
A N A LY S I S

NATURE BIOTECHNOLOGY  VOLUME 23   NUMBER 3   MARCH 2005 377

Chemogenomic profiling on a genome-
wide scale using reverse-engineered
gene networks
Diego di Bernardo1,5, Michael J Thompson2,5, Timothy S Gardner2,5, Sarah E Chobot3, Erin L Eastwood3,4, 
Andrew P Wojtovich3, Sean J Elliott3, Scott E Schaus3,4 & James J Collins2

A major challenge in drug discovery is to distinguish the molecular targets of a bioactive compound from the hundreds to 
thousands of additional gene products that respond indirectly to changes in the activity of the targets1–8. Here, we present an 
integrated computational-experimental approach for computing the likelihood that gene products and associated pathways 
are targets of a compound. This is achieved by filtering the mRNA expression profile of compound-exposed cells using a 
reverse-engineered model of the cell’s gene regulatory network. We apply the method to a set of 515 whole-genome yeast 
expression profiles resulting from a variety of treatments (compounds, knockouts and induced expression), and correctly enrich 
for the known targets and associated pathways in the majority of compounds examined. We demonstrate our approach with 
PTSB, a growth inhibitory compound with a previously unknown mode of action, by predicting and validating thioredoxin and 
thioredoxin reductase as its target.

A critical step in drug development is the optimization of therapeutic 
efficacy and the minimization of undesirable side effects of a candidate 
drug. Ideally, optimization is carried out using knowledge of the drug’s 
mode of action, that is, the molecular targets that mediate its thera-
peutic effects and side effects. For many drug candidates, however, the 
targets are unknown and difficult to identify among the thousands of 
gene products in a typical genome.

DNA microarray technology enables the observation of all genes with 
a transcriptional response to a compound treatment, and thus provides 
an opportunity to efficiently identify a compound’s targets. However, 
whole-genome expression profiles do not distinguish the genes targeted 
by a compound from the indirectly regulated genes. To overcome this 
problem, we have developed a model-based approach that is able to 
accurately distinguish a compound’s targets from the indirect respond-
ers, and, in contrast to association analysis techniques1,9,10, haploin-
sufficiency profiling5–7 and chemical-genetic interaction mapping8, 
does not require libraries of genetic mutants or fitness-based assays of 
drug response. With this approach, called mode-of-action by network 
identification (MNI), we first reverse-engineer a network model11–27 
of regulatory interactions in the organism of interest using a training 
data set of whole-genome expression profiles (Fig. 1). We then use 
the model to analyze the expression profile of compound-treated cells 

to determine the pathways and genes targeted by the compound. The 
reverse-engineered model is a directed graph relating the concentra-
tions of transcripts to each other. An edge in the graph means that the 
activity of one gene product influences the transcription of another 
gene (Fig. 2). Multiple genes may influence the activity of a particular 
gene; these influences are integrated in the model as a weighted sum 
of the transcript concentrations (Fig. 2). Because the model is trained 
using transcription data only, regulatory influences between genes may 
be mediated through protein or metabolite species that are not explic-
itly represented.

The algorithm assumes that training profiles are obtained in steady 
state following a variety of treatments, including compounds, RNAi, 
and gene-specific mutations (Fig. 1). The ability to use varied treatment 
types in the training data is an important advance over earlier model 
estimation techniques15,22,23, which required knowledge of the gene 
targets of each training perturbation. This improved flexibility may 
enable application of the MNI approach to higher model organisms, 
where gene-specific perturbations are more difficult to implement. To 
infer a network model without requiring gene-specific perturbations, 
the algorithm employs an iterative procedure: it first predicts the targets 
of the treatment using an assumed network model, and then uses those 
predicted targets to estimate a better model. The procedure repeats 
until convergence criteria are met (see Supplementary Notes online). 
This approach is analogous to the Expectation Maximization (EM) 
algorithm28 commonly used to train Bayesian networks.

Once the regulatory model is trained, we apply it to the expression 
profile of a test compound to predict its targets. The model acts as a 
filter, in essence, checking the expression level of each gene in the cell 
(relative to the level of all other genes in the cell) for consistency with 
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regulatory influences embodied in the trained regulatory model. The 
genes are then ranked by a z-statistic that measures their level of con-
sistency (see Methods and Supplementary Notes). The highest-ranked 
genes are those whose expression is most inconsistent with the model, 
and this inconsistency is attributed to the external influence of the 
compound on those genes (see Supplementary Notes for a detailed 
outline of the algorithm).

We tested our approach by combining two publicly available, whole-
genome yeast expression data sets: a compendium of 300 profiles of gene 
deletions, titratable promoter insertions and drug compound treat-
ments from Hughes et al.1 and a recent set of 215 titratable promoter 
insertions in essential genes from Mnaimneh et al.29. For each treat-
ment/perturbation, a single profile was obtained from yeast cells grown 
to steady state after the perturbation. A log-transformed expression 
ratio was computed for each gene in each profile relative to untreated, 
wild-type yeast strains. The algorithm was blinded to any information 
regarding the gene targets of the treatments and mutations.

To evaluate the performance of the MNI algorithm, we tested its ability 
to predict the gene targets of the 11 promoter insertions from the Hughes 
compendium (Table 1). For the 11 mutant profiles tested, the algorithm 
ranked the targeted gene as the most likely affected gene in 8 out of 11 
cases. Two of the remaining perturbed genes were correctly ranked in 
the top 10 of most likely affected genes (RHO1 and PMA1). The final 
perturbed gene, ERG11, was ranked 42nd, which is a substantial enrich-
ment over its ranking based on the significance of its expression change 
alone (it was ranked 2,820 by z-score of expression change; Table 1). In 

contrast, ranking by expression change identified the affected gene with 
high significance (ranked among the top 10 out of 6,000 genes) for only 
three of the 11 mutations, which is significantly worse than the MNI 
algorithm.

We compared the performance of the MNI algorithm to two associa-
tion analysis approaches: a correlation method1,9 and a linear combi-
nation method10 (Table 1 and Supplementary Table 1 online). The 
correlation method computes the correlation coefficient between the 
expression profile of a test compound and each mutant profile in the 
training data set. The mutant profiles with the greatest similarity to 
the compound profile are considered the most likely targets. The linear 
combination approach finds a weighted sum of mutant profiles that 
best match the profile of the test compound. The most heavily weighted 
mutants are considered the most likely targets. The primary limitation 
of these methods is that they can only identify the target of a compound 
if a mutant strain for that target has been included in the training data 
set. For nine of the 11 titratable promoter profiles, no corresponding 
profile exists.

We next applied the MNI algorithm to identify probable targets of 
drug compounds. Unlike promoter insertions, which directly influence 
transcription, compounds predominantly affect protein activity and 
only indirectly influence transcription. As a result, the algorithm is 
more likely to identify genes in the same pathway as the affected protein 
rather than the target itself, such as transcriptionally regulated genes 
downstream of the target protein. On the other hand, when transcrip-
tional feedback regulation is present in the pathway containing the 
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Figure 1  Overview of the MNI method. In phase 1, a set of treatments, including knockouts, compounds, overexpressions and/or RNAi, is applied to 
an organism. Cells or tissues are sampled, and mRNA is collected. The abundance changes of all mRNA species in the organism are measured. The 
data are used by the MNI algorithm to infer a model of the regulatory influences between genes in the organism (blue-filled circles indicate genes; 
arrows indicate regulatory influences). In phase 2, a test treatment, such as a drug, is applied to the cells and expression changes of all mRNA species 
are measured. The expression data are then filtered using the network model to distinguish the targets of the test treatment (red-filled circles) from 
secondary responders.
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targeted gene, it is likely that the algorithm will also assign a high rank 
to the targeted gene product. Thus, in analyzing the MNI predictions 
for compound treatments, we consider as targets both the pathways that 
are significantly overrepresented among the highly ranked genes and 
the highly ranked genes within those pathways. Pathways are identi-
fied as significantly overrepresented Gene Ontology (GO) (http://www.
geneontology.org/) processes among the highly ranked genes.

We used the MNI algorithm to identify probable targets of 15 com-
pounds, 13 of which were drawn from the Hughes compendium1 and 
two from other studies1,30. Of the 15 compounds examined, nine have 
previously determined targets, while the targets of the other six com-
pounds are unknown. The pathways and protein targets of the nine 
compounds of known mode of action are shown in Table 2. For each 
of these compounds, we used the MNI algorithm to rank more than 
6,000 yeast genes by the likelihood that they were the targets of each 
drug treatment. We then subjected the 50 highest ranked genes to path-
way analysis, using the GO Term Finder tool 
(http://www.yeastgenome.org), to identify 
overrepresented GO biological process anno-
tations. The most significant annotation for 
each case is reported in Table 2, along with the 
highly ranked genes in that pathway.

The most overrepresented pathways identi-
fied among the genes ranked by the MNI algo-
rithm matched the known targeted pathway 
for seven of the nine compounds (Table 2). 
The four compounds that target ergosterol 
biosynthesis (terbinafine, lovastatin, itra-
conazole and dyclonine) affect genes that are 
enriched for steroid and lipid metabolism, of 
which ergosterol biosynthesis is a more spe-
cific sub-category that also shows significant 
enrichment. The top pathways identified for 
each of the four compounds contain a high 
preponderance of ergosterol biosynthetic 
enzymes, and the gene encoding the known 
target protein for each respective compound 

is ranked near the top for each pathway (Table 2 and Fig. 3). In deter-
mining the targets of hydroxyurea, a ribonucleotide reductase inhibi-
tor, the algorithm identifies ‘DNA replication,’ the primary pathway 
of hydroxyurea’s targets (Rnr2 and Rnr4), as the second most signifi-
cant unique annotation. The algorithm identified RNR4 and RNR2 
as the top ranked genes in that pathway (second and sixth overall, 
respectively), as well as two other genes encoding proteins in the 
ribonucleotide reductase complex (RNR1 and RNR3). The highest 
ranked annotated processes were related to DNA repair, in which the 
RNR complex plays an important role31; the ‘heteroduplex formation’ 
genes RAD51 and RAD54 act in double-strand break repair through 
homologous recombination, and are highly ranked by the MNI algo-
rithm. In the case of cycloheximide, the most significant annotation 
did not match the known pathway, but the MNI algorithm ranked 
two genes (RPL26b and RPS29a) in the top 50 that are members of 
the ribosome complex, which is targeted by the drug.
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Table 1  Results of the MNI approach in identifying targets of genetic perturbations

Promoter mutant Target rank MNI rank LC rank C rank R

tet-IDI1 IDI1 1 – – 1

tet-RHO1 RHO1 4 – – 1

tet-YEF3 YEF3 1 – – 116

tet-AUR1 AUR1 1 – – 14

tet-FKS1 FKS1 1 89 2 41

tet-KAR2 KAR2 1 – – 64

tet-CDC42 CDC42 1 278 22 141

tet-HMG2 HMG2 1 – – 19

tet-PMA1 PMA1 6 – – 22

tet-ERG11 ERG11 42 – – 2,820

tet-CMD1 CMD1 1 – – 1

Results of association methods are provided for comparison. Promoter mutants are obtained by replacing the 
endogenous promoter with a tet-regulatable promoter. LC, linear combination; C, correlation; R, RNA change
(z-score); –, association analysis methods do not identify target genes that are not themselves perturbed.

Figure 2  Structure of the network model. (a) The network model represents regulatory influences (arrows) between transcripts as influence functions for 
each gene (blue nodes). During phase 1, the MNI algorithm identifies the subset of transcripts (the input RNA concentrations) that influence the rate of 
transcription (the output transcription rate) of every other transcript. The algorithm also learns the coefficients of the interaction function that relates the 
inputs to outputs. (b) The colored matrix represents a portion of the yeast gene-network model identified by the MNI algorithm. Gene expression profiles are 
first reduced to a lower-dimensional set of metagenes (as described in the Supplementary Notes; the first 50 metagenes are shown) and a network model 
is trained for the metagenes. The metagenes represent characteristic expression profiles, which can be combined to approximate the expression profile of 
each transcript in the cell. Each pixel in the matrix represents a positive influence (red), negative influence (blue) or no influence (white) of the metagenes 
on each other. The metagene model, which can be transformed to describe regulatory influences between true genes, is used in phase 2 of the algorithm to 
distinguish compound targets from secondary responders.
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For three of the nine compounds with known modes of action 
(tunicamycin, nikkomycin, and 3-aminotriazole), the MNI algorithm 
did not identify the known target. However, for tunicamycin and 3-
aminotriazole, the MNI algorithm did identify the targeted biosynthetic 
pathways and gene products acting adjacent to the known targeted 
proteins (Alg7 and His3, respectively) in those pathways (Table 2). The 
target of tunicamycin, Alg7, is an integral membrane protein of the 
endoplasmic reticulum (ER) that catalyzes the transfer of N-acetylglu-
cosamine-1-P from UDP-N-acetylglucosamine to dolichol phosphate 
in the first step of lipid-linked oligosaccharide synthesis32. The MNI 
algorithm identified several protein-ER targeting proteins (Sec62, Sil1 
and Sec59) among the top 50 most likely targets for tunicamycin. The 
final step in the synthesis of dolichol phosphate, the substrate of Alg7, 
is catalyzed by Sec59, which is ranked third in the top-ranked pathway 
by MNI (Table 2). Similarly, a target of 3-aminotriazole, His3, cata-
lyzes the sixth step in the synthesis of histidine from 5-phosphoribosyl 
1-pyrophosphate32. The following (seventh) step in that biosynthetic 
pathway is catalyzed by His5, which is ranked tenth in the top-ranked 
pathway by MNI (Table 2).

The MNI algorithm requires that the training perturbations influ-
ence a diversity of cell functions. If a particular cellular pathway does 
not show a response in any experiment, then a regulatory model for 

that pathway cannot be learned and thus no predictions can be made 
about that pathway. For instance, although in principle it is possible 
to use expression response profiles from environmental stimuli and 
stresses with this algorithm, we have found that even large data sets16 
sampling many unique environmental stresses can yield training data 
with low information content. Thus, the failure to identify the target 
of nikkomycin may be due to insufficient stimulation of the pathway 
related to its function.

We also examined the predicted target pathways and genes for the six 
compounds with currently unknown targets (Supplementary Tables 3 
and 4 online). For example, methyl methanesulfonate (MMS) is an alkyl-
ating agent that damages DNA; it is not thought to have a direct protein 
target. However, prior studies have shown that rnr3 deletion strains are 
most sensitive to MMS treatment1, and thus Rnr3 is a likely mediator of 
the effects of MMS. The MNI algorithm ranks RNR3 as the sixth most 
likely target of MMS. Interestingly, the most significant pathway among 
the top ranked genes was ‘sterol biosynthesis’ (P < 5.0 × 10–5), containing 
the highly ranked genes ERG5, CYB5, HMG1, and MVD1. Previous stud-
ies have shown that disruption of ergosterol biosynthesis leads to MMS 
sensitivity33, possibly due to defective mitochondrial mitogenesis, as 
discussed in the examination of the membrane-associated progesterone 
receptor family protein and probable sterol synthesis regulator, Dap134. 

Table 2  Pathways and associated genes targeted by drug compounds
Drug Known pathway Known target Significant GO ontology 

(rank, P-value)
Ranked pathway genes (rank)

Terbinafine Ergosterol biosynthesis41 Erg1 Steroid metabolism
(1, 10–14)

ERG7 (4), ERG1 (5), ERG8 (11), ERG26 (13), UPC2 
(17), ERG28 (18), ERG11 (20), DAP1 (33), HES1 (34), 
ATF2 (36), ERG5 (49)

Lovastatin Ergosterol biosynthesis42 Hmg2, Hmg1 Lipid metabolism
(1, 10–4)

BST1 (1), ERG1 (18), YSR3 (23), HMG2 (30), LCB5 
(31), ERG13 (36), VRG4 (48)

Itraconazole Ergostero| biosynthesis43 Erg11 Steroid metabolism
(1, 10–8)

ERG11 (2), ERG24 (4), ERG1 (6), ERG25 (13), CYB5 
(16), ERG27 (19), ATF2 (23)

Hydroxyurea DNA replication44 Rnr2, Rnr4 Heteroduplex formation 
(1, 10–4)

RAD51 (15), RAD54 (47)

DNA replication
(2, 10–2)

RNR4 (2), RNR2 (6), RNR1 (14), RNR3 (23)

Cycloheximide Protein biosynthesis45 Ribosome Nuclear mRNA splicing, 
via spliceosome (1, 10–4)

SYF1 (3), SMD3 (19), HSH49 (42)

– RPL26B (32), RPS29A (34)

Tunicamycin N-linked glycosylation46 Alg7 Protein-ER targeting
(1, 10–3)

SEC62 (1), SIL1 (31), SEC59 a (43)

Nikkomycin Cell wall chitin biosynthesis47 Chs3 Protein amino acid
alkylation(1, 10–3)

SWD2 (3), RMT2 (6)

Drugs not in the original compendium data set

3-aminotriazole Histidine biosynthesis48 His3 Organic acid
metabolism
(1, 10–7)

FRM2 (8), BIO5 (9), YAT2 (10), ARO10 (18), ARO9 
(20), CHA1 (21), BIO3 (31), ARG1 (33), ARG4 (37), 
HIS5 b (42), LYS1 (47), SAM2 (50)

Oxygen and reactive oxygen
species metabolism30

Cta1

Dyclonine Ergosterol biosynthesis1 Erg2 Sterol biosynthesis
(1, 10–18)

ERG3 (1), ERG6 (2), CYB5 (3), ERG2 (4), ERG11 (6), 
ERG28 (10), ERG1 (12), ERG5 (13), ERG27 (18), 
MVD1 (23), ERG24 (30), ERG26 (37)

Novel drug with unknown mode of action

PTSB – – Cell redox
homeostasis (1, 10–3)

TRR1 (32), TRX2 (36)

Bold text indicates matches with previously reported targets and pathways for each compound. –, known target pathway is not significantly overrepresented among ranked 
genes, or the target pathway or gene is unknown.

aSec59 catalyzes the reaction immediately preceding Alg7 (tunicamycin’s target) in the dolichol pathway of N-linked glycosylation. bHis5 catalyzes the reaction immediately following His3 
(3-aminotriazole’s target) in the histidine biosynthesis pathway.
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Gene and pathway rankings for MMS and all other drugs are provided in 
Supplementary Tables 3 and 5 online. In the Supplementary Notes, we 
also examine the performance of the association analysis approaches and 
the raw expression change ranking in identifying target genes and path-
ways for all of the compounds considered (Supplementary Tables 1–4); 
we note that the MNI algorithm outperforms these approaches.

Overall, our results show that for most compounds the MNI algo-
rithm is successful in correctly identifying the target pathway with the 
highest significance. Moreover, within a significant pathway, the algo-
rithm typically ranks the target gene product higher than other genes in 
the pathway. This performance is likely due to the ‘tournament’ strategy 
used to rank genes (see Supplementary Notes). For a particular test 
compound profile, the algorithm is applied repeatedly to rank the genes. 
In each application of the algorithm, gene profiles are collapsed into a 
small number of principal components (‘metagenes’). The metagenes 
represent the behavior of a group of similarly expressed genes. Such 
genes are likely to be involved in the same pathway. Thus, in initial 
rounds, genes within a pathway may be treated and ranked similarly. 
In each subsequent application of the algorithm, the one-third most 
highly ranked genes are selected and reanalyzed. Thus, a fewer number 
of gene profiles are collapsed into the representative metagenes, and the 
resolution of the predictions is improved. Therefore, in later iterations 
of the algorithm, genes within a pathway can be differentiated.

The MNI algorithm’s ability to rank both genes and pathways sug-
gests that the most probable targets of novel compounds can be identi-
fied as those that act within the most significantly overrepresented GO 
processes (pathways) and are highly ranked within those processes. The 
resulting small list of probable targets can then be validated for interac-
tion with the compound by direct biochemical assays.

Here we demonstrate the use of this strategy on a tetrazole-
containing compound, 1-phenyl-1H-tetrazol-5-ylsulfonyl-butanenitrile 
(PTSB), found to inhibit growth in both wild-type Saccharomyces cere-
visiae (BY4743, IC50 of 25 µM) and human small lung carcinoma cells 
(A549, IC50 of 5 µM). We first determined the changes in steady-state 

gene expression in S. cerevisiae upon treatment with PTSB using oligonu-
cleotide arrays. We used the MNI algorithm and the reverse-engineered 
network model described above to obtain a ranking of the most likely 
targets of PTSB. The most highly overrepresented GO process among 
the top 50 most likely perturbed genes was the ‘cell redox homeostasis’ 
annotation (P < 2.2 × 10–3). Two genes with that annotation are ranked 
in the top 50: thioredoxin reductase (TRR1, rank = 32) and thioredoxin 
(TRX2, rank = 36). To validate the predictions made by the MNI algo-
rithm, we performed a biochemical assay to monitor the NADPH-depen-
dent reduction of dithio(bis)nitrobenzoic acid (DTNB) by thioredoxin 
and thioredoxin reductase35 (Fig. 4; Methods). The accumulation of the 
reduced DTNB product, a thiolate anion, was observed spectroscopically 
(λmax = 412 nm) in the presence of 0, 1, 5 and 50 µM PTSB. The results 
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Figure 3  Predicted targets of itraconazole. (a) mRNA expression changes of 6194 yeast genes following treatment with itraconazole1. Changes are plotted as 
the z-score, x/σx, where x is the log(expression ratio) and σx is the standard error on the log expression ratio. (b) Targets of itraconazole predicted by the MNI 
algorithm using the expression changes in panel a. Higher MNI scores indicate higher likelihood that the gene is a target. ERG11 (red), a known target of 
itraconazole, is the second most likely target identified with the MNI algorithm. Those genes ranked in the top 50 by MNI and annotated with the top ranked 
GO process, ‘steroid metabolism’ (in addition to ERG11), are shown in orange. The remaining genes ranked in the top 50 by MNI are shown in green. Genes 
ranked in the top 50 by z-score of mRNA expression change are shown in purple.
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demonstrate that PTSB efficiently inhibits the thioredoxin/thioredoxin 
reductase system.

We have presented an approach for the identification of drug tar-
gets using a computational model of genetic network interactions 
determined with gene expression array data. Data sets appropriate for 
analysis with the MNI algorithm are becoming increasingly available 
in several model organisms36–38. The reverse-engineered gene network 
models that are at the core of the MNI algorithm will also become 
more informative with an increase in data over a wider range of cel-
lular behavior. We anticipate that such refined models will contain even 
greater predictive power for drug target identification.

METHODS
Public expression data. Two publicly available sets of gene expression pro-
files1,29 served as the training data set for the MNI algorithm, with two primary 
modifications. First, information regarding the identity of compounds used 
to treat the cells and the identity of the mutated genes in each profile was 
not provided to the MNI algorithm. Thus, the data set was representative 
of an experimental situation where only treatments with unknown modes 
of action were applied to the model organism. Second, if the test expression 
profile (that is, the profile for which targets were to be identified) was part of 
the 515 profiles in the compendium, it was removed from the training data 
set before analysis. Note also that an additional public data set30 was used as 
the source of expression data for one compound, 3-aminotriazole. All expres-
sion profiles were preprocessed before analysis: missing expression ratios were 
set to zero, and missing standard errors were estimated as described in the 
Supplementary Notes.

DNA microarray construction for PTSB experiments. A set of 6,307 synthe-
sized oligonucleotide 70-mer probes including ten controls was obtained from 
Operon Technologies. The plates of DNA were suspended in 3× SSC (0.45 M 
NaCl, 45 mM sodium citrate, pH 7.0) to make printable aliquots. The DNA 
solutions were spotted on CMT-GAPS II slides (Corning) using OmniGrid 
Accent (GeneMachines) microarraying robot equipped with a Stealth Printhead 
(SPH32, Telechem International) containing 16-Stealth Micro Spotting Pins 
(SMP4, Telechem International). Postprocessing of the slides was accomplished 
according to published procedures39.

Drug treatment and preparation of microarray sample. An overnight culture 
of a drug-sensitive strain of S. cerevisiae was diluted to an OD600 of 0.l, treated 
with 5 µM PTSB and then grown to an OD600 of 0.8. Total RNA was isolated from 
the flash-frozen cultured yeast cells using the acidic phenol method. Poly(A) 
RNA was isolated using an oligo(dT) resin (Oligotex, Qiagen). cDNA was syn-
thesized followed by double-strand synthesis. In vitro transcription was then 
used for amplification of antisense RNA (aRNA) (Amino Allyl MessageAMP 
aRNA kit, Ambion). The in vitro transcription employed 5-(3′-amino-allyl)-
dUTP for dye conjugation. The control and experimental probes were coupled 
with Cy3- and Cy5- N-hydroxysuccinamide esters (Amersham Biosciences), 
respectively, and purified using a MEGAclear kit (Ambion). The samples were 
concentrated and fragmented before hybridization. Each experiment was con-
ducted in duplicate.

Data acquisition and analysis. The microarrays were scanned with a GenePix 
4000B array scanner (Axon Instruments) using GenePix 3.0 software to quantify 
the Cy3- and Cy5-fluorescence intensities at each spot and determine the back-
ground signal intensities. Signal intensities greater than three standard devia-
tions above the average background were considered for analysis. A scaling factor 
was calculated using the ratio of the Cy3 average mean signal intensity to the Cy5 
average mean signal intensity. The scaling factor was applied to normalize the 
two channels. The Yeast Protein Database (YPD) and the GeneSpring software 
package (Silicon Genetics) were used for data analysis.

Validation of PTSB target: thioredoxin/thioredoxin reductase assay. The solu-
tion assay of coupled thioredoxin-thioredoxin reductase activity using DTNB 
was carried out by the method of Holmgren and Reichard35, with the following 
modifications. To an assay mixture of 10 mM Tris, we added 3.12 mM EDTA 

(pH 8.0), NADPH and DTNB to final concentrations of 0.05 mM and 0.33 mM, 
respectively. DTNB was prepared before the experiment, in ethanol, as a 100 
mM stock solution. To this mixture, Escherichia coli thioredoxin reductase was 
added to a concentration of 1 µM, as was a variable amount of PTSB (see text 
for details). The reaction was initiated by the addition of E. coli thioredoxin 
(250 µM, final concentration), and monitored by absorption change due to 
the thiolate anion at 412 nm (at pH = 8.0, ε412 = 13.6 mM–1cm–1). The E. 
coli thioredoxin I protein (trxA gene product) is 34% identical to S. cerevisiae 
thioredoxin (Trx2; identified by MNI) and 30    –40% identical to human thio-
redoxins. The E. coli thioredoxin reductase protein (trxB gene product) is 47% 
identical to S. cerevisiae thioredoxin reductase (Trr1; identified by MNI) and 
approximately 25% identical to human thioredoxin reductases.

MNI algorithm. The algorithm and underlying assumptions are described in 
detail in the Supplementary Notes. Here we provide a brief summary. The 
algorithm operates in two phases. In the first phase (the training phase), a 
model of regulatory influences in the cell is learned from an N×M data matrix, 
X, consisting of measurements of steady-state expression ratios of N genes in 
M experiments. In prior work15, we showed that such a regulatory model can 
be constructed provided that specific genes are perturbed in each of the M 
experiments. The gene-specific perturbations enable the construction of an 
N×M matrix, P, of external influences on the genes. Regulatory influences 
are obtained as coefficients in the matrix A that provide a sparse solution to a 
linearized steady-state model of the regulatory network: A(X – 1) = P. In the 
MNI algorithm, a similar strategy is used. However, gene-specific perturbations 
are assumed to be unavailable. Thus the matrix P is unknown and our prior 
approach is inapplicable. To estimate the network model A, with no data on P, 
the MNI algorithm uses a recursive strategy. The algorithm begins by using a 
naive model of the regulatory structure (i.e., no genes regulate any other genes) 
to estimate P from the expression data X. The estimate of P is then used, along 
with X, to determine A by principal components regression40. The estimates of 
A and P are then used to recursively reestimate one another until the estimates 
converge. The recursive approach is much like the EM algorithm28 commonly 
used to train Bayesian networks. The estimation of P corresponds to the ‘E-step,’ 
and the estimation of A corresponds to the ‘M-ste’.

In past work15, expression-ratio data were used to compose the data matrix 
X, thereby allowing the inference of a linearized model of regulatory influences. 
The MNI algorithm, however, uses log-transformed expression-ratio data in 
the data matrix X. This transformation improves the statistical properties of 
the data by stabilizing the variances of the expression ratios, and it enables the 
identification of a log-linear model19 of gene regulation. The log-linear model 
enables the capture of some nonlinear properties of the regulatory network, 
providing better predictive power.

In the second phase of the algorithm, the A matrix, representing a model of 
regulatory influences in the cell, is used to estimate the targets of a test com-
pound. The test compound is incorporated in the model as an N×1 vector, p, 
of gene-specific influences that result in the log-transformed expression-ratios, 
x, measured for the compound. The p vector is then calculated directly from 
the log-linear regulatory model as: P = Ax. The significance of each element 
of the p vector is then calculated as a z-score. Genes are ranked according to 
the z-score of their corresponding element in the p vector, and the top-ranked 
genes and pathways are selected as probable targets of the test compound.

Supplementary information is available on the  Nature Biotechnology website.
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