3 q b 1 2

=
qu qm yqu qm1 b 2 q

yi g , 6Ž . Ž .52m 2mb q

where m and m are the heavy and light quarkb q

masses, q m, q m their 4-momenta. The normaliza-1 2

tion factor corresponds to the normalization
d3k 2< < Ž . <-B B)s2m and H c k s2m al-B B

3Ž .2p

Ž .ready embodied in Eq. 6 . One assumes that the
4-momentum is conserved at the vertex Bqb, i.e.
q m qq m sp ms B-meson 4-momentum. There-1 2

m Ž . m Ž .fore q s E ,k , q s E ,yk and1 b 2 q

E qE sm . 7Ž .b q B

3. To take into account the off-shell effects due to
the quarks interacting in the meson, one intro-

Ž .duces running quark mass m k , to enforce theb

condition

22 < <(Es m k q k 8Ž . Ž .
for the constituent quarks 2.

4. The condition m2 G0 implies the constraintb

mB
0FkFk , , 9Ž .M 2

2 ² Ž .:By this choice, the average m k does not differ signifi-b
w xcantly from the value m fitted from the spectrum, see Ref. 9 forb

details.

on the integration over the loop momentum k

d3k
. 10Ž .H 32pŽ .

5. For each quark line with momentum q and not
representing a constituent quark one introduces
the factor

i
2=G q , 11Ž .Ž .

Xquymq

Ž 2 .where G q is a shape function that modifies the
free propagation of the quark of mass m X in theq

hadronic matter. The shape function

m2 ym2 X
G q2G q s 12Ž .Ž . 2 2m yqG

w xwas adopted in Refs. 9,10 , with the the value
m2 s3 GeV 2 for the mass parameter.G

6. For the weak hadronic current one puts the factor
N N Xg m 1yg . 13Ž . Ž .q q 5

The normalization factor N is as follows:q

m° q
if qsconstituent quark ,Ž .(~ EqN sq ¢1 otherwise .Ž .

14Ž .
7. Finally the amplitude must contain a colour factor

of 3 and a trace over Dirac matrices; for the p 0

1 Žcoupling a further factor " is introduced the
'2

upper sign for coupling to the up quark, the lower
.one for coupling to the down quark .

This set of rules can now be applied to the
evaluation of the hadronic matrix element for the

Ž .decay 1 , corresponding to the diagram in Fig. 1;
the result is

m q y m y< <J s-p p p p ug 1yg b B p )Ž . Ž . Ž . Ž .1 2 5
3' w xi 3 d k u k yk c kŽ .M

s H2 34 f E E m m qq PqŽ .2pŽ . (p b q q b 1 2

=

2 2G q yq G q yqypŽ . Ž .1 1 1

2 22 2 XX Xq yq ym q yqyp ymŽ . Ž .1 q 1 1 q

=Tr qu qm qu qmŽ . Ž .1 b 2 q

=pu pu qquyqu ym XXŽ .2 1 1 q

= mXpu quyqu ym g 1yg . 15Ž . Ž .Ž .1 1 q 5
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The amplitude with a p 0 in the final state,

m q 0 m 0< <J s-p p p p ug 1yg b B p ) ,Ž . Ž . Ž . Ž .0 1 2 5

16Ž .
mŽ .is obtained from J p , p , p as follows:1 2

J m p , p , pŽ .0 1 2

1
m msy J p , p , p yJ p , p , p .Ž . Ž .1 2 2 1'2

17Ž .

w xFollowing Ref. 2 we introduce the various form
factors as follows. We put qspyp yp and we1 2

write

q y m< <-p p p p ug 1yg b B p )Ž . Ž . Ž . Ž .1 2 5

m m
s i w p qp q i w p ypŽ . Ž .q 1 2 y 1 2

q i r q m q2 h e ma bd p p p . 18Ž .a 1b 2 d

It is useful to introduce the following variables:

2 2 2ss p qp , ts pyp , us pyp ,Ž . Ž . Ž .1 2 1 2

that satisfy

sq tqusq2 qm2 q2m2 . 19Ž .B p

The form factors h, r, w , w are functions ofy q
three independent variables. One can choose as inde-
pendent variables s, t, q2 or, alternatively, s, E , E ,1 2

where E , E are the pion energies in the B rest1 2

frame. The relations between the two set of invari-
ants are

tsm2 qm2 y2m E ,B p B 1

q2 ssqm2 y2m E qE . 20Ž . Ž .B B 1 2

The kinematical range is as follows:

4m2 FsFm2 ,p B

22 '0Fq F m y s ,Ž .B

22 2 2 (l sy4mm q2m qq ys pB p
y '2 2 s

22 2 2 (l sy4mm q2m qq ys pB p
F tF q ,'2 2 s

21Ž .

where

22 2 2(ls m yq qs y4m s . 22Ž .Ž .B B

Ž .From Eq. 15 one can extract the different form
factors by multiplying J m by appropriate momenta.
One gets

e ma bdJ p p pm a 1b 2 d
hsy2 , 23Ž .2 2s tym q y t ystŽ .Ž .B

m mm 2 Ž . Ž .Ž .y2 sp J q 2 m y u y t p q p J q t y u p y p JŽ .m B 1 2 m 1 2 m
rs 2 i ,

2 22 2 Ž .4 sm y 2 m y u y t q u y tŽ .B B

24Ž .
m

p yp J tyuŽ .1 2 m
w s i y r , 25Ž .y s 2 s

m 2p qp J tqu mŽ .1 2 m B
w syi q 1q y r .q s 2 s s

26Ž .

Ž .The calculation of the trace in Eq. 15 is straight-
forward and is similar to those performed in Refs.
w x9,10 for similar processes. The evaluation of the
integral is however more complicated, because the
kinematics is more involved, due to the presence of
an extra momentum. The integration can be per-
formed numerically, but is time consuming, because,
unlike the semileptonic decays with one hadron in
the final state, where the integration involves one
variable, here the integration domain is genuinely

Table 1
Numerical values of the form factors for several values of E , E1 2
Ž . 2 y1 Ž .in GeV and ss1 GeV . Units are GeV r, w and w andq y

y3 Ž .GeV h

Ž .E , E r h w w1 2 q y

Ž .0.14, 2.36 y0.26 0.53 5.99 3.12
Ž .0.18, 2.07 y0.23 0.62 5.89 2.83
Ž .0.23, 1.79 y0.16 0.73 5.89 2.44
Ž .0.28, 1.51 y0.039 0.88 5.77 1.92
Ž .0.35, 1.23 0.18 1.07 5.60 1.28
Ž .0.43, 0.94 0.56 1.32 5.41 0.56
Ž .0.57, 0.66 1.22 1.60 5.18 y0.019
Ž .0.85, 0.38 2.21 1.72 4.20 0.58
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three-dimensional. The calculation becomes simpler
putting the light quark mass m s0 in the relevantq

formulae, which is an approximation we perform and
is justified by the small value of m in our model.q

Similarly we put m s0. Nevertheless the computa-p

tion remains huge, since each of the four form
factors depends on three variables and the number of
points needed to have a good accuracy is high.

An important point to be stressed is the kinemati-
cal range in which the predictions of the present
model are reliable. We cannot pretend to extend our
analysis to very small pion momenta for the follow-

w xing reasons. First of all, as discussed in Ref. 10 ,
< <when p ™0 the results of the model becomep

strongly dependent on a numerical input of our
calculation, i.e. the value of the light quark mass m .q

The numerical value of m cannot be fixed ade-q

quately because the values of the quark masses were
fitted from the heavy meson spectrum, which is not

Ž w x.very sensitive to m for more details see Ref. 7 .q

Therefore the value we consider in the model m ,q
Ž .38 MeV or m s0 in the present approximationq

has considerable uncertainties. For large or moderate
< <p this uncertainty does not affect the numericalp

results: the pion momenta are sufficiently large to
render the results insensitive to the actual value of

< <m . For very small p the numerical results dependq p

strongly on m , which makes them unreliable. Thisq

is the first reason to exclude the soft pion limit from
the analysis also in this paper. A second reason is
that, in the soft pion limit, the role of pole diagrams

w xsuch as those studied in Ref. 2 becomes relevant.
These diagrams cannot be accounted for by the
present scheme, which at most can be used to model

Table 2
Numerical values of the form factors for several values of E , E1 2
Ž . 2 y1 Ž .in GeV and ss5 GeV . Units are GeV r, w and w andq y

y3 Ž .GeV h

Ž .E , E r h w w1 2 q y

Ž .0.54, 2.40 2.15 y0.76 y1.25 y13.9
Ž .0.62, 2.16 2.36 y0.84 y0.31 y15.1
Ž .0.71, 1.92 2.60 y0.92 0.85 y16.5
Ž .0.82, 1.68 2.88 y0.99 2.27 y17.9
Ž .0.96, 1.44 3.22 y1.06 3.98 y19.3
Ž .1.14, 1.20 3.62 y1.10 6.01 y20.7
Ž .1.40, 0.95 4.08 y1.08 8.29 y21.5
Ž .1.82, 0.71 4.52 y0.95 10.5 y20.9

Table 3
Numerical values of the form factors for several values of E , E1 2
Ž . 2 y1 Ž .in GeV and ss10 GeV . Units are GeV r, w and wq y

y3 Ž .and GeV h

Ž .E , E r h w w1 2 q y

Ž .1.03, 2.45 0.42 y0.29 y2.71 y0.36
Ž .1.13, 2.26 0.29 y0.32 y2.71 y0.33
Ž .1.24, 2.08 0.14 y0.34 y2.68 y0.37
Ž .1.37, 1.89 y0.044 y0.37 y2.60 y0.49
Ž .1.52, 1.70 y0.24 y0.40 y2.42 y0.75
Ž .1.70, 1.51 y0.45 y0.42 y2.11 y1.15
Ž .1.93, 1.32 y0.63 y0.44 y1.60 y1.78
Ž .2.23, 1.13 y0.75 y0.44 y0.81 y2.72

a continuum of states, according to the quark-hadron
duality ideas. The low-lying resonances, such as

w x 3those studied in Ref. 2 should be added separately .
The same should be said about the resonances en-
countered at small s, such as the r-resonance. This

w xresonance is not considered in Ref. 2 , but is ex-
pected to play a major role; indeed experimentally

q0 y q0.8 y4Ž .one has BBR B ™ r ll n s 2.5 = 10 ,ll y1.0

which shows that this is a relevant piece of the
B-decay width into two pions. Therefore we assume
a lower cutoff sGs , with s s1 GeV 2 and we0 0

expect that the results are not affected by the above-
mentioned theoretical uncertainties. Since the r-reso-
nance and the chiral contributions discussed in Ref.
w x2 are absent in our approach, their contribution
should be added separately. We expect a large con-
tribution from the r and a tiny contribution from the

w xdiagrams discussed in Ref. 2 since they are signifi-
Žcant in a very small region of the phase space see

w x.the discussion in Ref. 2 .
For sGs our model has no similar limitations.0

By duality we would expect that the sum over higher
mass resonances can be reproduced fairly well by the
continuum model we employ here: therefore these
higher resonances should not be separately consid-
ered to avoid double counting problems. It could be
observed, in this context, that the failure observed in

w x 2 ŽRef. 10 at high q for the B™p semileptonic
.decay would correspond, in the present case, to the

small s, not to the large s region.

3 w x )This is the reason why in Ref. 10 the B pole of the B™p

< <form factor is not reproduced in the p ™0 region.p
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Table 4
Numerical values of the form factors for several values of E , E1 2
Ž . 2 y1 Ž .in GeV and ss19 GeV . Units are GeV r, w and wq y

y3 Ž .and GeV h

Ž .E , E r h w w1 2 q y

Ž .1.87, 2.55 y0.81 0.0041 y1.31 1.73
Ž .1.94, 2.45 y0.87 0.0028 y1.37 1.77
Ž .2.02, 2.36 y0.95 0.0012 y1.44 1.80
Ž .2.10, 2.27 y1.02 0.00092 y1.51 1.82
Ž .2.19, 2.17 y1.10 y0.0033 y1.57 1.83
Ž .2.29, 2.08 y1.18 y0.0062 y1.64 1.83
Ž .2.40, 1.99 y1.27 y0.0096 y1.70 1.81
Ž .2.51, 1.89 y1.35 y0.014 y1.75 1.77

Instead of presenting the form factors as functions
of s, q2 and t we prefer to consider s, E and E ,1 2

the pion energies. In terms of E , E and s the1 2
Žallowed kinematical range is as follows we put

.m s0 :p

s mB2s FsFm , FE F ,0 B 22m 2B

sqm2 sB
yE GE G . 27Ž .2 12m 4EB 2

In Tables 1–4 we present some numerical results
Ž . Ž .for the form factors h s, E , E , r s, E , E ,1 2 1 2

Ž . Ž . y q yw s, E , E and w s, E , E in the B ™p pq 1 2 y 1 2

semileptonic decay. In each Table we present all the
form factors at fixed s and different values of the
Ž . Ž 2 2E , E pair ss1 GeV in Table 1, ss5 GeV in1 2

Table 2, ss10 GeV 2 in Table 3, ss19 GeV 2 in
.Table 4 . These results should allow to get a quanti-

tative assessment of the numerical relevance of the
various form factors in the allowed kinematical range.
A different way to present the data is to introduce
averaged form factors. We choose to perform an
average in the pion energies according to the follow-
ing formula:

1 2m r2 Ž . Ž .sqm r 2 m yEB B B 2f s s dE dEŽ . H H2 1
D sŽ . Ž . Ž .sr 2 m sr 4 EB 2

=f s, E , E , 28Ž . Ž .1 2

Ž .valid for all the form factors fsh, r, w , w .q y
Ž . Ž .Here D s is the allowed area in the E , E plane:1 2

m4 ys2 s sB
D s s q ln . 29Ž . Ž .2 248m mB B

The numerical results we obtain have an average
error around 10%. A simple way to present the data

y q y y1 Ž . Ž . Ž . y3Fig. 2. The averaged form factors for B ™p p semileptonic decay. Units are GeV for w in c , w in d and r in a , GeV forq y
Ž .h in b .
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Table 5
Numerical values of the parameters appearing in the formula
Ž . Ž .Ž . wŽ .2 2 x Ž .f s s b sy s sy s r sy s q s . f s is any of the av-1 2 3 4

2 Ž .eraged form factors. Units are GeV for s , s , s and s ; f s1 2 3 4

and b have the same units
2Form factor s s s s b1 2 3 4

w y0.957 q7.15 q3.98 q3.38 y1.87q
w q1.77 q11.4 q4.20 q3.47 q3.91y
h q3.25 q19.5 q5.38 q7.93 q0.207
r y0.446 q9.47 q4.32 q11.5 y1.57

is by an analytical formula: for example the data can
be fitted by the following relation:

b sys sysŽ . Ž .1 2
f s s , 30Ž . Ž .2 2sys qsŽ .3 4

a procedure which introduces an average numerical
error of "10%; we stress, however that in comput-
ing the width we have not used this fit and therefore
this further error has not been introduced. We also

Ž .point out that the Breit-Wigner shape of Eq. 30 is a
useful parameterization and has no dynamical mean-
ing.

The values of the coefficients s , b appearing ink
Ž Ž ..Eq. 30 are reported in Table 5 for all the form
factors of the By decay. The form factors are de-
picted in Fig. 2

We observe that due to the limitations of our
approach, the kinematical region of validity of the
present model has no overlap with the soft pion

w xregion where pole diagrams, see e.g. Ref. 2 , are
expected to dominate. Therefore a comparison of our
work with the results of these models is impossible.

ŽLet us now evaluate the partial width G B™
.pp lln . The relevant formulae to compute the width

w xare reported in Ref. 2 and we do not reproduce
them here. We only give our numerical results for

Ž 2 .the cut-off width sG1 GeV . Numerically we get

yy q yBBR B ™p p ll nŽ .ll

2< <Vub y4 2s2.2 =10 sG1 GeV .Ž .y3ž /3.2=10
31Ž .

For the other decay channel we have
y0 q 0BBR B ™p p ll nŽ .ll

2< <Vub y4 2s3.2 =10 sG1 GeV .Ž .y3ž /3.2=10
32Ž .

The contribution of the r resonance to these
decay modes can be estimated in the present model
w x9 as follows:

yy q y <BBR B ™p p ll nŽ . rll

2< <Vub y4s1.2 =10 . 33Ž .y3ž /3.2=10

For the other decay channel we have
y0 q 0 <BBR B ™p p ll nŽ . rll

2< <Vub y4s2.4 =10 . 34Ž .y3ž /3.2=10

This latter branching ratio is in agreement with the
experimental figure quoted above.

We can therefore conclude that from an experi-
mental point of view the semileptonic decay channel
with two non-resonant pions in the final state repre-
sents an interesting process with a significant branch-
ing ratio, of the same order of magnitude of the
single pion or the single r semileptonic decay mode.
It would be nice to find this decay mode in the future
experimental analysis and to test the present predic-
tion of the QCD relativistic potential model.
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