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Abstract
Technological advances in embedded systems and the advent of fog computing led 
to improved quality of service of applications of cyber-physical systems. In fact, 
the deployment of such applications on powerful and heterogeneous embedded 
systems, such as multiprocessors system-on-chips (MPSoCs), allows them to meet 
latency requirements and real-time operation. Highly relevant to the industry and 
our reference case-study, the challenging field of nuclear fusion deploys the afore-
mentioned applications, involving high-frequency control with hard real-time and 
safety constraints. The use of fog computing and MPSoCs is promising to achieve 
safety, low latency, and timeliness of such control. Indeed, on one hand, applications 
designed according to fog computing distribute computation across hierarchically 
organized and geographically distributed edge devices, enabling timely anomaly 
detection during high-frequency sampling of time series, and, on the other hand, 
MPSoCs allow leveraging fog computing and integrating monitoring by deploying 
tasks on a flexible platform suited for mixed-criticality software, leading to so-called 
mixed criticality systems (MCSs). However, the integration of such software on the 
same MPSoC opens challenges related to predictability and reliability guarantees, as 
tasks interfering with each other when accessing the same shared MPSoC resources 
may introduce non-deterministic latency, possibly leading to failures on account of 
deadline overruns. Addressing the design, deployment, and evaluation of MCSs on 
MPSoCs, we propose a model-based system development process that facilitates the 
integration of real-time and monitoring software on the same platform by means of a 
formal notation for modeling the design and deployment of MPSoCs. The proposed 
notation allows developers to leverage embedded hypervisors for monitoring real-
time applications and guaranteeing predictability by isolation of hardware resources. 
Providing evidence of the feasibility of our system development process and evalu-
ating the industry-relevant class of nuclear fusion applications, we experiment with 
a safety-critical case-study in the context of the ITER nuclear fusion reactor. Our 
experimentation involves the design and evaluation of several prototypes deployed 
as MCSs on a virtualized MPSoC, showing that deployment choices linked to the 
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monitor placement and virtualization configurations (e.g., resource allocation, parti-
tioning, and scheduling policies) can significantly impact the predictability of MCSs 
in terms of Worst-Case Execution Times and other related metrics.

Keywords Virtualization · MPSoCs · Fog computing · Monitoring · Anomaly 
detection · Fusion science

1 Introduction

The tight integration between physical and cyber processes in industrial applications 
has been facilitated by the technological advances in embedded systems, allowing 
cyber-physical systems’ data collection and analysis (Pivoto et al. 2021).

Modern industrial applications design the aforementioned integration according 
to the cloud and fog computing paradigms, which organize the overall system as 
a hierarchy of geographically distributed nodes, whose responsibilities depend on 
their hierarchical level. These nodes involve data collection, analysis, and exchange 
with other levels of the hierarchy, leading to dynamics that Bittencourt et al. (2018) 
label as data flow in the IoT-fog-cloud continuum. The opportunity to distribute 
data-related tasks to the fog level, which is closer to edge devices tightly linked 
to physical plants, allows deploying intelligent, latency-sensitive services, such as 
diagnosis and control of physical phenomena and monitoring of software behavior.

As the criticality of the system being developed increases, the requirements for 
its applications become more demanding. A running example, and our case-study, 
is the challenging field of nuclear fusion, which is one of the most promising for 
highly-efficient energy harvesting, addressing the concerns for energy needs of the 
next century (EUROfusion 2018). In fact, nuclear fusion requires control systems 
to combine KHz-level actuation rates and real-time anomaly detection and recov-
ery in order to operate with high assurance. Taking into consideration also other 
requirements, such as performance, scalability, interoperability, and reconfigurabil-
ity through fast and efficient deployment, cyber-physical systems must deploy moni-
toring and anomaly detection for fault tolerance, resorting to increasingly advanced 
hardware, which requires resource management software to assure not only perfor-
mance but also isolation and timeliness.

Although traditional monitoring strategies improve dependability through fail-
ure detectors and replicas’ management (Kshemkalyani and Singhal 2011), network 
partitioning of distributed applications may impact the capability of nodes to com-
municate with monitors, hinder timely communication of nodes’ conditions, and 
impair message ordering (Coulouris et al. 2011). By shortening the distance among 
interacting nodes and addressing connectivity issues, fog-based monitoring (here-
after fog monitoring) can address the aforementioned challenges by leveraging the 
distribution of monitors across edge devices deployed according to fog computing 
(Costa et al. 2022).

Being high-performance and heterogeneous embedded systems that provide mul-
tiple and diverse processing units (e.g., general-purpose and real-time processors), 
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storage supports, communication protocols, and virtualization support (e.g. Xilinx 
Zynq Ultrascale+, NXP S32V234), Multiprocessor System-on-Chips (MPSoCs) are 
spreading in industrial scenarios (Ungurean and Gaitan 2021; Alonso et al. 2021), 
such as the previously mentioned class of nuclear fusion applications (Avon et al. 
2021), and can be successfully deployed for fog monitoring on MCSs. In fact, these 
boards allow deploying several applications on a common platform, resulting in 
reduced size, weight, power, and cost (SWaP-C). This supports the development of 
Mixed-Criticality Systems (MCSs), which involve the deployment of heterogeneous 
applications, both characterized by different criticality requirements and running 
on the same physical board. Overall, the deployment of MCSs on MPSoCs opens 
the opportunity to address key non-functional requirements, such as scalability and 
interoperability.

1.1  Motivation

Despite the outlined advantages of fog monitoring and MPSoCs, existing research 
still lacks a model-based development process to design, deploy and evaluate the 
predictability of fog monitoring of real-time control over MPSoCs. Considering that 
model-based development allows dealing with complexity, verifying and validating 
the application’s design, and supporting automated deployment (De Saqui-Sannes 
et  al. 2022; Chardet et  al. 2018), it may guide developers to correct management 
of shared hardware resources, limiting runtime interference of mixed-criticality 
software through the systematic application of design and deployment models and 
techniques. Please note that, in the following, interference refers to the performance 
impact that different software tasks experience when a software task’s performance 
is affected by the activities or resource usage of other software tasks that are inde-
pendent but nonetheless run on the same physical platform.

Promoting the isolation of different application contexts inside Virtual Machines 
(VMs) and managing multiple accesses to shared hardware resources (Hughes and 
Awad 2019; Cinque et al. 2021), virtualization is a key design technique to leverage 
fog monitoring, as it allows mitigating predictability issues when deploying moni-
toring software on the same board where other real-time tasks are running.

1.2  Contributions

In light of the evidence on challenges in deploying fog monitoring for MCSs on 
MPSoCs, model-based development benefits, the opportunities that virtualization 
opens, and the goal of addressing the challenging field of nuclear fusion, which 
requires predictable control of critical operations, our work provides the two follow-
ing contributions: 

(1) A model-based system development process to design and deploy MCSs on vir-
tualized MPSoCs and a new formalism to model MCS deployment, facilitating 
the integration of real-time applications and fog monitoring on the same board;
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(2) The experimentation with the academic- and industry-relevant ITER case-study, 
namely real-time stability control of a fully ionized gas, called plasma, within 
the ITER tokamak, an experimental nuclear fusion reactor under construction in 
Cadarache, France, where our team is involved in system engineering activities.

Our experimentation shows that the deployment of hypervisor-managed shared 
memory as the communication channel among VMs that run monitoring software 
and real-time tasks provides the best trade-off between performance and predict-
ability, as it achieves both low and predictable communication latency for timely 
anomaly detection and assures the least interference between real-time operation and 
monitoring. In fact, control and monitoring tasks communication through hypervi-
sor-managed shared memory makes the Worst-Case Execution Time (WCET) of 
control only 7.14% worse with respect to our reference baseline, which involves con-
trol with neither virtualization nor monitoring. On the other hand, the use of net-
work sockets for communication with a remote server causes a worsening of control 
task WCET by up to 207.14%.

1.3  Paper structure

The rest of this paper is organized as follows: Sect.  2 provides background on 
model-based development, monitoring, fog computing, and virtualization; Sect.  3 
presents the proposed MCS deployment model that we formalize and recommend 
using during the design of MCSs; Sect. 4 outlines the model-based system develop-
ment process previously mentioned, which covers three main stages that detail all 
steps needed to design and deploy fog monitoring for MCSs on virtualized MPSoCs; 
Sect. 5 shows a practical application of the system development process to the ITER 
case-study and evaluation of the predictability of the resulting MCS; Sect. 6 ana-
lyzes existing work in several areas addressed in this work; and Sect. 7 summarizes 
the contents and results of the paper, briefly mentioning future research directions.

2  Background

2.1  Model‑based development

Having shown promising results in driving the development of dependable systems, 
model-based development principles can be proficiently applied to the development 
of MCSs, which require the ability to isolate mixed-criticality software and manage 
access to shared resources.

The principles that model-based development carries allow practitioners to deal 
with the complexity of modern computer systems. Indeed, such principles promote 
modularity as a key design property, leading to system architectures whose require-
ments’ traceability, correctness verification and validation practices, and mainte-
nance routines are improved. Such improvements are due to semi-formal and formal 
modeling notations, which provide designers with a plethora of options to capture 
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systems’ requirements and prove the resulting architecture satisfies such require-
ments, facilitating the certification of the system with respect to industry standards 
(De Saqui-Sannes et al. 2022).

Regarding system development processes, there are many proposals in the liter-
ature, starting from the traditional waterfall model to the most recent agile devel-
opment strategies. Still, coping with changes is a concept that developers should 
take into account, as the target system’s requirements may be uncertain, leading to 
changes in design space options and environmental conditions. Among the avail-
able strategies, model-based system prototyping allows developers to demonstrate 
concepts, try out design options, and find out more about the problem at hand (Som-
merville 2016).

In light of the above, the application of model-based development is promising 
for MCSs on virtualized MPSoCs, though its application is not straightforward: the 
possibility of fragmenting the design across several different models, mistakes made 
during modeling, and a lack of automated tools for integrated validation and verifi-
cation of the resulting design can impair the benefits of model-based development 
(Quamara et al. 2021).

2.2  Monitoring

There are several ways monitoring can be characterized and classified. For our pur-
poses, we detail here two dimensions: the monitoring placement and abstraction 
level.

Monitors can be placed as: software running on top of a virtualized layer (e.g., 
an operating system or a hypervisor); additional pluggable hardware components; 
and integrated on-chip hardware. These are termed software, hardware, and on-
chip monitors, respectively (Watterson and Heffernan 2007). Complex monitoring 
approaches could leverage combinations of these deployment solutions to reach the 
desired architecture and meet the system requirements.

The kind of collected data, the way it is analyzed, the results provided, and the 
possible recovery actions to apply, depend on the abstraction level monitors work 
at. According to the taxonomy proposed in reference (Taherizadeh et  al. 2018), 
abstraction levels can be: linked to performance of services that the application pro-
vides; end-to-end networking information; and hardware resources usage. These are 
termed application, end-to-end link quality, and VM/container-level monitoring, 
respectively.

Although Taherizadeh et  al. (2018) consider application-level behavior as time 
metrics linked to services provided by applications, such behavior may also be 
linked to activities/state transitions that software that implements such services exe-
cutes/experiences throughout its execution to meet functional requirements. More-
over, behavioral requirements may be described through semi-formal and formal 
behavioral notations, e.g., UML Activity Diagrams and Petri nets (De Saqui-Sannes 
et al. 2022).

Monitoring the activities and state transitions to connect the system’s runtime 
behavior to prescriptive requirements involves the placement of logging rules within 



539

1 3

Real-Time Systems (2023) 59:534–567 

the deployed software and/or the network. However, such logging rules may not be 
integrated into modern systems, whose behavior is mainly monitored through time 
series and requires techniques for the extraction of activities and state transitions 
(Singh et al. 2022).

In the following, we consider application-level behavior as activities/state tran-
sitions that applications execute/experience, application-level data as data linked 
to activities/state transitions, and application-level monitoring as the collection of 
activities/state transitions to check their compliance to nominal patterns encoded 
with semi-formal and/or formal behavioral notations.

2.2.1  Fault tolerance

The development of fault-tolerant computer systems through suitable techniques and 
technology is a consolidated strategy to meet dependability requirements (Avizienis 
et al. 2004). Indeed, fault removal through white- and black-box testing cannot prove 
a system to be fault-free, especially when unexpected runtime conditions may invali-
date its behavior (Delgado et al. 2004).

Fault tolerance through redundancy, failure detectors, and, when possible, soft-
ware mechanisms (e.g., exception handling), have shown to improve system depend-
ability (Coulouris et al. 2011). Moreover, considering the important role of monitor-
ing to achieve fault tolerance, Delgado et  al. (2004) survey behavior specification 
languages, monitor types, recovery actions, and operational issues linked to moni-
toring. In light of this, modern solutions integrate monitoring for several different 
abstraction levels to develop fault-tolerant systems and meet dependability require-
ments (Taherizadeh et al. 2018).

2.2.2  Data‑driven anomaly detection

Anomalous behavior may be detected out of data collected through monitoring of 
computer systems and may indicate the early presence of activated faults, whose 
timely detection can trigger recovery actions and avoid failures Chandola et  al. 
(2009). More precisely, anomalies “are patterns in data that do not conform to a 
well-defined notion of normal behavior" Chandola et  al. (2009). Therefore, their 
detection requires a model of the nominal (normal) behavior of the target system, 
and the runtime comparison of such behavior with data collected as the system is 
exercised. Both these tasks are often achieved through data-driven techniques, which 
allow the extraction/parameters-tuning of a behavioral model encoding nominal 
behavior and comparing the behavior of the system in unknown conditions against 
the nominal model.

Considering nominal behavior is modeled through data collected as the target 
system runs in normal conditions, the resulting model may not be a semi-formal or 
formal model, e.g., an UML Activity Diagram or a Petri net, but may be encoded 
differently. Although obtained directly from data, in the following, we also consider 
such models as behavioral.

There are many supervised and unsupervised approaches to data-driven anomaly 
detection of time series. These could be based on Markov chains (Dong et al. 2018), 
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(deep) neural networks (Ding et  al. 2019), and process mining (Hemmer et  al. 
2021). Despite reaching satisfying detection performance, these approaches often 
need resource-rich environments to account for their time and memory complexity. 
In fact, their deployment in online and resource-constrained environments requires 
optimizations to improve their efficiency, which may hinder their detection perfor-
mance (Verma et al. 2021).

Finally, although optimizations have been discussed to deploy anomaly detection 
in resource-constrained environments, its predictability, which is a key challenge for 
fog monitoring (Sánchez et al. 2022), is rarely addressed.

2.3  Fog computing and platforms

Stemming from requirements of modern cyber-physical systems, which often con-
cern timely service provision in real-time applications (Sánchez et  al. 2022), fog 
computing emerged as a leading architectural style for the development of such sys-
tems, as it involves design choices that distribute storage and computation to (fog) 
nodes close to devices, meeting applications’ requirements that require timely ser-
vice provision (Bellavista et al. 2019).

Therefore, deploying complex layered architectures based on fog computing ena-
bles the provision of services with reduced network latency, which are not possible 
with the standard Cloud-to-Thing networking (Wang et al. 2019);

The deployment of many efficient and well-equipped embedded devices opened 
the opportunity to move smart computations involving data-driven techniques, such 
as machine- and deep-learning algorithms, closer to users of the system (Bzai et al. 
2022). This led researchers to steer towards studying how modern solutions can be 
adapted and implemented within these devices to offer services offered exclusively 
through the cloud.

2.3.1  Multiprocessor system‑on‑chips

Although developers have many design options when deploying systems accord-
ing to fog computing, there is a remarkable class of platforms: MPSoCs, which are 
embedded systems hosting heterogeneous computation resources such as multi-core, 
device accelerators (e.g. GPUs, FPGAs, DPUs), rich equipment of communication 
interfaces, efficient management, and hardware security features (Ungurean and 
Gaitan 2021; Alonso et al. 2021).

The integration of multi-core CPUs ensures a high potential for complex calcula-
tions and reliability through redundancy. Moreover, reprogrammable hardware, typi-
cally implemented through FPGAs, introduces the advantage to deploy custom hard-
ware design to accelerate time-sensitive tasks. Moreover, MPSoCs can also support 
fully-fledged operating systems and hypervisors, as well as being fully extendable 
and compliant with standard software architectures with respect to protocol stacks, 
devices, and infrastructure.

Meeting the requirements that fog nodes involve, such as substantial computing 
power, storage capability, and virtualization support (Puliafito et al. 2019), MPSoCs 
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have been employed in industry as fog nodes to integrate several applications, which 
are usually distributed over many boards, on a single powerful board in order to 
optimize SWaP-C requirements (Barbalace et al. 2011; Dubbioso 2022).

Migrating from system designs with many interconnected single-core chips to 
applications consolidated onto a small number of MPSoCs clashes with the com-
plexity given by isolating those applications on the same hardware, especially in the 
case of applications with safety-critical requirements. Indeed, providing hard real-
time guarantees for tasks running on multi-core systems is an open problem in lit-
erature (Maiza et al. 2019), which outlines main problems are due to memory hierar-
chy contention (Yao et al. 2015; Agrawal et al. 2018).

Furthermore, these problems worsen when contention with hardware occurs not 
only between cores but also because of hardware accelerators. Therefore, research-
ers have formulated analytical models to reduce the pessimism in the timing analy-
sis of complex heterogeneous systems (Hassan and Pellizzoni 2020; Houdek et al. 
2017).

Finally, in order to implement through software the mechanisms for isolation 
needed by these heterogeneous architectures, virtualization is foreseen as an inter-
esting solution (Sohal et al. 2022; Modica et al. 2018)

2.4  Virtualization

Virtualization is used to provide resource scalability, flexible deployment, and 
mixed-criticality over MPSoCs. It enables the deployment of several heterogene-
ous operating systems on the same physical hardware, provided the software archi-
tecture integrates a component called Hypervisor, or Virtual Machine Monitor 
(VMM), which has complete control of the hardware resources and meets the cri-
teria described by Popek and Goldberg about equivalence, safety, and performance 
(Popek and Goldberg 1974).

All operating systems and applications expect the behavior to be identical to the 
one of a non-virtualized physical machine; this requires the hypervisor to both keep 
complete isolation between VMs and guarantee performance that is comparable to 
that of a non-virtualized environment. If these requirements are met, the use of vir-
tualization can ensure the efficiency, flexibility, isolation, and portability of software 
applications.

2.4.1  Embedded virtualization

Virtualization is already a well-established technology for cloud computing. How-
ever, the current trend is to bring virtualization advantages over embedded systems 
to accomplish the next-generation requirements of modern industrial applications 
(Cilardo et al. 2022; Kao 2020).

However, the transition from cloud to embedded virtualization is not easy due to 
the high heterogeneity of embedded hardware devices and real-time, safety-critical 
requirements of cyber-physical systems applications. Researchers are putting more 
and more effort into developing technologies capable of increasing the temporal and 
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spatial isolation provided by the VMM while keeping full utilization of all available 
resources as much as possible (Modica et al. 2018).

Therefore, virtualization may be a solution to multi-core isolation, as the hypervi-
sor enables the software-based partitioning of shared hardware resources, such as 
cache, memory bandwidth, and DRAM to reduce interference between VMs. (Kloda 
et al. 2019).

2.4.2  Real‑time hypervisors

The predictability problem through temporal and spatial isolation for the develop-
ment of MCSs via virtualization has seen strong interest from both academia and 
industry, leading to a number of open-source and commercial virtualization solu-
tions (Cinque et al. 2021).

A few virtualization solutions are specifically designed for embedded environ-
ments and are usually based on micro-kernel (Klein et al. 2009; Steinberg and Kauer 
2010) or separation kernel architectures (Siemens 2022; Cotroneo et al. 2021).

Other interesting solutions rely on ARM TrustZone (Pinto and Santos 2019), 
which guarantees hardware support for isolation between a safe and a non-safe 
world for security requirements.

Furthermore, two well-known general-purpose hypervisors have been modified to 
guarantee real-time requirements: KVM (Kivity et al. 2007) and Xen (Barham et al. 
2003). These are widely deployed in server environments, but in recent years they 
have been modified to run on embedded systems and to meet more stringent time 
requirements. For instance, Xen has been ported to ARM architectures, optimized to 
achieve a small footprint and be more easily verified (Stabellini 2014). In addition, 
various real-time schedulers, such as the Real-Time Deferrable Server (RTDS), the 
null scheduler, and the ARINC-653 cyclic scheduler (Wiki.Xenproject 2019; Linux 
Foundation 2015) have been included in the Xen project.

For all these reasons, Xen has been chosen as the hypervisor of choice for the 
experimental campaign carried out during this work.

3  The proposed MCS deployment model

This section presents the proposed MCS deployment model we adopt to describe the 
deployment of MCSs on virtualized MPSoCs, leveraging fog computing.

Our model describes the deployment of MCSs as architectural scenarios, which 
are quadruplets (ENVL,ENVR, SS,CS) where ENVL is the local environment, ENVR 
is the remote environment, SS is the scheduling scheme, i.e., the scheduling algo-
rithms used to schedule VMs and tasks within VMs, and CS is the inter-VM com-
munication scheme, i.e., the communication channels VMs use to communicate 
with each other.

Please note that from now on, VMs are considered as sets of tasks, where each 
VM isolates tasks from other VMs.

The aforementioned quadruplet is obtained by a mapping function AS_MAP that 
combines tasks, computational resources, scheduling algorithms, and inter-VM 
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communication channels together, configuring architectural scenarios. Figure 1 col-
lects all the elements here discussed; the way they are arranged together depends on 
the AS_MAP function, which configures the virtualization layer and the interconnec-
tion among tasks, I/O devices, and data repositories.

3.1  Global task set

The global task set (TS) is the set of all tasks of an MCS:

where RT is the set of real-time tasks, M is the set of monitoring tasks, and G is the 
set of all other general-purpose tasks.

3.2  Local and remote environments

Our model splits MCSs into two environments: the local ( ENVL ) and remote ( ENVR ) 
environments, where the ENVL environment is a fog node with substantial hardware 
resources and virtualization support (e.g., an MPSoC), and the ENVR environment is 
the cloud.

The set of computational resources (CR) groups Processing Elements (PEs) from 
both environments:

where a PE is a generic processing unit that MPSoCs ship with, such as CPUs, 
GPUs, FPGAs, and DPUs (see Sect.  2.3). PEL and PER are the sets of local and 
remote PEs, respectively.

TS = RT ∪M ∪ G

CR = PEL ∪ PER,

Fig. 1  The elements that the proposed MCS deployment model handles
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Given that we abstract VMs as sets of tasks, the global set of VMs VMG ⊂ P(TS) 
is such that 

⋃
VMG = TS ∧

⋂
VMG = � , i.e. no task can belong to more than one 

VM and the union of all VMs is TS. Moreover, we split VMs into local and remote 
VMs ( VML and VMR , respectively):

where VML ∪ VMR = VMG , i.e. the union of local and remote VMs is the global set 
of VMs

In order to fully define environments, we consider PE pools. A PE pool (P) is an 
element of power sets of either PEL or PER ( P ∈ P(PEL) ∪ P(PER) ), and represents 
a group of physical PEs isolated from other PEs ( Pi ∩ Pj = �, i ≠ j).

Given PSL ⊂ P(PEL) and PSR ⊂ P(PER) the two sets of local and remote PE 
pools (i.e., the two local and remote pooling schemes), ENVL and ENVR are defined 
as follows:

where DMi,R is the i-th deployment module of the x environment. If ‖ENVx‖ = 1 , 
the environment x is made of only one VM and one PE pool, i.e., environment x is 
non-virtualized.

We here note that during evaluation (Sect. 5) we consider CPUs as the only PEs. 
Therefore, in the following we consider the set of computational resources as the 
collection of local and remote CPUs, i.e. CR = CPUL ∪ CPUR.

3.3  Scheduling

Concerning both tasks within VMs and VMs themselves, we split scheduling algo-
rithms according to the hierarchical scheduling taxonomy (Biondi et al. 2015; Lee 
et al. 2012).

Thus, we split scheduling algorithms into two categories: local scheduling algo-
rithms ( SL ) for tasks within VMs, and, global scheduling algorithms ( SG ) for VMs 
assigned to a given CPU pool.

Therefore, the scheduling scheme SSDM for a given deployment module 
( DM ∈ ENVL ) is a pair (SLDM , SGDM

) , where SLDM and SGDM
 are the local and global 

schedulers linked to DM, respectively. The set of all scheduling schemes of all 
deployment modules is labeled as SS.

Defining the scheduler at deploying time is important for the designer since the 
choice of the scheduler affects the number of deployable VMs. If a partitioning 
hypervisor is used, the global scheduling is null and the number of VMs is limited 
by the number of CPUs. On the other hand, the number of VMs can be higher than 
the number of CPUs if the hypervisor uses a traditional scheduler.

Starting from the generated deployment model, the designer can later employ 
an analytical timing analysis method that aligns with the scheduling taxonomy that 

VML ⊆ VMG,VMR ⊆ VMG,

ENVL = {DMi,L = (VM,P) ∈ VML × PSL}

ENVR = {DMi,R = (VM,P) ∈ VMR × PSR}
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has been chosen during the deployment phase (e.g., hierarchical scheduling (Biondi 
et al. 2015)).

3.4  Inter‑VM communication

Inter-VM communication channels (CT) are ways VMs communicate with each 
other. The inter-VM communication scheme CS is a set of triples defined as follows:

where CT is the set of communication channels, such as hypervisor-managed shared 
memory or network sockets.

3.5  Mapping function

The mapping function AS_MAP is defined as follows:

where AS = (ENVL,ENVR, SS,CS) , i.e., the architectural scenario, which collects 
the: local and remote environments ( ENVL and ENVR ); scheduling schemes (SS); 
and inter-VM communication scheme (CS).

In order to clarify the application of AS_MAP , we depict in Fig. 2 a sample archi-
tectural scenario commonly found in distributed applications and described through 
the MCS deployment model. In this case, the elements are:

• TS: One general purpose task (G), two real-time tasks (R and C), and two moni-
toring tasks (DS and AD)

• CR: Local CPUs of the Ultrascale+ ZCU 104 MPSoC and remote CPUs of a 
Desktop PC

CS = {(ct,VM1,VM2) ∈ CT × (VML ∪ VMR) × (VML ∪ VMR)}

AS = AS_MAP(TS,CR, SL, SG,CT)

Fig. 2  A sample architectural scenario
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• SL and SG : the local schedulers of VMs deployed on top of the Xen hypervi-
sor and its global schedulers to orchestrate such VMs to handle their access to 
shared hardware resources, and the local schedulers of an Ubuntu-based OS

• CT: Network sockets

The way these elements are laid out by AS_MAP is described in Tables  1 and 2, 
which collect local and remote VMs ( VML and VMR ), local and remote CPU pools 
( PL and PR ), local and remote deployment modules ( DML and DMR ), the scheduling 
scheme of each local and remote deployment module ( SSDM ), and the corresponding 
quadruplet, i.e., the local and remote environments ( ENVL and ENVR ), the schedul-
ing scheme (SS), and the communication scheme (CS).

4  The proposed model‑based system development process

Following the driving principles outlined in Sect. 2.1, we provide an overview of the 
model-based system development process we propose to integrate real-time appli-
cations and application-level fog monitoring in virtualized environments, facilitat-
ing (1) The deployment of MCSs on virtualized MPSoCs by leveraging the MCS 
deployment model presented in the previous section and change management in the 
requirements and (2) Design of the application through an iterative approach.

The process is split into three main steps, which are: system description and spec-
ification; system architecture design, when developers may leverage the proposed 
MCS deployment model; and prototype development. These steps are described in 
the flow diagram shown in Fig. 3 and are detailed in the following.

Table 1  Local and remote VMs, CPU pools, DMs, and scheduling schemes of the sample architectural 
scenario

Local environment

VM
L

P
L

DM
L

SS
DM

L

1,L ∶ {R,C}

2,L ∶ {G}

1,L ∶
⋃

i=1…p CPUi,L 1,L ∶ (VM1,L,P1,L)

2,L ∶ (VM2,L,P1,L)

DM1,L ∶ (RTDS,DPS)

DM2,L ∶ (RTDS,FPS)

Remote environment

VM
R

P
R

DM
R

SS
DM

R

1,R ∶ {DS,AD} 1,R ∶
⋃

i=1…p CPUi,R 1,R ∶ (VM1,R,P1,R) DM1,R ∶ (−,FPS)

Table 2  The deployment quadruplet of the sample architectural scenario

Deployment quadruplet

ENV
L

ENV
R

SS CS

{DM1,L,DM2,L} DM1,R {SSDM1,L
, SSDM2,L

, SSDM1,R
} {(Socket,VM1,L,VM1,R)}
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4.1  System description and specification

This step requires collecting all specifications about the real-time application. 
The resulting requirements specification document should focus on the non-func-
tional requirements the application must meet, first and foremost predictability, 
followed by performance requirements needed for monitoring, both in terms of 
accuracy and latency.

Typically, the aforementioned requirements are found in standards such 
as avionics (DO-178C (RTCA 2012), ARINC-653 (AEEC 2010)), automo-
tive (ISO 26262 (ISO 2011)), and others (e.g., ISO 61508 (I.E 1998), EN 
50128 (CENELEC 2011), etc.)

Requirements specification must include prescriptions about application-
level behavior (see Sect.  2.2). Therefore, these need to be modeled, providing 
a prescription of the system dynamics that the application is expected to show 
throughout its execution.

As pointed out in Sect. 2.2, the description of nominal behavior can be carried 
out through suitable modeling notations, such as Markov chains, Petri nets, and 
queue networks, or else, be directly obtained from data as the system is exercised 
in normal conditions. Please, in addition to Sect. 2.2, also refer to Sect. 6.2 for 
an overview of monitoring taxonomies, anomaly detection techniques for data-
driven nominal behavioral modeling and detection of behavioral anomalies, and 
existing application-level monitoring approaches in the literature.

Fig. 3  The proposed system development process steps, flow, and artifacts
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Once the system’s nominal behavior is profiled through semi-formal or for-
mal notations, recovery actions must be defined to manage and respond to critical 
situations that may invalidate the application’s dependability requirements.

Finally, as requirements need to be unambiguously validated, the set of met-
rics to measure in order to check whether the system meets the requirements here 
outlined are captured and referenced in the last phase of the process, which pre-
scribes carrying out a proof-of-concept evaluation of the system prototype.

For instance, typical metrics used for tasks of real-time applications are their 
WCET, Best-Case Execution Time (BCET), Average-Case Execution Time 
(ACET), Tail Latency (TL), and Standard Deviation (std). In the case of an MCS 
leveraging virtualization, all the interference caused by the chosen hypervisor and 
the blocking time caused by the scheduling of different VMs must be considered 
by both analytical considerations and prototype assessment of these metrics (e.g. 
(Zhao et al. 2018; Biondi et al. 2015)).

4.2  System architecture design

Designing the architecture of a system in a model-based fashion requires the 
description of several different views, which, in turn, collect multiple models. 
We recommend using the MCS deployment model presented in Sect. 3, as it pro-
motes model-based development benefits, e.g., modularity, and minimizes issues, 
e.g., model fragmentation (see Sect. 2.1).

Among the aspects the model allows describing, there are: 

(1) The monitoring architecture: the way application-level monitoring is performed.
(2) The virtualization configuration: the remote (cloud) and local (fog) environments 

layout, the distribution of VMs across these environments and their scheduling 
policies, and the communication scheme that VMs follow to exchange data and 
control signals.

Concerning requirement 1., the monitoring architecture is the way available soft-
ware and hardware resources are configured in order to implement a monitoring 
solution that satisfies the requirements collected in the previous step, such as 
the need for separating communication channels when monitoring and how data 
should be communicated to monitors.

There are several monitoring architectures proposed in the literature, such as 
the single process monitor and the distributed process monitor (Goodloe and 
Pike 2010). The monitor architecture should also take into account the kinds of 
anomalies targeted, the monitoring level, and the anomaly detection technique to 
deploy (see Sect. 2.3).

Regarding requirement 2., the virtualization configuration describes the 
arrangement of resources and VMs to comply with both the requirements col-
lected in the previous step and the monitoring architecture the MCS deploys.



549

1 3

Real-Time Systems (2023) 59:534–567 

Moreover, the configuration involves choices linked to the embedded hypervisor 
to deploy, the communication channels that VMs use, and scheduling algorithms 
(see Sect. 2.4 for further details).

Although we only focus on deployment aspects of system design, there are many 
other features that developers may take into account when designing MCSs on vir-
tualized MPSoCs, e.g., interference among tasks when accessing shared hardware 
resources and end-to-end delays introduced by communication channels.

Modeling such features can guide developers to narrow the scope of the design 
space, limiting the number of architectural scenarios to be evaluated in the Prototype 
Development step. However, as analytical modeling of MCSs may not be appropri-
ate or feasible at times, our proposal allows practitioners to experiment with several 
different architectural scenarios iteratively to evaluate which one fits the require-
ments best.

4.3  Prototype development

Provided with a set of architectural scenarios, the Prototype Development step 
involves the implementation of prototypes, aiming at validating a given MCS 
deployment against application-specific requirements. Thus, this validation step 
leads to a proof-of-concept evaluation, which is critical for several reasons: check 
whether the monitoring system is able to detect the presence of runtime conditions 
deviating from nominal behavior; incorrect system dynamics modeling during the 
system description and specification step; and unsatisfying monitoring and/or real-
time processes performance/predictability.

It is worth noting experimentation may not be adequate to validate process 
predictability, as the sampled statistics for real-time tasks, such as their WCET 
or execution time variability, could not cover edge cases that were not targeted 
throughout experimentation.

5  Evaluation

In this section, we present and evaluate a safety-critical case-study that involves a 
system whose specifications require monitoring its application-level behavior while 
guaranteeing system predictability. We have considered developing prototypes of 
the system according to the system development process presented in the previous 
section.

The goals of the evaluation are:

• Showing a practical application of the model-based system development process 
and the MCS deployment model;

• Carrying out a proof-of-concept evaluation of system prototypes deployed 
according to different architectural scenarios, described using the proposed MCS 
deployment model;
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• Showing that different architectural scenarios impact the predictability of the 
real-time application differently.

5.1  Case‑study

The case-study deals with real-time control of a fully ionized gas, called plasma, 
within a tokamak, which is a nuclear fusion experimental reactor.1

As the global need for sustainable low-carbon sources of electricity increases, 
nuclear fusion represents one of the most promising technologies to meet this need 
(EUROfusion 2018).

One of the essential problems to be tackled in a tokamak reactor is control of ver-
tically unstable plasma in order to prevent it to collapse on the reactor wall, as such 
an event may seriously damage the plant. Therefore, plasma must be controlled very 
precisely and any misbehavior must therefore be properly addressed.

5.1.1  System description and specification

Many challenging control loops must be implemented in order to operate a tokamak. 
By adjusting the magnetic field created by the currents flowing in numerous external 
coils, the magnetic control system is responsible for managing the current induced 
into the plasma, as well as its shape and position. The interested reader may refer to 
reference (Ariola and Pironti 2016) for more details on plasma magnetic control.

Unfortunately, the elongated shape of high-performance plasma pursued in mod-
ern tokamak turns them to be vertically unstable. Therefore, as anticipated, the mag-
netic control design must contain an active Vertical Stabilization (VS) system.

In this work, we are interested in monitoring the plasma during the applica-
tion of the VS control algorithm. Specifically, we consider a real-time task execut-
ing a control strategy based on Extremum Seeking (ES) to vertically stabilize the 
plasma (Dubbioso 2022).

Despite the specific control algorithm adopted to realize the corresponding func-
tion, the VS system is one of the essential components of any Plasma Control Sys-
tem (PCS). Moreover, for any existing tokamak, including ITER, the PCS is not a 
standard component that is available off-the-shelf; hence its design represents itself 
one of the project challenges (Snipes 2021).

Although procedures for the assessment of the PCS performance requirements 
are envisaged (Walker 2019; De Tommasi 2022), no standards apply to specific 
safety-critical metrics for real-time control tasks when designing the PCS. How-
ever, there is significant interest in high-frequency and fine-grained monitoring 
of real-time control systems for performance, predictability, and safety to provide 
countermeasures in due time to address run-time anomalies. This is shown by the 
intensive exception management study being conducted in fusion projects such as 
ITER (Raupp 2014) and JET (Snipes 2021; Sohal et al. 2022), and by other works 

1 https:// www. iter. org/ sci/ Makin gitWo rk.

https://www.iter.org/sci/MakingitWork


551

1 3

Real-Time Systems (2023) 59:534–567 

dealing with the monitoring of hard real-time control algorithms for performance 
guarantees (Barbalace et al. 2011; Neto 2011), or with disruption prediction sys-
tems (Murari 2018; Vega et al. 2022).

Regarding VS, this algorithm ensures that the plasma column is kept around 
a given equilibrium, i.e. the vertical position of the plasma current centroid is 
bounded in a given range during operation. Moreover, other state variables, 
mostly involving currents flowing throughout the plasma and actuator circuits, 
must follow patterns that lead to correct steady-state behavior. Figure  4 shows 
the typical response of the controlled system to a sudden disturbance, modeled 
as downward Vertical Displacement Events (VDEs, (Ambrosino et al. 2010)); in 
particular, the time traces of the vertical position of the plasma centroid Zc and 
of the plasma current  Ip are shown. When VDEs exceed a given threshold, the 
plant may enter an operation regime that may lead to a plasma disruption, which, 
in turn, makes Zc and Ip exceed normal bounds, seriously damaging the plant. 
Hence, prompt identification of a potentially dangerous regime should be put in 

Fig. 4  Normal behavior of 
the plasma current Ip and 
vertical position of the plasma 
centroid Zc 

Fig. 5  Anomalous behavior 
of the plasma current Ip and 
vertical position of the plasma 
centroid Zc 
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place, to trigger the proper mitigation policies. This is shown in Fig.  5, which 
depicts anomalous Zc and Ip dynamics due to VDEs exceeding safety thresholds.

The set of all normal dynamics characterizes the system’s normal behavior to be 
used when comparing it to runtime behavior under unknown (possibly anomalous) 
conditions.

As Figs.  4 and 5 outline, application-level behavior is monitored through time 
series. This requires modeling normal behavior and checking the system at runtime 
for such behavior through data-driven anomaly detection for time series, of which 
we surveyed possible options from the literature (see Sect. 2.2).

Recovery actions are uniquely prescribed for each of the experimental designs 
in operation (e.g. ITER and JET (Raupp 2014; De Tommasi et al. 2014; Valcárcel 
et al. 2014)). In any case, the main concern for these projects is forcing the fail-safe 
behavior of the plant to prevent catastrophic consequences. As a result, the detection 
must happen within a time interval that depends on both the specific tokamak and 
the plasma configuration. This is to ensure that all safety shutdown processes are 
carried out on time so as to avoid any contact between the hot plasma and the blan-
kets, i.e., the tokamak’s walls. Indeed, a sudden shutdown can lead to faulty machine 
parts that are too costly and difficult to repair. However, it is worth noting that the 
exact procedures for plasma cooling during a fault have not yet been established for 
the experiments on ITER.

In order to check whether the requirements coming from fusion needs are met, 
such as timely application of control inputs, isolation of safety-critical tasks from 
others, and fault tolerance to runtime errors and failures, there are several metrics 
that can be evaluated. Among these, there are:

• WCET� , the WCET of tasks;
• ACET� , the ACET of tasks;
• BCET� , the BCET of tasks;
• TL� , the TL of tasks, which is the 99th percentile of the execution time of tasks;
• std� , the std of tasks.

Due to the iterative nature of the system development process, it is worth noting that 
requirements can be refined incrementally. In fact, as the design space is explored 
and prototypes are developed in the System Architecture Design and Prototype 
Development steps, there may be failures that developers may initially not consider, 
such as crashes of critical tasks involved in, e.g., the execution of the ES algorithm 
during VS, application-level data sampling, or the application of recovery actions in 
response to anomalies. In the iteration we are considering, the concern is about the 
evaluation of the predictability of tasks in absence of other failures.

5.1.2  System architecture design

In order to comply with the requirements that were identified in the previous step, 
our system must have a real-time control task C, the ITER industrial plant C must 
control, and a set of local CPUs ( CPU1..p,L ) that C runs on.

Additionally, we may consider:
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• A set of general-purpose tasks G = {Gi, i ∈ {1,… , n}} , a real-time recovery task 
R, and two monitoring tasks M = {DS,AD} , in which DS concerns application-
level data sampling and AD runs anomaly detection on sampled data

• A set of remote CPUs ( CPU1…q,R)
• A data repository to collect the nominal behavior of the ITER industrial plant
• A set of communication channels ( CT1…s).

As mentioned in Sect. 4.2, the design of the system can be driven using a plethora of 
models that refer to several of its different views. These models may guide designers 
in choosing deployments that aim to optimize a given goal function.

Taking into account the goal of evaluating changes in the system’s predictability 
due to different deployment scenarios, we model architectural scenarios AS0 , AS1 , 
and AS2 by applying the AS_MAP function of the MCS deployment model we pre-
sented in Sect. 3.

We extend each architectural scenario with a general-purpose task G deployed 
on ENVL , which generates network disturbance by communicating with the Internet 
through a network socket. This is because a substantial amount of raw data, which 
reach TBs in ITER, are collected by sensors during the experiments and must be 
transferred to storage sources for later analysis to further assess the behavior of the 
plasma. Additionally, general-purpose, signal-processing tasks, which may send 
data to outbound servers for additional and non-urgent analysis in distributed sce-
narios, may use the same data collected during real-time control as well. Therefore, 
it is worthwhile deploying such tasks in the local environment. This leads to the 
d counterparts of the aforementioned architectural scenarios ( ASx,d, x = {0, 1, 2} ), 
where there is the task G deployed on one of the VMs of ENVL . We collect local 
and remote VMs and CPU pools, their corresponding DMs and scheduling, and the 
resulting quadruplets in Tables 3 and 4.

For the sake of clarity, we depict one of the architectural scenarios ( AS2 ) in 
Fig. 6, though it is worth noting the opportunity to formalize the scenario through 
a well-defined mathematical language makes graphical representations superfluous, 
eliminating ambiguity and reducing the time required to describe several different 
scenarios.

The metrics previously mentioned can now be specialized for the C and DS tasks 
of our design:

• WCETC , BCETC , ACETC , TLC , and stdC;
• WCETDS , BCETDS , ACETDS , TLDS , and stdDS.

As mentioned, these metrics drive the evaluation of the predictability of the proto-
types deployed according to AS0 , AS0,d , AS1 , AS1,d , AS2 , and AS2,d.

It is worth noting that access policies to shared memory are strictly dependent 
on the specific protocol chosen by the designer. Since this is out of the scope of this 
work, we decided to use a simple asynchronous protocol, which we briefly describe 
in the following.

The C task asynchronously sends data to the DS task within each of its exe-
cution periods. In turn, the DS task reads the newest data sent by C from the 
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communication channel. The most important factor is to receive the newest data 
possible, even if it could imply the loss of some samples. For the same reason, in 
the scenario where network sockets are used as a communication technique, we 
decided to use the UDP protocol. Conversely, if two or more applications com-
municate synchronously, this may result in temporal variations, which should be 

Table 3  Local and remote VMs, CPU pools, DMs, and scheduling schemes of the designed architectural 
scenario

Local environments

VM
L

P
L

DM
L

SS
DM

AS0 1,L ∶ {C} 1,L:
⋃

i=1…p
CPUi,L

1,L ∶ (VM1,L,P1,L) DM1,L ∶ (−,FPS)

AS0,d 1,L ∶ {C}

2,L ∶ {G}
1,L:

⋃

i=1…p
CPUi,L

1,L ∶ (VM1,L,P1,L)

2,L ∶ (VM2,L,P1,L)

DM1,L ∶ (RTDS,FPS)

DM2,L ∶ (RTDS,FPS)

AS1 1,L ∶ {C,R} 1,L ∶
⋃

i=1…p

CPUi,L 1,L ∶ (V ,M1,L,P1,L) DM1,L ∶ (−,FPS)

AS1,d 1,L ∶ {C,R}

2,L ∶ {G}

1,L ∶
⋃

i=1…p

CPUi,L 1,L ∶ (VM1,L,P1,L)

2,L ∶ (VM2,L,P1,L)

DM1,L ∶ (RTDS,FPS)

DM2,L ∶ (RTDS,FPS)

AS2 1,L ∶ {C,R}

2,L ∶ {DS,AD}

1,L ∶
⋃

i=1…p

CPUi,L 1,L ∶ (VM1,L,P1,L)

2,L ∶ (VM2,L,P1,L)

DM1,L ∶ (RTDS,FPS)

DM2,L ∶ (RTDS,FPS)

AS2,d 1,L ∶ {C,R}

2,L ∶ {DS,AD}

3,L ∶ {G}

1,L ∶
⋃

i=1…p

CPUi,L 1,L ∶ (VM1,L,P1,L)

2,L ∶ (VM2,L,P1,L)

3,L ∶ (VM3,L,P1,L)

DM1,L ∶ (RTDS,FPS)

DM2,L ∶ (RTDS,FPS)

DM3,L ∶ (RTDS,FPS)

Remote environments

VM
R

P
R

DM
R

SS
DM

AS0 ∅ ∅ ∅ ∅

AS0,d ∅ ∅ ∅ ∅

AS1 1,R ∶ {DS,AD} 1,R ∶
⋃

i=1…q

CPUi,L 1,R ∶ (V ,M1,R,P1,R) DM1,R ∶ (−,FPS)

AS1,d 1,R ∶ {DS,AD} 1,R ∶
⋃

i=1…q

CPUi,L 1,R ∶ (V ,M1,R,P1,R) DM1,R ∶ (−,FPS)

AS2 ∅ ∅ ∅ ∅

AS2,d ∅ ∅ ∅ ∅

Table 4  The deployment quadruplets of the designed architectural scenarios

Deployment quadruplets

ENV
L

ENV
R

SS CS

AS0 {DM1,L} ∅ {SSDM1,L
} ∅

AS0,d {DM1,L,DM2,L} ∅ {SSDM1,L
, SSDM2,L

} ∅

AS1 {DM1,L} {DM1,R} {SSDM1,L
, SSDM1,R

} {Socket,VM1,L,VM1,R}

AS1,d {DM1,L,DM2,L} {DM1,R} {SSDM1,L
, SSDM1,R

} {Socket,VM1,L,VM1,R}

AS2 {DM1,L,DM2,L} ∅ {SSDM1,L
, SSDM2,L

} {SHM,VM1,L,VM2,L}

AS2,d {DM1,L,DM2,L,DM3,L} ∅ {SSDM1,L
, SSDM2,L

, SSDM3,L
} {SHM,VM1,L,VM2,L}
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appropriately handled by the communicating tasks, regardless of the communica-
tion channel they send/receive data to/from.

Finally, anomaly detection, performed by task AD and based on process mining, 
allows characterizing the nominal behavior as locally-stored patterns and comparing 
new time series with such behavior at runtime (Hemmer et al. 2021). However, please 
note that the goal of our experimentation is not evaluating the predictability of process 
mining algorithms, which is an open challenge on its own. Rather, in the following, we 
evaluate the ability of each architectural scenario to isolate the non-deterministic nature 
of AD. In light of this, we do not consider any metric for AD in our experimentation.

5.1.3  Prototype development

The prototype for each of the designed architectural scenarios employs a Zynq 
UltraScale+ MPSoC ZCU104 as the node where ENVL is deployed, whereas a work-
station with an Intel(R) Core(TM) i7-4790 CPU, 16Gb RAM, and 512Gb HDD 
is used for ENVR deployment. When virtualized, ENVL is managed by the Xen 
hypervisor.

In order to generate normal and anomalous system dynamics, we used an ITER 
nuclear plant simulator that allows injecting VDEs. During the offline phase, VDEs 
are injected within normal ranges, allowing the storage of normative patterns as the 
ES algorithm runs and controls the plant to its equilibrium. These normative pat-
terns are used during online monitoring and as the simulator runs together with the 
C task running the ES algorithm; throughout online monitoring, the nuclear plant is 

Fig. 6  The AS2 architectural scenario
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injected both with normal and anomalous VDEs, so as the DS task collects samples 
from the C task, checking whether there are anomalies or not.

In each experiment, we have performed 50 runs per architectural scenario, where, 
for each run, the C task is a periodic task with period 1000�s and acquires, for each 
task instance, a sample from the ITER nuclear plant simulator while it runs under 
unknown conditions. Each sample is a vector of 5 floating point values, including 
the previously cited Ip and Zp state variables.

In AS0 , these samples are not sent to any other task, whereas in AS1 and AS2 they 
are sent to the DS task through a network socket and shared memory, respectively.

Once 2000 samples are collected by DS, the AD task executes and classifies the 
behavior according to the normal patterns that were characterized during the offline 
phase. For each run, a total of 60000 samples are collected from the simulated plant, 
thus there are 60000 execution times collected from both the C and DS tasks.

Table  5 collects the metrics per scenario. These are computed globally, which 
means all execution times from all runs are considered at once and all metrics are 
computed accordingly. For instance, in order to compute WCETC for scenario AS0 , 
execution times from all 50 runs are collected and the maximum is computed.

In Fig. 7 the metrics per scenario are visualized as histograms to highlight how 
the distributions of execution times of tasks C and DS shift from one setup to 
another.

Figures 8a and b show violin plots of tasks C and DS per scenario in order to 
provide another view of the results with a greater focus on the variability of the data 
across scenarios.

The results presented show that each architectural scenario impacts the predict-
ability of the system differently. As shown in Figs. 7 and 8, the execution times are 
generally higher when data between C and DS are sent across the network ( AS1 ). 
Furthermore, network disturbance impacts the predictability of the MCS slightly 
more when deploying network sockets for inter-VM communication ( AS1 ) than 
hypervisor-managed shared memory ( AS2).

Table 5  Metrics per scenario 
related to tasks C and DS 

N/A: Not Applicable

WCET� (�s) ACET� (�s) BCET� (�s) TL� (�s) std� (�s)

AS0 C : 14.00
DS : N/A

C : 13.07
DS : N/A

C : 11.00
DS : N/A

C : 14.00
DS : N/A

C : 0.90
DS : N/A

AS0,d C : 15.00
DS : N/A

C : 13.41
DS : N/A

C : 11.00
DS : N/A

C : 15.00
DS : N/A

C : 0.91
DS : N/A

AS1 C : 43.00
DS : 14.00

C : 41.87
DS : 3.94

C : 11.00
DS : 1.00

C : 43.00
DS : 13.00

C : 0.97
DS : 3.27

AS1,d C : 69.00
DS : 33.00

C : 45.29
DS : 6.24

C : 12.00
DS : 1.00

C : 67.00
DS : 27.00

C : 4.12
DS : 6.31

AS2 C : 15.00
DS : 3.00

C : 13.09
DS : 1.38

C : 10.00
DS : 1.00

C : 14.00
DS : 3.00

C : 0.88
DS : 0.59

AS2,d C : 20.00
DS : 15.00

C : 15.01
DS : 4.28

C : 11.00
DS : 1.00

C : 19.00
DS : 14.00

C : 1.85
DS : 3.28
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Firstly, the observed WCETC and ACETC in each scenario AS1 and AS2 (see 
Fig. 7a) suggests that hypervisor-based shared memory ( AS2 ) should lead to exe-
cution times that are considerably closer to the non-virtualized baseline ( AS0 ). In 
fact, compared to the baseline, shared memory only worsens WCETC and ACETC 

Fig. 7  Density function plots of execution times of tasks C a, c and DS b, d, per scenario

Fig. 8  Violin plots of execution times of tasks C a and DS b, per scenario
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by 7.14 and 0.15% ( AS2 ), whereas network sockets worsen WCETC and ACETC by 
207.14 and 220.35% ( AS1).

Secondly, as Table 5 highlights, there are WCETC shifts when adding network dis-
turbance to all architectural scenarios (see Figs. 7a and c). Specifically, network distur-
bance make WCETC worse by 7.14, 60.46, and 33.33% in architectural scenarios AS0 , 
AS1 and AS2 , respectively. Similarly, network disturbance makes stdC worse by 1.11, 
324.74, and 110.22%.

Furthermore, by directly comparing scenarios AS1 and AS2 under network distur-
bance we can notice an increase in time variability when network sockets are used. 
In fact, the value of stdC from scenario AS2 to AS1 worsens by 122.7% . Clearly, such 
worsening is due to the interference of tasks when accessing shared network resources.

It is worth noting that, as Figs. 7b and d show, also execution times of DS, both 
with and without network disturbance, show less variability when deployed as a VM 
on the same board where C is running ( AS2 ) compared to the scenario where these 
two tasks communicate over the Internet through network sockets ( AS1 ). Specifically, 
in case of network disturbance, the value of stdDS in AS1 is 92.37% higher than the 
one in AS2.

Although shared memory is the best option with respect to reducing WCET and 
std worsening of tasks, virtualization still causes a slight variation in execution times 
in case of network disturbance, regardless of the deployed communication channel 
between C and DS. This is because, despite resource partitioning and deployment 
of real-time schedulers, there still is interference caused by both context switches 
between VMs and interrupt handling.

Despite hardware support for virtualization speeds up the process due both to the 
presence of a hypervisor-dedicated execution mode (e.g. ARM EL3) and a set of 
additional registers, context switches still lead to non-negligible delay.

Furthermore, each time a device sends an interrupt, as the network device 
deployed in our experiment does, the hypervisor intercepts it to determine which 
VM has to serve it. This behavior causes a delay to the running VM. Though mod-
ern hardware interrupt managers are extended to support virtualization allowing 
direct access to VMs when possible (e.g. the ARM GICv4), currently, such support 
is limited to MSIs and IPIs and does not avoid triggering the hypervisor.

In conclusion, in spite of the problems we have outlined, and given the experi-
mental results, we believe that virtualization is the best choice to implement high-
frequency monitoring of control algorithms via shared memory, as non-virtualized 
communication via network sockets not only impacts the predictability of the system 
more, it also makes performance worse due to use of the software network stack and 
the more intensive use of the I/O.

6  Related works

6.1  Model‑based deployment

Although the plethora of semi-formal and formal modeling notations opens many 
opportunities to practitioners for the model-based deployment of complex systems, 
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there is no one-size-fits-all solution in which language should be used, as modeling 
may require elements whose semantics are not found in any existing notation (De 
Saqui-Sannes et al. 2022).

Commonly, existing modeling languages allow designers to extend their seman-
tics (e.g., Unified Modeling Language profiles such as SysML and MARTE or 
extended Petri nets (De Saqui-Sannes et  al. 2022)). However, addressing domain-
specific requirements drove the development of ad-hoc languages, such as the Archi-
tecture Analysis and Design Language (Mkaouar et al. 2020), adopted in avionics, 
automotive, and robotics domains, or the Dynamic STate machines proposed by 
Benerecetti et al. (2017) to appropriately model requirements of railways standards.

To the best of our knowledge, there is no deployment model able to describe the 
integration of real-time applications and application-level fog monitoring in virtual-
ized MPSoCs, leading to our proposal in Sect. 3. It is worth noting our deployment 
model does not aim to analytically model deterministic and/or non-deterministic 
interference and time requirements, as these can be described using other well-
known models. Rather, our goal is to drive the design and deployment of MCSs 
on virtualized MPSoCs in a model-based fashion, proposing a flexible notation that 
facilitates developers in modeling architectural choices.

6.2  Application‑level monitoring

Several monitoring strategies with different placement and abstraction levels have 
been proposed and deployed over desktop and embedded systems. We focus on 
reviewing application-level software monitors, as our work considers this class 
when dealing with the case-study in Sect. 5.1.

There are many application-level software monitors based on data-driven tech-
niques that allow anomaly detection in cyber-physical systems based on data col-
lected from sensors distributed in the environment.

Molka-Danielsen et al. (2015) highlight the insightful information about environ-
mental conditions that the large-scale integration of wireless sensor network tech-
nologies provides through big data analytics.

Naeem et al. (2020) outline that the usage of image visualization and deep learn-
ing models can leverage the big amount of data that sensors collect for malware 
detection.

Other than using data-driven techniques, there also are other monitors based on 
source code instrumentation for runtime monitoring of software and/or hardware 
faults (Kadar et al. 2019; Pike et al. 2013).

Application-level monitoring through pluggable hardware components has also 
shown its utility in verifying the correctness of the behavior of commercial-off-the-
shelf components. Moreover, on-chip integration of LTL checkers has been investi-
gated to address the ISO 26262 standard safety guidelines (Heffernan et al. 2014).

Although effective, these monitors lack evaluation of their predictability, their 
impact when deployed in a hard real-time context, and their implementation in 
distributed environments. Indeed, as introduced in Sect.  1, the literature focuses 
on reaching good accuracy levels for challenging anomaly types and addressing 
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problems poorly linked to predictability issues when deploying monitors that handle 
application-level data from real-time processes (Costa et al. 2022).

6.3  Monitoring via virtualization

Leveraging hypervisors to monitor the activities of a system is an idea recently 
investigated by several works in literature. However, these works differ both in terms 
of the monitor’s placement, which could be, e.g., integrated into the hypervisor code 
or placed on separate VMs, and in terms of their objectives, e.g., power efficiency, 
security, and fault tolerance.

In Poggi et  al. (2018) the Xtratum hypervisor is modified to provide power 
monitoring services that can obtain information on the power consumption of the 
board on which it is running to optimize it. Other works focus on security through 
the development of VMM-level frameworks for malware and intrusion detection 
(Kumara and Jaidhar 2018; Kwon et al. 2018; Kadar et al. 2019).

Our approach stands out since it focuses on monitoring anomalies of applications 
running high-frequency real-time processes, with a particular emphasis on the trade-
off between the temporal predictability of the monitoring and the temporal intrusion 
of monitoring on monitored applications.

7  Conclusions and future work

This paper reviewed the state-of-the-art model-based development and fog monitor-
ing of real-time applications, proposed a model-based approach to design, deploy, 
and evaluate Mixed-Criticality Systems (MCS) on Multiprocessor System-on-Chips 
(MPSoCs), and evaluated the predictability of several architectural scenarios for 
the ITER case-study, deploying concurrent application-level monitoring of system 
behavior in time series collected from real-time control within the ITER case-study.

Considering the evidence of literature gaps in (1) Evaluating the predictability 
of systems when deploying application-level monitoring of real-time applications 
through fog computing and data-driven anomaly detection, and (2) Applying model-
based principles for the development of MCS on virtualized MPSoCs, this paper 
proposed the application of model-based development for the design, deployment, 
and evaluation of MCSs on virtualized MPSoCs.

In light of the aforementioned, a model-based system development process, 
which leverages a well-defined MCS deployment model, was proposed and applied 
to develop prototypes of the industry-relevant ITER case-study. This involves 
plasma Vertical Stabilization (VS) throughout nuclear fusion, whose predictable 
control and timely monitoring are critical. By means of model-based system devel-
opment and deployment of the resulting prototypes, we assessed the predictability of 
different architectural choices when designing application-level monitoring of real-
time applications deployed on virtualized MPSoCs.

The results obtained highlighted that the use of hypervisor-managed shared 
memory on a virtualized MPSoC leads to the least impact on WCET and ACET of 
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tasks with respect to the reference scenario, which involves neither virtualization nor 
monitoring. In fact, hypervisor-managed shared memory worsens such metrics only 
by 7.14 and 0.15% , whereas network sockets worsen them by 207.14 and 220.35%.

Our experimentation also assessed the impact of network disturbance on execu-
tion times, regardless of the deployed communication channel and virtualization. 
Remarkably, network disturbance due to general-purpose tasks impacts execution 
times of tasks in all cases, be it non-virtualized or virtualized deployment, worsen-
ing WCET of control up to 60.46% when network sockets are used and up to 33.33% 
when shared memory and virtualization are used. This last impact is due to sev-
eral isolation flaws when hypervisors handle interrupts and context switches due to 
access to shared network resources.

As the experiments have been performed with reference to the industry-relevant 
ITER case-study, which, as mentioned, involves the safety-critical real-time control 
of plasma during nuclear fusion through control tasks, our work showed the feasibility 
of model-based design, deployment, and evaluation of the predictability of MCSs that 
implement fog monitoring of real-time control.

Future work should: (1) Consider the assessment of system predictability when 
virtualizing the local environment with a partitioning hypervisor, such as Jail-
house or Bao, which are able to ensure better isolation guarantees between virtual 
machines; (2) Address the predictability of several anomaly detection techniques, 
as they often are non-deterministic, and should, therefore, be carefully chosen 
when applying the system development process we have proposed in this paper; (3) 
Automatize the proposed system development process to speed up the deployment 
of architectural scenarios, aiding the developers with tools that process architectural 
scenarios and automatically configure the corresponding prototypes; and (4) Delve 
deeper into the analysis of software predictability when taking into account end-
to-end delays due to data transactions and its aging across the communication and 
computation chain, strongly influenced by the choice of communication protocols.
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