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Abstract 

Introduction:  Overcrowding in the Emergency Department (ED) is one of the major issues that must be addressed 
in order to improve the services provided in emergency circumstances and to optimize their quality. As a result, in 
order to help the patients and professionals engaged, hospital organizations must implement remedial and preventa-
tive measures. Overcrowding has a number of consequences, including inadequate treatment and longer hospital 
stays; as a result, mortality and the average duration of stay in critical care units both rise. In the literature, a number 
of indicators have been used to measure ED congestion. EDWIN, NEDOCS and READI scales are considered the most 
efficient ones, each of which is based on different parameters regarding the patient management in the ED.

Methods:  In this work, EDWIN Index and NEDOCS Index have been calculated every hour for a month period from 
February 9th to March 9th, 2020 and for a month period from March 10th to April 9th, 2020. The choice of the period 
is related to the date of the establishment of the lockdown in Italy due to the spread of Coronavirus; in fact on 9 
March 2020 the Italian government issued the first decree regarding the urgent provisions in relation to the COVID-
19 emergency. Besides, the Pearson correlation coefficient has been used to evaluate how much the EDWIN and 
NEDOCS indexes are linearly dependent.

Results:  EDWIN index follows a trend consistent with the situation of the first lockdown period in Italy, defined by 
extreme limitations imposed by Covid-19 pandemic. The 8:00–20:00 time frame was the most congested, with peak 
values between 8:00 and 12:00. on the contrary, in NEDOCS index doesn’t show a trend similar to the EDWIN one, 
resulting less reliable. The Pearson correlation coefficient between the two scales is 0,317.

Conclusion:  In this study, the EDWIN Index and the NEDOCS Index were compared and correlated in order to 
assess their efficacy, applying them to the case study of the Emergency Department of “San Giovanni di Dio e Ruggi 
d’Aragona” University Hospital during the Covid-19 pandemic. The EDWIN scale turned out to be the most realistic 
model in relation to the actual crowding of the ED subject of our study. Besides, the two scales didn’t show a signifi-
cant correlation value.
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Introduction
Overcrowding in emergency departments (EDs) is one 
of the key challenges in effective hospital administra-
tion. Overcrowding in hospital context is described as 
"a condition in which the identified need for emergency 
care exceeds available resources in the ED", according to 
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The American College of Emergency Physicians (ACEP) 
Crowding Resources Task Force. When there are more 
patients than staffed ED treatment beds and wait times 
surpass a tolerable length, this scenario arises in hospital 
EDs.

In many nations, overcrowding in emergency depart-
ments is a concern, with major ramifications for patient 
satisfaction, staff productivity, and the system as a whole, 
as well as it represents an increase in expenses [1].

Two aspects of the hospital system that might be cru-
cial, according to Gurol-Urganci et  al. [2], are demand 
fluctuation and lead-time variability. In fact, one of the 
most common reasons of ED overcrowding is the delay in 
sending patients to hospital surgical units after they have 
been registered and assessed, resulting in individuals 
waiting in the ED. Other factors that may contribute to 
ED overcrowding include the expanding senior popula-
tion, the increased number of difficult cases, and patients 
with comorbidities [3–5].

ED congestion is also related to a variety of negative 
outcomes, including longer treatment durations, pre-
ventable medical errors, and the proportion of patients 
who leave the ED without receiving a medical evaluation 
from a healthcare professional [6].

Many scientific studies from various fields of study 
have recently addressed the problem of improving the 
quality of healthcare services through the use of mana-
gerial, statistical, and modeling tools to address issues 
such as prolonged hospital stays, increased waiting times, 
appointment scheduling, and other issues[7–20].

Several strategies have been used to increase the effi-
ciency of procedures, healthcare processes in various 
hospitals, and logistics and resource management; rang-
ing from Lean and Six Sigma to simulation [7, 8, 15, 21], 
many techniques have been used to address the problem 
of overcrowding in EDs [22–24].

A considerable number of scientific studies have 
addressed this subject in recent years, including con-
tributions from several fields of research [25, 26]. The 
fundamental issue is that there is no one standard met-
ric of hospital performance, hence there is no global 
standard definition of congestion in emergency depart-
ments. The United Kingdom was the first country to 
require a few clinical indicators at the national level in 
1990 [27]. In 1996, the Department of Health issued 
recommendations stating that a patient must be seen 
within five minutes of arriving at the hospital [28]. The 
Department of Health assessed and compared first-aid 
performance, using rapidity in diagnosing the patient’s 
condition as a criterion [29]. It implemented the "4-h 
rule" in 2004, requiring that 98 percent of patients be 
examined and either hospitalized or released within 
four hours after arriving at the emergency room. 

Several other clinical indicators were created in the 
years that followed. However, Jones and Schimanski 
[30] shown in 2010 that the implementation of an ED 
time objective and the accompanying huge financial 
commitment in the United Kingdom did not result in 
a consistent improvement. As a result, the authors cau-
tioned countries interested in replicating the United 
Kingdom’s experience. A year later, the Minister of 
Health issued a message to all NHS executives on the 
Department of Health (DH) website, announcing the 
repeal of the 4-h regulation as of April 2011 [31]. In 
December 2010, a new set of indexes for evaluating the 
performance of EDs was revealed; these indexes were 
first applied in April 2011 [27].

There are many indexes of ED crowding identified in 
the scientific literature; below we list the main ones:

- four multidimensional indexes: EDWIN [Emer-
gency Department Work Index] [32], READI [Real-
time Emergency Analysis of Demand Indicators] 
[33], NEDOCS [National ED Overcrowding Study 
Index] [38] and NEAT [National Emergency Access 
Target] [34]; these scales, EDWIN and NEDOCS 
in particular, have shown a high capacity to reflect 
the current level of overcrowding in the ED. The 
EDWIN score is related to the ESI (Emergency 
Severity Index) which determines priority levels 
in correlation with clinical conditions to the need 
for resources; indeed NEDOCS score is based on 
parameters of institutional structures and on activ-
ity variables so it evaluate different aspects of patient 
management in the ED.
- five input indexes: total capacity of first aid, num-
ber of patient arrivals in six hours, ambulance 
transport number, number of patients waiting for 
medical treatment, and number of patients in the 
waiting room;
- three throughput indexes: length of stay in the 
emergency department [ED LOS], wait time for a 
first appointment, and time spent in waiting room;
- two output indexes: number of patients in the 
emergency room and percentage of total beds 
occupied.

Following the definition of the indexes, several inves-
tigations were done to validate them. To quantify the 
effect of crowding on patient satisfaction, Tekwani et al. 
[35] performed a survey on a sample of patients released 
from the emergency room after an eight-month delay. 
The degree of crowding in an ED was measured by the 
NEDOCS index before and after the introduction of a 
new management tools in the administration of hospital 
beds in a research by Todisco [36].
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Several studies have examined the EDWIN and 
NEDOCS indexes’ performance in assessing overcrowd-
ing. In 2006, Weiss et  al. [37] questioned whether the 
NEDOCS and EDWIN indexes are equally sensitive and 
specific for the problem of overcrowding. The authors 
proved that both indexes, particularly the NEDOCS 
index, have high accuracy for forecasting emergency 
department overcrowding on a sample of 130 patients in 
that research. Bernstein et al. [32] compared the results 
of the EDWIN index to the results of doctor and nurse 
perceptions of emergency department crowding. The 
EDWIN index and the staff’s crowding evaluation were 
shown to have a good association in the study.

Despite the fact that the EDWIN and NEDOCS indexes 
were developed using distinct approaches, they both seek 
to capture the comparable result value of real-time spe-
cialists’ opinions on ED crowding and are thus useful 
estimate tools.

The aim of this work is to analyze the NEDOCS and 
EDWIN values for ED of the "San Giovanni di Dio e 
Ruggi d’Aragona" University Hospital (Salerno, Italy) and 
to evaluate their effectiveness. In particular, this work is 
an extension of the short paper presented at the BECB 
Conference in August, 2021 (2021 International Sym-
posium on Biomedical Engineering and Computational 
Biology) [38]. More in detail, in the work presented at the 
BECB 2021 Conference, an analysis of the overcrowding 
indices was carried out by comparing the results obtained 
from the processing of the data of the same seven day 
period in two different years, 2020 and 2021, pre and 
post Covid-19 pandemic, respectively. The aim was to 
highlight the different degree of overcrowding due to the 
different way of perceiving the need to access the hospital 
by the population after one year of pandemic. In order to 
study the begin of this trend, in this paper the overcrowd-
ing indicators have been registered every hour over two 
months periods, from February 9th to March 9th, 2020 
and from March 10th to April 9th, 2020. In this way we 
want to better assess the direct impact of Covid-19 on ED 
overcrowding thanks to the analysis that took place over 
two months. Besides, differently from the work presented 
at the BECB 2021 Conference, another additional point 
that that gives greater texture to this study is the correla-
tion analysis carried out between NEDOCS and EDWIN.

Methods
Data collection
This is a prospective study of the evaluation tech-
niques of ED overcrowding applied on the case study 
of the Emergency Department of “San Giovanni di Dio 
e Ruggi d’Aragona” University Hospital. The NEDOCS 
and the EDWIN indexes have been calculated every 

hour for a month period from February 9th to March 
9th, 2020 and for a month period from March 10th 
to April 9th, 2020. The choice of the period is strictly 
related to the date of the establishment of the lock-
down in Italy due to the spread of Coronavirus; in fact 
on 9 March 2020 the Italian government issued the first 
decree regarding the urgent provisions for upgrading of 
the National Health Service in relation to the COVID-
19 emergency [39]. For this reason, in order to better 
understand the trend of the phenomenon that involved 
the ED departments we choose to study overcrowding 
indexes during a month before and a month after the 
start of the pandemic emergency in Italy.

All values for the EDWIN and NEDOCS models have 
been calculated using data available for download form 
the hospital’s triage system database in order to not 
involve any patient contact.

The EDWIN model
The EDWIN index (Emergency Department 
Work Index) is defined as [35]

where ni is the number of patients in the emergency 
room in the i-th triage category, ti is the triage category 
(scale of 1 to 4, where 4 is the gravest), Na is the number 
of physicians on duty, BT is the number of treatment beds 
and BA is the number of patients in the ED.

In this study has been assigned a number to the 
patients in the ED based on the corresponding category 
of triage; ti is 1 for patients with the white code, 2 for 
patients with the green code, 3 for patients with the 
yellow code and 4 for patients with the red code. The 
number of treatment beds located in the ED is 25 while 
the number of attending doctors is 3.

The number of patients for each triage category 
for each day of the period considered for the study is 
shown in Tables 1 and 2.

Already from a preliminary analysis of the data relat-
ing to the numbers of patients for each triage category, 
it is possible to see a noticeable difference in turnout 
between the two periods under consideration; access 
to the ED for mild symptoms (green category of tri-
age) decreased from a medium of 194,43 patients per 
day to a medium of 57,13 patients per day, which means 
a 70,61% reduction. Using the EDWIN and NEDOCS 
overcrowding indexes, the expected result must be con-
sistent with the data presented so far, showing values 
that will drastically decrease during the second period 
of time considered in our study.

i ni ∗ ti

Na ∗ (BT − BA)
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The NEDOCS model
The NEDOCS index (National ED Overcrowding Study 
Index) compiled by Weiss et al. [40] in 2004 is defined as

where the variables are as follows:

•	 TP: Total number of patients present in the emer-
gency room

•	 ED Bds: Total number of beds in the ED
•	 Brdg: Total number of patients waiting for treatment
•	 H Bds: Number of accredited hospital beds
•	 Vent: The number of patients undergoing respiratory 

care

−20 + 85.8 ∗

(

TP

EDBds

)

+ 600 ∗

(

Brdg

HBds

)

+ 13.4 ∗ (Vent)

+ 0.93 ∗
(

LongAdmt
)

+ 5.64 ∗ (LBT )

•	 Long Admt: Longest wait time (in hours) for 
patients awaiting treatment

•	 LBT: Waiting time of the last patient called from 
the waiting room (door-to-bed)

The number of accredited beds of “San Giovanni di 
Dio e Ruggi d’Aragona" University Hospital of Salerno 
is 642, while the total number of beds in the ED is 25. 
The analysis of other parameters has been carried out 
day by day, hour by hour.

Pearson correlation coefficient
The Pearson correlation coefficient is a measure of the 

linear dependence between two random variables (real-
valued vectors). Historically, it is the first formal measure 
of correlation and it is still one of the most widely used 
measure of relationship. The Pearson correlation coeffi-
cient of two variables x and y is formally defined as the 

Table 1  Number of patients for triage category from February 9th to March 9th, 2020

Data #patients in white category of 
triage

#patients in green category of 
triage

#patients in yellow category of 
triage

#patients in 
red category of 
triage

09/02 7 208 51 3

10/02 16 234 75 2

11/02 6 225 49 6

12/02 18 258 56 6

13/02 11 251 70 5

14/02 16 219 61 3

15/02 20 292 68 4

16/02 9 237 61 1

17/02 24 291 64 5

18/02 13 267 70 5

19/02 4 284 64 12

20/02 2 242 72 3

21/02 1 241 69 6

22/02 13 216 47 4

23/02 2 179 38 4

24/02 7 21 48 2

25/02 8 174 47 1

26/02 12 163 56 4

27/02 7 172 52 2

28/02 12 170 46 3

29/02 5 207 42 7

01/03 4 170 48 8

02/03 17 207 52 2

03/03 10 155 48 3

04/03 3 168 51 3

05/03 9 135 31 4

06/03 5 147 50 5

07/03 10 110 39 1

08/03 7 85 22 2

09/03 3 105 35 3
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covariance of the two variables divided by the product of 
their standard deviations (which acts as a normalization 
factor) and it can be equivalently defined by [41]:

where x =
1

n

∑N
i=1

xi denotes the mean of x and 
y = 1

n

∑N
i=1

yi denotes the mean of y.
The coefficient rxy ranges from − 1 to 1 and it is invari-

ant to linear transformations of either variables. The PCC 
gives an indication on the strength of the linear relation-
ship between the two random variables x and y. The sign 
of the correlation coefficient is positive if the variables are 
directly related and negative if they are inversely related. 

r =

∑

(xi − x)
∑

(

yi − y
)

√

∑

(xi − x)2
√

∑
(

yi − y
)2

If rxy = 0, then x and y are said to be uncorrelated. The 
closer the value of |rxy| is to 1, the stronger the meas-
ures closeness to a linear relationship. This is because the 
association measure reflects the tendency of changes for 
each pair of corresponding expression levels in the two 
profiles. The Pearson correlation coefficient measures the 
similarity of the changes in the expression levels of two 
profiles. Specifically it measures the strength of the linear 
relationship between two profiles [42].

Results
The values of the EDWIN index obtained after the analy-
sis of the data available from February 9th to March 9th 
are displayed in Fig. 1, reporting different colours for each 
of the 30 days of the considered period. In order to better 

Table 2  Number of patients for triage category from March 10th to April 9th, 2020

Data #patients in white category of 
triage

#patients in green category of 
triage

#patients in yellow category of 
triage

#patients in 
red category of 
triage

10/03 5 83 33 4

11/03 4 84 38 1

12/03 2 92 36 1

13/03 5 66 39 3

14/03 6 81 29 0

15/03 1 40 26 2

16/03 4 56 30 4

17/03 7 62 23 1

18/03 3 66 20 4

19/03 1 63 23 2

20/03 2 68 22 6

21/03 0 49 23 2

22/03 2 47 33 5

23/03 6 55 21 3

24/03 1 56 22 5

25/03 3 54 21 2

26/03 1 47 32 4

27/03 3 54 23 6

28/03 3 53 23 3

29/03 2 32 23 5

30/03 3 49 24 4

31/03 2 43 29 1

01/04 0 47 27 1

02/04 9 45 21 2

03/04 3 59 29 2

04/04 4 52 25 0

05/04 0 45 27 0

06/04 4 63 25 6

07/04 1 44 26 5

08/04 7 60 24 6

09/04 3 56 32 5
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interpret the scatter plot obtained, it is necessary to take 
into account that an EDWIN score less than 1,5 repre-
sents an operational but manageable ED, an EDWIN score 
between 1,5 and 2 represents a busy ED, and an EDWIN 
value more than 2 represents an overcrowded ED.

The values of the EDWIN index obtained after the 
analysis of the data available from March 10th to April 
9th are displayed in Fig. 2, reporting different colours for 
each of the 31 days of the considered period.

The values of the NEDOCS index are given in Fig. 3 and 
Fig.  4 for the two considered periods, respectively, with 
distinct colours for each day, as with the EDWIN index. 
In order to better interpret the scatter plot obtained, it is 
necessary to take into account that values of the NEDOCS 
index between 0 and 50 indicate a regular ED condition, 
values between 50 and 101 suggest busy, values between 
101 and 140 indicate overcrowding, values between 141 
and 180 indicate extreme overcrowding, and values > 180 
imply disaster.

Finally, the Pearson correlation coefficient has been 
calculated considering as first variable the EDWIN 
scores obtained hour per hour from 9th February to 9th 
April, 2020 and as second variable the NEDOCS scores 
obtained hour per hour from 9th February to 9th April, 
2020. The result obtained is shown below:

r = 0,317,531.

Discussion
In this work, an overcrowding measure was imple-
mented extrapolating data from the management soft-
ware of the "San Giovanni di Dio e Ruggi d’Aragona" 
University Hospital of Salerno in order to evaluate the 
effectiveness of EDWIN and NEDOCS indexes. The 
present examination extended and enhanced a prior 
study that has been presented at the BECB conference 
in August 2021. Specifically, in this work we considered 
a longer period of time, thus improving the accuracy of 
the evaluation, and we conducted a more accurate analy-
sis on the possible correlation between the two consid-
ered indexes, assessing which of them best reproduced 
the actual condition of the Emergency Department in 
the University Hospital [36].

It is possible to observe the scatter plots of EDWIN val-
ues obtained by the analysis of the ED data from Febru-
ary 9th to March 9th, 2020 in Fig. 1 and the ED data from 
March 10th to April 9th, 2020 in Fig. 2. As expected, in 
the second scatter plot the EDWIN index scale shrinks 
dramatically, with the order of magnitude dropping 
from 101 to 10–1, from a maximum point between 16 
and 18 (Fig. 1) to a maximum point between 0,6 and 0,7 

Fig. 1  Edwin Index Values from February 9th to March 9th
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(Fig.  2). The evidence that can be demonstrated is that 
the EDWIN index follows a trend consistent with the 
situation of the first lockdown period in Italy, defined by 

extreme limitations imposed by the central government 
owing to the breakout of the Covid-19 epidemic. In par-
ticular, the Ministry of Health advised that in the event of 

Fig. 2  Edwin Index Values from March 10th to April 9th

Fig. 3  Nedocs Index Values from February 9th to March 9th
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symptoms or doubts, people should stay at home rather 
than going to the emergency department or doctor’s 
offices; instead, they should call their own family doctor, 
paediatrician, or doctor on phone [43]. Certainly, dur-
ing the lockdown, telemedicine consultations were used 
wherever feasible to prevent entrance to the emergency 
department, save for clinical or therapeutic purposes. 
Despite the fact that the EDWIN index scale has shrunk, 
the 8:00–20:00 time frame remains the most congested, 
with peak values between 8:00 and 12:00.

We would expect to see a similar trend for NEDOCS 
index values as well observing the scatter plots of 
NEDOCS values obtained by the analysis of the ED data 
from February 9th to March 9th, 2020 in Fig. 3 and the 
ED data from March 10th to April 9th, 2020 in Fig. 4.; on 
the contrary, in NEDOCS index charts it isn’t possible to 
observe the same contraction of the order of magnitude. 
This phenomenon can be associated with the fact that 
it is calculated using different parameters than EDWIN 
index. The order of magnitude of index value doesn’t 
show a severe contraction, hovering around 102.

Also as regards the analysis of overcrowding by time 
bands, it is not possible to clearly distinguish the most 
crowded times from the scatter plots in Fig. 3 and Fig. 4, 
except for peaks between 08:00 and 12:00 and between 
17:00 and 22:00 during the period from March 10th to 
April 9th. Thanks to the ability of the EDWIN index to 
reproduce the real context that occurred in hospitals dur-
ing the period considered, our study is an effective tool 

to measure the situation in the Emergency Department 
before and after the Covid period, representing a novelty 
compared to previous studies. In addition, the ability of 
this index to predict the status of overcrowding could 
be used as a support to detect those time periods most 
touched by crowding and then distribute the necessary 
medical resources appropriately. Moreover, unlike pre-
vious studies, our analysis recorded the state of the ED 
considering separately for each day the situation in inter-
vals of one hour over a period of two months, increasing 
the sensitivity of the forecast.

Another result obtained by this study regards the 
correlation analysis carried out between EDWIN and 
NEDOCS indexes. As shown in paragraph 3, the value 
of the correlation coefficient is 0,317: the positive sign 
means that the variables are directly related but the value 
of the Pearson coefficient suggests that measures are far 
from having a linear relationship between each other. 
This means that, in the same overcrowded circumstance, 
they could assume different values ​​that do not fully 
reflect the real observed situation.

Overcrowding in the ED has become an increasingly 
significant public health problem produced by several 
factors both internal and external to the hospital facil-
ity. Insufficient beds, staff lack are just a few exam-
ples of internal deficiencies that could generate this 
issue [44]. In addition to these as anticipated, external 
causes such as increasing patient volume or complex-
ity of cases treated, contribute [35]. This is the situation 

Fig. 4  Nedocs Index Values from March 10th to April 9th
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that had to be dealt with in the COVID-19 era where 
all resources were focused on the treatment of this new 
disease causing severe effects on the population. Its 
spread, however, especially in the early months, was not 
uniform. In some places, there was no overflow but on 
the contrary, a massive decrease was observed, reaching 
up to -50% of the admission rate [45]. Kurt et  al. [46] 
in their study highlight and analyze this reduction pre-
dicting, in addition, a more critical situation in the near 
future due to patients with worse prognoses. The fear of 
contagion, the obligation to limit movements and the 
blocking of activities in elections have led patients to 
tolerate slight symptoms that could cause some poten-
tially fatal conditions to be missed in a timely manner, 
forcing them to present to emergency services with a 
worse prognosis. Similar studies have also been con-
ducted in Italy, the reference country for this study, 
demonstrating the danger of this phenomenon [47]. 
In addition to this, the reduction in accesses could be 
attributable to a reduction in other seasonal infections 
due to self-isolation or to a more appropriate use of the 
ED, limiting accesses for non-relevant pathologies [48]. 
In fact, for many patients, the emergency department is 
the place to do several tests together, free of charge and 
without waiting lists [49].

Now that the most critical situation seems to be over, it 
is good to analyze what happened in order to learn a les-
son. The hospital under our study was not affected in the 
first months under analysis by a COVID-19 patient flow 
and, therefore, offers important insights in this area.

In our work, in fact, it addresses the issue of the impact 
of COVID-19 on ED accesses not by basing it on a sim-
ple statistical analysis, but by validating it through a vali-
dated methodology well known in the literature as that of 
indices. Indices, in fact, serve to quantitatively describe a 
perception of overcrowding by converting a set of data, 
organizational and clinical, into a single objective and 
directly comparable number [50]. To this, we add the 
comparison of two different methodologies (EDWIN 
and NEDOCS) by concluding with a correlation study 
between the two results, which is still a poorly covered 
topic in the literature [51]. The choice of this time inter-
val is due to a desire to understand how this phenom-
enon changed as soon as the nation and especially the 
government became aware of an uncontrolled spread of 
the virus and put in place significant corrective measures, 
such as lockdown.

From this study, appropriately integrated with the clini-
cal variables of the patients treated, there will be a sig-
nificant clinical and especially organizational impact. 
Indeed, it will be possible to put in place internal cor-
rective measures affecting the organization of work or 

reorganizing staff and especially external ones by improv-
ing the health education of users to avoid inappropriate 
access, as well as an expansion of the prehospital role 
of primary care and better access to alternative health 
services.

However, our work is not without limitations. In fact, it 
is a single-center study that does not allow generalization 
of the results obtained, based on a limited observation 
time without including clinical data of treated patients 
that could offer important discussion points of the phe-
nomenon analyzed.

Conclusions
The research presented in this study contributes to a bet-
ter understanding of congestion and the current status of 
the emergency department. The findings reveal that the 
two scales, the EDWIN and the NEDOCS, have differ-
ent outcome variables of ED overcrowding. In particular, 
knowing a priori the condition of Emergency Depart-
ments in Italy during the periods under study, we can 
better evaluate the capacity of EDWIN and NEDOCS 
indexes to forecast ED’s overcrowding condition. This 
strategy might be used to identify times of day when the 
ED is particularly busy and hence deploy the required 
healthcare resources. Future development of this study 
could foresee the enlargement of the sample of data to 
be analyzed in order to make the results more and more 
accurate; in fact one of the limitations of this study could 
be the limited period of time considered for data analy-
sis. Besides, it could be interesting comparing the results 
of the data analysis from dataset belonging to different 
hospital structures in order to understand the dynamics 
that led to crowding peaks. From our study, however, we 
can affirm that EDWIN score represents a more coher-
ent solution to represent ED overcrowding; therefore 
with respect to the parameters taken into consideration 
in the evaluation of the NEDOCS score, the number of 
patients in the emergency room per triage category, the 
number of physicians on duty, the number of treatment 
beds and the number of patients in the ED represent the 
most significant parameter to take into account. Besides, 
the results obtained by the correlation analysis between 
EDWIN and NEDOCS scales suggest that there is not a 
sufficiently significant degree of dependence between 
them. In conclusion, we can confirm that EDWIN scale 
demonstrate good discrimination for foreseeing ED 
overcrowding, which proves the validity of this index as 
methodologies for overcrowding measurement. This type 
of approach could represent a mean for the management 
of the hospital thanks to which to organize resources and 
foresee any critical situations on the basis of previous 
knowledge.
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