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Abstract: Early events of basal cell carcinoma (BCC) tumorigenesis are triggered by inappropriate
activation of SHH signaling, via the loss of Patched1 (Ptch1) or by activating mutations of
Smoothened (Smo). TBX1 is a key regulator of pharyngeal development, mainly through expression in
multipotent progenitor cells of the cardiopharyngeal lineage. This transcription factor is connected
to several major signaling systems, such as FGF, WNT, and SHH, and it has been linked to cell
proliferation and to the regulation of cell shape and cell dynamics. Here, we show that TBX1 was
expressed in all of the 51 BCC samples that we have tested, while in healthy human skin it was only
expressed in the hair follicle. Signal intensity and distribution was heterogeneous among tumor
samples. Experiments performed on a cellular model of mouse BCC showed that Tbx1 is downstream
to GLI2, a factor in the SHH signaling, and that, in turn, it regulates the expression of Dvl2, which
encodes an adaptor protein that is necessary for the transduction of WNT signaling. Consistently,
Tbx1 depletion in the cellular model significantly reduced cell migration. These results suggest that
TBX1 is part of a core transcription network that promotes BCC tumorigenesis.

Keywords: basal cell carcinoma; T-box transcription factor TBX1; genetic marker

1. Introduction

Basal cell carcinoma (BCC) is the most common cancer in humans [1]. Although in most cases it
does not metastasize, BCC is a significant health issue because it usually appears in exposed skin, and
it must be surgically removed to avoid expansion and disfiguration. Aberrant activation of Hedgehog
(HH) signaling is the earliest event of BCC tumorigenesis. Cancer cells are thought to originate from
epidermal stem cells of the interfollicular epidermis [2] that acquire a profile similar to embryonic hair
follicle progenitor cells [3], or from the hair follicle itself [4–6]. Histopathologically, BCC cases are
classified into three major groups, superficial, nodular, and infiltrative. In comparison to the infiltrative
type, the superficial and nodular types tend to be less aggressive, grow more slowly, and have a lower
risk of recurrence [7].

Int. J. Mol. Sci. 2020, 21, 607; doi:10.3390/ijms21020607 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-0905-5123
https://orcid.org/0000-0002-9354-4087
https://orcid.org/0000-0002-5330-0256
http://www.mdpi.com/1422-0067/21/2/607?type=check_update&version=1
http://dx.doi.org/10.3390/ijms21020607
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2020, 21, 607 2 of 14

The TBX1 gene is haploinsufficient in DiGeorge or 22q11.2 deletion syndrome. While analyzing
TBX1 target gene, we noted a gene ontology (GO) term enrichment for the “BCC pathway” [8]. This
“pathway” includes genes that are involved in SHH and WNT signaling, both of which have been
previously associated with Tbx1 roles during mouse embryonic development [9–11]. In addition, it has
been shown that Tbx1 is downstream to SOX9 in BCC tumorigenesis [12]. In the adult mouse, Tbx1 is
expressed in the hair follicle, where it plays a role in the maintenance of the stem cell pool [13].

Here, we asked whether TBX1 is a significant marker of human BCC and we began to dissect
its role in BCC cells. Results show that TBX1 was not expressed in the healthy epidermis but it was
expressed in all of the BCC samples tested (n = 51), independently of histopathological type. However,
the distribution of TBX1+ cells varied. In the cell culture model [14], GLI2 regulates Tbx1 expression,
while TBX1, in turn, regulated a key component of the WNT signaling pathway and cell migration.
These data suggest that TBX1 is part of a critical pathway of BCC tumorigenesis.

2. Results

2.1. Recruitment of BCC Cases

We recruited a total of 51 cases, which included BCCs with aggressive growth, i.e., BCCs with
higher risk of recurrence: Basosquamous, infiltrating, micronodular, and morphoeic (n = 27 or 53%
of the cohort), and BCCs with indolent growth, i.e., BCCs with lower risk of recurrence: Nodular,
superficial, and with adnexal differentiation (n = 24 or 47% of the cohort). Tables 1 and 2 detail the
composition of the cohort enrolled in this study. Anonymized samples were retrieved from the archives
of the Pathology Section of the Department of Advanced Biomedical Sciences, ‘Federico II’ University
of Naples. Slides of histological sections were coded and provided “blind” to the immunofluorescence
(IF) analysis team who did not know the histopathological diagnosis.

Table 1. Histological diagnosis of samples included in the study.

Histological Subtype n

BCC with aggressive growth 27

Basosquamous Carcinoma 2
Infiltrating BCC 17

Micronodular BCC 2
Sclerosing/morphoeic BCC 6

BCC with indolent growth 24

BCC with adnexal differentiation 5
Nodular BCC 15

Superficial BCC 4

Total 51
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Table 2. Clinicopathological characteristics of the study population.

Age Mean ± SD 66.5 ± 13.2 years

Range (Min–Max) 38–87 years

Sex
Male n = 36 71%

Female n = 15 29%

Tumor Site

Area H n = 18 35%

Area M n = 6 12%

Area L n = 24 47%

ND n = 3 6%

Histologic Subtype BCC with indolent growth n = 24 47%

BCC with aggressive growth n = 27 53%

Tumor Size
>2 cm n = 7 14%

<2 cm n =36 71%

ND n = 8 16%

n = 51; Area H: “mask areas” of face (central face, eyelids, eyebrows, periorbital, nose, lips [cutaneous and vermilion],
chin, mandible, preauricular and postauricular skin/sulci, temple, ear), genitalia, hands, and feet; Area M: Cheeks,
forehead, scalp, neck, and pretibial; Area L: Trunk and extremities.

2.2. TBX1 is Expressed in the Hair Follicle and in BCC

We performed IF using an anti-TBX1 antibody along with anti-E-cadherin (CDH1) or anti-Ki67
(MKI67) antibodies, markers of epithelial cells and proliferating cells, respectively. In healthy skin, we
found TBX1 to be expressed in the hair follicle but not in the epidermis (Figure 1A,A′), while BCC
cells, even when in continuity with healthy epidermis, clearly expressed TBX1 (Figure 1B,B′). All of
the 51 BCC were positive for TBX1; Figures 2 and 3 show examples of indolent and aggressive BCCs,
respectively. In all cases, TBX1+ cells were also CDH1+, suggesting that these cells have epithelial
characteristics. The distribution of TBX1+ cells within the cancer lesion was variable. We distinguished
two basic patterns, polarized (P) and diffuse (D). In the P pattern, TBX1+ cells, often intensely stained,
were predominantly localized to the leading edge of the BCC lesions (peripheral palisading cells) while
many cells of the internal region of the tumor were TBX1-negative (see examples in Figure 2A–C and
Figure 3A–C). In contrast, the D pattern was characterized by expression in most, if not all the cells of
the lesion, often with a lower and uniform signal intensity (examples in Figure 2B–C′ and Figure 3B–C′).
In many cases (n = 18, 35%), we found both patterns within the same biopsy (P + D pattern), for
example Figure 2C,C′ are from the same tumor, as are the photographs in Figure 3C,C′. We also
collected semi-quantitative grades of intensity of TBX1 signal where the value “1” was assigned to
signal just above the background, “3” for a strong bright signal, and “2” for intermediate intensity
(Table 3). In summary, TBX1 expression identifies heterogeneity between and within tumor samples.

Co-immunostaining with the cell proliferation marker Ki67 in a subset of samples, showed that in
cases with “P” pattern most of the cell proliferation occurs in the peripheral, palisade layer of the BCC
lesion and the majority of Ki67+ cells was also TBX1+ (76%, n = 404 from three samples, Figures 2A
and 3A).
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Figure 1. Immunofluorescence of skin biopsies from patients affected by BCC. (A) TBX1 (green), E‐
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Figure 1. Immunofluorescence of skin biopsies from patients affected by BCC. (A) TBX1 (green),
E-cadherin, an epithelial cell marker (red), and 4′,6-diamidino-2-phenylindole (DAPI), which stains
DNA (blue) showing the physiological expression of TBX1 in the hair follicle (HF, magnified in A′).
(B) BCC connected to the epidermal layer: TBX1 is expressed in cancer cells (arrow, magnified in (B′)
but not in healthy epidermis (arrowhead). SG: Sebaceous gland. Scale bar is 100 µm in (A,B), 50 µm
in (A′,B′).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 4 of 14 
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Figure 2. Examples of immunofluorescence staining of sections from skin biopsies of BCC with indolent
growth. TBX1 in green, Ki67 (a cell proliferation marker) in red, and DAPI (DNA stain) in blue.
(A) Example of polarized distribution of TBX1+ cells, defined as localization of positive cells at the
periphery of the lesion (palisade cells), while internal cells are mostly TBX1-negative; (B) example of
diffuse distribution, defined as localization of positive cells to the entire lesion. (C,C′) represent different
regions of the same sample; note that both types of distribution, polarized (C), and diffuse (C′) are
present. Scale bar 100 µm. See Figure S1 for examples of hematoxylin-eosin staining of these biopsies.
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Figure 3. Immunofluorescence examples of section from BCC cases with aggressive growth. TBX1
in green, Ki67 (a marker of cell proliferation), in red, and DAPI in blue. (A) Case with a polarized
distribution (i.e., mostly limited to the periphery of BCC) and (B) with a diffuse distribution. (C,C′),
two regions of the same tumor with different distribution of TBX1+ cells. Scale bar is 100 µm. See
Figure S1 for examples of hematoxylin-eosin staining of these biopsies.

Table 3. Results of TBX1 immunofluorescence assay.

Sample Code Histological Type Differentiation
Sstate TBX1+ Cells TBX1

Signal

15 Nodular BCC differentiated D 2
BAS59 Nodular BCC differentiated D + P 3
BAS60 BCC with adnexal differentiation differentiated D + P 3
BAS5 Nodular BCC differentiated D 3
BAS11 Nodular BCC differentiated P 2
BAS14 Superficial BCC differentiated D 3
BAS24 Nodular BCC differentiated D + P 3
BAS29 Superficial BCC differentiated D 2
BAS38 Nodular BCC differentiated P 1
BAS40 Nodular BCC differentiated P 1
BAS41 Nodular BCC differentiated P + D 2
BAS42 Nodular BCC differentiated D 3

A BCC with adnexal differentiation differentiated D 1
8 Nodular BCC differentiated D 2
2 Nodular BCC differentiated D + P 3
B Superficial BCC differentiated P 2
E Superficial BCC differentiated D 3
G BCC with adnexal differentiation differentiated P 2
I Nodular BCC differentiated P 2
L BCC with adnexal differentiation differentiated P 2
M Nodular BCC differentiated D + P 3
n Nodular BCC differentiated P + D 2
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Table 3. Cont.

Sample Code Histological Type Differentiation
Sstate TBX1+ Cells TBX1

Signal

R Nodular BCC differentiated D 3
S BCC with adnexal differentiation differentiated D + P 3

BAS7 Micronodular BCC undifferentiated P 2
BAS8 Infiltrating BCC undifferentiated D 1
BAS9 Basosquamous Carcinoma undifferentiated P 1
BAS12 Infiltrating BCC undifferentiated P + D 2
BAS13 Infiltrating BCC undifferentiated D 2
BAS19 Infiltrating BCC undifferentiated D 3
BAS67 Sclerosing/morphoeic BCC undifferentiated D 1
BAS68 Micronodular BCC undifferentiated D 3
BAS69 Infiltrating BCC undifferentiated P + D 1
BAS28 Infiltrating BCC undifferentiated D 1
BAS44 Basosquamous Carcinoma undifferentiated D 2
BAS47 Sclerosing/morphoeic BCC undifferentiated P + D 2
BAS48 Infiltrating BCC undifferentiated P + D 2
BAS51 Infiltrating BCC undifferentiated D + P 3

12 Infiltrating BCC undifferentiated D 2
3 Infiltrating BCC undifferentiated D 2
1 Infiltrating BCC undifferentiated P + D 2
C Sclerosing/morphoeic BCC undifferentiated D + P 1

BAS81 Infiltrating BCC undifferentiated D + P 1
D Sclerosing/morphoeic BCC undifferentiated D 1
F Sclerosing/morphoeic BCC undifferentiated D 1
H Sclerosing/morphoeic BCC undifferentiated D 1
O Infiltrating BCC undifferentiated P + D 3
P Infiltrating BCC undifferentiated P + D 3
Q Infiltrating BCC undifferentiated P 2
T Infiltrating BCC undifferentiated P 3

BAS89 Infiltrating BCC undifferentiated P 1

Distribution of TBX1+ cells and score of the intensity of the immunofluorescence signal (1: Weak above background, 3:
Clear, strong signal, 2: Intermediate intensity) for each case studied. P: Polarized; D: Diffuse. See text for definitions.

2.3. TBX1 Expression and BCC Histopathology

The results described above show that TBX1 is a marker of BCC lesions but it is not a clear
indicator of histopathological type of BCC because it was detected in all samples tested, regardless
of the histological type. However, a closer examination of the data summarized in Table 3 suggests
that some potential differences exist between the two major groups of samples. Specifically, samples
that exhibited only the pattern P were predominantly of the “differentiated” group (29% vs. 18.5%
of the “undifferentiated” group, Table 3). In addition, samples exhibiting a very low TBX1 signal
intensity (grade “1”) were only 12.5% of the differentiated group, but were 41% of the undifferentiated
group. These observations refer to a number of patients too small for formal statistical analysis, but it
is tempting to speculate that more benign histological subtypes are more likely to show regular and
organized TBX1 expression pattern and to present with a subpopulation of TBX1-negative cells.

2.4. A Murine Cellular Model of BCC Suggests a Tbx1-Dependent Pathway

To understand the role that TBX1 may have in BCC tumorigenesis pathway, we used an established
keratinocyte cell line, named G2N2C, derived from a mouse model of BCC [14,15]. In this model,
transgenic expression of a constitutively active mutant isoform of GLI2 in keratinocytes activates
SHH signaling and induces cancer lesions similar to human BCC. Tbx1 was expressed at high levels
in G2N2C cells (Figure 4A) but it was not expressed in primary mouse keratinocytes, as expected
(Figure 4D). Knock-down of Gli2, using a siRNA that targets the transcripts from the endogenous and
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the transgenic genes, led to significant downregulation of Tbx1 expression (Figure 4B,C), indicating
that expression of Tbx1 in these cells is at least partly dependent upon GLI2/SHH signaling. Other
genes of the SHH pathway, and Sox9 were also downregulated (Figure S2). Next, we selected a set of
six genes known to be regulated by TBX1 and that are related, by gene ontology enrichment, to BCC [8].
We first compared the expression of these candidate genes in normal keratinocytes and in G2N2C
cells (Figure 4D). Results showed Ptch2, Gli1, Fzd3, and Dvl2 to be upregulated, while Wnt7a was
downregulated, and Sufu did not change significantly in G2N2C cells. Western blot analysis confirmed
a high level of DVL2 protein expression in the cell line compared to primary keratinocytes (Figure 4D,
bottom panel). Next, we knocked down Tbx1 expression by siRNA and tested the expression of these
genes. We found that Dvl2 was significantly downregulated, but the expression Fzd3, Wnt5a, Wnt7a,
and Sox9 was not affected (Figure S3). Dvl2 encodes Dishevelled, an adapter protein involved in
WNT signaling, and canonical and noncanonical/planar cell polarity [16]. Dvl2 was also found to be
downregulated in Tbx1 loss of function models, including in mutant mouse embryos [8].

Overall, these results showed that SHH signaling contributes to induction or maintenance
of Tbx1 expression, and that TBX1 positively regulates the expression of a key regulator of WNT
signaling pathway.

2.5. TBX1 is Important for Migration of G2N2C Cells

We have previously shown that, in a different context, Tbx1 interacts with the noncanonical Wnt
signaling [9] and it affects cytoskeletal organization and cell movement [17]. To determine whether
TBX1 affects cell migration in BCC cells we performed a scratch-wound-healing assay with G2N2C
cells and monitored their response by time-lapse microscopy for 96 h. We found that TBX1 depletion
substantially reduced G2N2C cell migration into the wound area (Figure 5). This effect was not due
to differences in cell proliferation because cells were treated with mitomycin C. Tbx1 is therefore a
regulator of G2N2C cell migration.
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Figure 4. (A) Tbx1 expression in G2N2C cells assayed by reverse transcription (RT)-PCR. Positive and
negative controls (+ Ctrl and – Ctrl) are cDNA from an E9.5 mouse embryo and from an RT sample,
respectively. (B) Assay of the genes indicated in nontargeted (NT) and Gli2-trageted short interfering
RNA in G2N2C cells. (C) Summary of expression of Gli2 (top panel) and Tbx1 assayed by quantitative
real time qRT-PCR in multiple experiments of Gli2 knock down in G2N2C cells. Each dot represents
an independent experiment. (D) Expression of the genes indicated in primary keratinocytes and in
G2N2C cells. Bottom panel: Western blotting analysis of total extracts from G2N2C cells and primary
keratinocytes immunostained with an anti DVL2 antibody and with an anti-beta tubulin as loading
control. (E) Summary of qRT-PCR experiments after Tbx1 knock down. The top panel shows the
expression of Tbx1, the bottom panel shows the expression of Dvl2. * p < 0.05; ** p < 0.005; *** p < 0.001.
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Figure 5. Wound healing assay with G2N2C cells. The phase contrast photographs show the wound at
T0, T72, and T96 h in control (siControl) and Tbx1 knock down (siTbx1) cells (scale bar: 100 µm). The
histogram on bottom left shows the average of Tbx1 expression in four independent experiments used
for the assay (individual numbers were 57%, 34%, 54%, and 40% of the control expression). The graph
on the bottom right panel shows the scratch wound area as a percentage of the initial wound area
determined using ImageJ software. The values are the means ± SD of four independent experiments
(** p < 0.01). p-values for 48, 72, and 96 h are 0.0013, 0.006, and 0.0016, respectively.
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3. Discussion

BCC, although not typically a life threatening condition, is a significant health problem because of
its high prevalence, recurrence risk, and its potentially disfiguring consequences. SHH signaling is
currently used as a drug target with some success [18,19], but the occurrence of resistance reduces
the usefulness of this therapy. The combination of SHH and a WNT inhibitors has been shown to
be efficacious in a mouse model of BCC [20]. However, there is a need for further research and the
identification of additional drug targets to overcome the occurrence of drug resistance. Developmental
genes are commonly involved in various types of cancer, and BCC is no exception. Activation
of SHH signaling is critical in BCC initiation, and is followed by activation of WNT signaling [3].
The transcription factor SOX9, which is regulated by WNT/beta-catenin signaling [12] and by Gli
transcription factors [21] orchestrates a complex transcriptional program that involves self-renewal,
cytoskeletal remodeling, cell adhesion, and extra cellular matrix (ECM) regulation. Larsimont et al. [12]
identified Tbx1 as a transcriptional target of SOX9, and speculated that TBX1 might be an effector of the
self-renewal functions of SOX9. Independently, we found that a group of genes targeted or regulated
by TBX1 in different contexts are related to BCC pathways [8]. Here, we found that in the adult human
skin, TBX1 is only expressed in the hair follicle, but it is expressed in all BCC cases tested. However,
we found heterogeneity in many cases, especially in the histologically more benign cases (“indolent
growth” group), where there was a substantial number of TBX1-negative cells within the lesion. The
activation of the Tbx1 gene is likely a consequence of SOX9 expression and SHH activation, as reported
in the developmental context [11,22,23]. This view is supported by the finding presented here that Gli2
suppression downregulates Tbx1 expression in G2N2C cells. In turn, TBX1 is necessary to maintain
high levels of Dvl2 expression, an important player in the transduction of WNT signaling, canonical
and noncanonical, including the planar cell polarity pathway. Indeed, loss of TBX1 was associated
with reduced ability to migrate in an in vitro assay, suggesting that this transcription factor may affect
cytoskeletal rearrangements as previously shown in other systems [17]. Previous work in another
type of skin tumors in mice, squamous cell carcinoma (SCC), has shown that TBX1 is not expressed in
these tumors and it was suggested that it might have tumor suppressor activity [24]. The differences
with our data presented here may be explained by the different mechanisms of BCC tumorigenesis
compared to SCC, the latter being mainly driven by RAS activation [24].

In conclusion, we show that TBX1 expression is a characteristic of BCC. As shown in Figure 6,
we propose that Tbx1 is activated by both SHH signaling and SOX9 and that downstream, TBX1
contributes to the maintenance of WNT signaling (canonical and/or noncanonical) through positive
regulation of Dvl2. In addition, through Dvl2/PCP, or directly, TBX1 regulates dynamic characteristics
of cancer cells. Further research will be necessary to establish whether in this context Tbx1, might
trigger an autoregulatory loop (Tbx1-WNT-Sox9-Tbx1) that reduces the dependence of BCC cancer
cells from SHH signaling.
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more benign cases (“indolent growth” group), where there was a substantial number of TBX1‐

negative cells within the lesion. The activation of the Tbx1 gene is likely a consequence of SOX9 

expression and SHH activation, as reported in the developmental context [11,22,23]. This view is 

supported by the finding presented here that Gli2 suppression downregulates Tbx1 expression in 

G2N2C cells. In turn, TBX1 is necessary to maintain high levels of Dvl2 expression, an important 

player in the transduction of WNT signaling, canonical and noncanonical, including the planar cell 

polarity pathway. Indeed, loss of TBX1 was associated with reduced ability to migrate in an in vitro 

assay, suggesting that this transcription factor may affect cytoskeletal rearrangements as previously 

shown in other systems [17]. Previous work in another type of skin tumors in mice, squamous cell 

carcinoma (SCC), has shown that TBX1 is not expressed in these tumors and it was suggested that it 

might have tumor suppressor activity [24]. The differences with our data presented here may be 

explained by the different mechanisms of BCC tumorigenesis compared to SCC, the latter being 

mainly driven by RAS activation [24]. 

In conclusion, we show that TBX1 expression is a characteristic of BCC. As shown in Figure 6, 

we propose that Tbx1 is activated by both SHH signaling and SOX9 and that downstream, TBX1 

contributes to the maintenance of WNT signaling (canonical and/or noncanonical) through positive 

regulation of Dvl2. In addition, through Dvl2/PCP, or directly, TBX1 regulates dynamic 

characteristics of cancer cells. Further research will be necessary to establish whether in this context 

Tbx1, might trigger an autoregulatory loop (Tbx1‐WNT‐Sox9‐Tbx1) that reduces the dependence of 

BCC cancer cells from SHH signaling. 

 

Figure 6. Schematic of the proposed regulatory role of TBX1 in BCC. Interactions already established
are shown in blue [12,16,21], those proposed here are shown in red.
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4. Materials and Methods

4.1. Patients and Tissue Samples

Formalin-fixed, paraffin-embedded tissue blocks of skin biopsies of BCC cases diagnosed and
excised with healthy surgical margins from September 2013 to March 2017, were retrieved from the
archives of the Pathology Section of the Department of Advanced Biomedical Sciences, ‘Federico II’
University of Naples. The criteria used to select BCC cases from the archive were: The size of the
biopsy (>1 cm), the availability for each case of at least two inclusions where the lesion was present,
the presence of different histological subtypes of BCC (see Table 1), the documented complete excision
of the lesion and the exclusion of syndromic cases. Eighty patient samples were initially selected and
processed for immunofluorescence, but some had to be excluded for technical reasons (e.g., insufficient
quality of immunofluorescence staining, sections lacking hair follicles, which was our internal control
for staining quality, etc.). In total, we successfully tested 51 cases, 36 males and 15 females, the age at
diagnosis ranged between 38 and 87 years (mean age 66.5 SD ± 13.2 years). Two pathologists reviewed
the whole routine hematoxylin-eosin (H&E) sections to confirm the original diagnosis. The clinical
data and pathological features of the tumors are reported in Figure 1.

The study design and procedures involving tissue samples collection and handling were performed
according to the Declaration of Helsinki, in agreement with the current Italian law, and to the Institutional
Ethical Committee guidelines. Informed consent was given by all patients prior to the biopsy. According
to the Italian law, retrospective studies using routine archival FFPE-tissue require an informed consent
prior to surgery, following the indication of Italian DLgs No. 196/03 (Privacy law), as modified by UE
2016/679 law of European parliament and Commission.

4.2. Tissue Microarray Construction

Out of 51 cases, 38 were provided in a tissue microarray (TMA) format. Briefly, two pathologists
reviewed hematoxylin-eosin (H&E) sections to confirm the original diagnosis and to mark the most
representative tumor areas useful for the TMA construction. Tissue cores with a diameter of 3 mm were
punched from morphologically representative tissue areas of each ‘donor’ tissue block and brought
into one recipient paraffin block using a manual tissue arrayer. The filled recipient blocks were then
placed on a metal base mold. The paraffin embedding was then carried-out, by heating the blocks
at 42 ◦C for 10 min and flattening their surface by pressing a clean glass slide on them. As a result,
four TMAs were built, 4 µm sections were cut from each TMA using an ordinary microtome. The
first section was stained with H&E to confirm the presence of the tumor and the integrity of tissues
(examples in Figure S1). The other section was mounted on a super frost slide (Microm, Walldorf,
Germany) for the immunofluorescence.

4.3. Immunofluorescence

Paraffin-embedded tissue blocks were cut into four µm sections and subjected to
immunofluorescence, by using an anti-TBX1 antibody (Abcam, #ab18530, 1: 100), anti-E-Cadherin
antibody (BD Biosciences, #610182, 1:200) anti-Ki67 antibody (BD Biosciences, #556003, 1:200), and
Alexa fluor 488 (or 594) Goat anti-rabbit (or anti-mouse) IgG (H + L) (Life Technologies, 1:400) as
secondary antibody. DAPI was used for nuclear staining.

4.4. Cell Culture Experiments

G2N2C cells were cultured under low calcium conditions in the presence of 8% Ca2+-chelated fetal
bovine serum, and 1 ng/mL Keratinocyte growth factor (Sigma, #K1757) as described in [15] and plated
in type I collagen-coated tissue culture dishes. Transient transfection of siRNA was performed by using
Lipofectamine RNAiMAX reagent (Invitrogen, #13778) following the standard protocol. For reverse
transfection, 1.5 × 106 cells/well were plated on a 6-well plate, and 50 nM of a pool of silencer select
predesigned Tbx1 siRNA (Life Technology) and 200 nM of Gli2 siRNA [25] was used. Nontargeting
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siRNA was used for control transfections. Cells were collected 24 h after transfection and processed for
RNA extraction.

Total mRNA was isolated from G2N2C using 0.5 mL of QIAzol lysis reagent (Qiagen, 79306) and
cDNA was synthesized from 1µg total RNA, using the high-capacity cDNA reverse transcription kit
(Applied Biosystems). Gene expression was quantified by qRT-PCR in 20 µl reaction containing 1×
SYBR green (FastStart Universal SYBR Green Master (Rox), Roche) using technical triplicates. Gene
expression levels were normalized to GAPDH. A list of primers is provided in Table 4.

Table 4. Sequence of primer pairs used in this study.

Primer Name Sequence 5′-3′

Gapdh-F: TGCACCACCAACTGCTTAGC

Gapdh-R: TCTTCTGGGTGGCAGTGATG

Tbx1_qRT-PCR-F: CTGACCAATAACCTGCTGGATGA

Tbx1_qRT-PCR-R: GGCTGATATCTGTGCATGGAGTT

Tbx1_RT-PCR-F: TTTGTGCCCGTAGATGACAA

Tbx1_RT-PCR-R: AATCGGGGCTGATATCTGTG

Gli2-F: ATCAAGACAGAGAGCTCCGG

Gli2-R: ATGCCACTGTCATTGTTGGG

Gli2-5′-F: GCCGATTGACATGAGACACC

Gli2-5′-R: CTGAAGGGTGACTCTCCAGG

Sox9-F: GTACCCGCATCTGCACAAC

Sox9-R: CTCCTCCACGAAGGGTCTCT

Wnt7a-F: CGCTCATGAACTTACACAATAACG

Wnt7a-R: ACAGGAGCCTGACACACCAT

Fzd3-F: AGGTGGGCACAGTTTGTTTT

Fzd3-R: GAAATGGCCGAAAATCCCGA

Ptch2-F: GTCCACCTAGTGCTCCCAAC

Ptch2-R: GTGCCCCCTAGTAGCAGTTC

Dvl2-F: AGCAGTGCCTCCCGCCTCCTCA

Dvl2-R: CCCATCACCACGCTCGTTACTTTG

Sufu-F: TACTACGGACAGTGCCCATT

Sufu-R: GTCTGTCTCAATGCCTTTGTCA

Gli1-F: GAATTCGTGTGCCATTG

Gli1-R: GGACTTCCGACAGCCTTCAA

For western blotting analyses, total protein extracts from mouse primary keratinocytes and from
G2N2C cells were collected in a sample buffer (10% Glycerol, 0.01% Bromophenol Blue, 0.0625 M
Tris-HCl pH 6.8, 3% SDS, 5% ß-mercaptoethanol) and run by gel electrophoresis. Blots were
immunostained with an anti-DVL2 antibody (Elabscience E-AB-31246, 1:1000) and then with an
anti- α-Tubulin antibody (SIGMA/T6074, clone B-5-1-2, 1:5000). Immunoreactivity was revealed
by chemiluminescence.

For scratch wound assay, G2N2C cells were seeded in 12-well plates at a density of 4 × 104 cells/well
for transfection. At this density, cells reached monolayer confluency after 48 h and were treated with
Mitomycin C (M4287-Sigma-Aldrich) diluted in medium (4 µg/mL) for 2 h. Wounds were performed
by dragging a sterile pipette tip across the monolayer and then imaged by time-lapse microscopy.
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During acquisition of movies, cells were incubated in a humidified chamber at 37 ◦C, 5% CO2 in the
complete medium and monitored for 96 h at 37 ◦C. A phase-contrast image was acquired in three
regions along the wound every 24 h after wounding on a fully motorized DMI4000B (Leica) microscope
with a Plan APO 5x and 10× objectives using LAS-AF software.

4.5. Statistics

All data were expressed as means ± SD from independent experiments. Statistical significance of
differences was tested using the t-test. p-values < 0.05 were considered as statistically significant.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/2/607/s1.
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