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• The non-detects can impact on 
Component-Based Mixture Risk Assess
ment (CBMRA). 

• Guidance map and criteria are strategic 
for addressing non-detects in CBMRA. 

• The informed CBMRA reduces the un
certainty about non-detects in risk 
decision. 

• The approach used for handling non-de
tects in CBMRA must be clearly reported.  
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A B S T R A C T   

Aquatic organisms are exposed to ever-changing complex mixtures of chemicals throughout their lifetime. 
Component-Based Mixture Risk Assessment (CBMRA) is a well-established methodology for water contaminant- 
mixture management, the use of which is growing due to improved access to reference ecotoxicity data and 
extensive monitoring datasets. It enables the translation of measured exposure concentrations of chemicals into 
biological effect values, and thus to quantitatively estimate the risk of the whole water sample (i.e., as a mixture). 
However, many factors can bias the final risk decision by impacting the risk metric components; thus, a careful 
design of the CBMRA is needed, taking into primary consideration the specific features of the dataset and mixture 
risk assessment assignments. 

This study systematically addressed the effects of the most common approaches used for handling the con
centrations of chemicals below the limit of detection/quantification (LOD/LOQ) in CBMRA. The main results 
included: i) an informed CBMRA procedure that enables the tracking of the risk decisions triggered by substances 
below LOD/LOQ, ii) a conceptual map and guidance criteria to support the selection of the most suitable 
approach for specific scenarios and related interpretation; iii) a guided implementation of the informed CBMRA 
on dataset of pesticide concentrations in Italian rivers in 2020 (702,097 records).  
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1. Introduction 

Throughout their lifetime, organisms are co-exposed to thousands of 
chemicals of anthropogenic origin (Scholz et al., 2022). Aquatic eco
systems are particularly threatened by pollution since they often serve as 
the final recipients of effluents from industry and municipal wastewater 
treatment plants, as well as of agriculture and surface runoff. This 
“cocktail of pollutants” (commonly including pesticides, biocides, 
pharmaceuticals, personal care products, surfactants, industrial chem
icals, urban runoff, and non-intentionally produced substances) can pose 
a combined risk to aquatic life. Given the complexity of the chemical and 
toxicological profiles of environmental mixtures, assessing and man
aging them is a concern and a major objective for policy makers aiming 
to ensure good water quality (Bopp et al., 2018). 

The impact of co-exposure on ecosystem health has not yet been 
addressed by regulation (Kienzler et al., 2017b). Worldwide, regulatory 
water monitoring programs typically focus on individual chemicals, 
assessing water concentrations and comparing them with individual 
effect thresholds. For instance, in the EU, the Water Framework Direc
tive (WFD (Directive 2000/60/EC)) defines the Good Chemical Status in 
terms of the compliance with all the Environmental Quality Standards 
(EQS) established for 45 Priority Substances, together with various sets 
of river basin-specific pollutants defined at national level, without 
requiring any consideration of cumulative risk evaluations. However, 
given the growing pressure to progress towards a “non-toxic environ
ment”, the scientific community is actively involved in developing a 
multi-substance approach (Bopp et al., 2018; Brack et al., 2018; Post
huma et al., 2019a; Scholz et al., 2022) including: 1) advanced analyt
ical chemical techniques enabling non-targeted screening of chemicals; 
2) effect-based monitoring for the direct detection of cumulative effects 
(including unmonitored, unknown, and undetected substances) and 
possible identification of specific modes of action (Escher et al., 2020; 
Villeneuve et al., 2019); 3) effect-directed analysis of toxicity drivers 
(Brack et al., 2016); 4) concepts and computational methodologies to 
bridge the gaps in ecotoxicological data (Barron et al., 2021; Gutsell 
et al., 2015; Kienzler et al., 2017a); 5) chemical and toxicological 
quantitative footprints to summarize and communicate trends in 
chemical pollution and support management (Brack et al., 2018). 

Within the latter pillar, Component-Based Mixture Risk Assessment 
(CBMRA) is a cost-effective tool for screening-level ecological risk 
assessment that can be applied across various levels of expertise (Post
huma et al., 2019a). CBMRA is a well-established and pragmatic 
methodology that assesses the cumulative toxicity of environmental 
mixtures using information on their chemical composition (i.e., 
Measured Environmental Concentrations - MECs). CBMRA tools 
commonly involve the conversion of contaminant exposure concentra
tions into effect/risk-related values (e.g., risk quotient (RQ); toxic unit 
(TU)) based on their effect on representative organisms or species as
semblages (e.g., regulatory or reference values, such as Predicted No 
Effect Concentration - PNEC, legally binding EQS, and/or metrics 
derived from Species Sensitivity Distributions - SSDs). Through the 
application of mixture effect models, these standardised “toxic equiva
lents” are used to estimate the overall risk, including the contribution of 
all the investigated substances resulting below the related effect 
thresholds or analytical limits (i.e., summation of Toxic Units - 

∑
TU; the 

summation of RQ - 
∑

RQ; multi-substance Potentially Affected Fraction 
of species, − msPAF; pharmacologically based mixture models (Back
haus and Faust, 2012; Posthuma et al., 2019a)). 

In practice, CBMRA can be applied to address a number of pragmatic 
objectives in mixture risk assessment, including: i) prioritizing water 
bodies and chemicals for action (Henning-de Jong et al., 2008; Post
huma et al., 2018), ii) controlling effluents from wastewater treatment 
plants (Finckh et al., 2022), and iii) screening the chemical toxic pres
sure on a large scale (Bradley et al., 2021; Chen et al., 2020; Corsi et al., 
2019; Gustavsson et al., 2017; Lei et al., 2021; Markert et al., 2020; 
Rämö et al., 2018; Rodea-Palomares et al., 2023; Rorije et al., 2022). The 

application of CBMRA for these purposes has seen recent growth thanks 
to advancements in the accessibility of high-quality ecotoxicological 
data and MECs recorded during water quality monitoring programs 
worldwide (e.g., open-access sources: US EPA ECOTOX DB, CompTox 
Chemistry Dashboard, QSAR TOOLBOX, NORMAN, European Chemical 
Agency (ECHA) information on chemicals, EnviroTox database, Pesti
cides Properties DataBase, IPCHEM). In fact, online platforms collecting 
and sharing consolidated experimental ecotoxicity data enable the 
identification of more sound threshold limit values for several pollut
ants, while in silico tools help bridge ecotoxicity data gaps for data-poor 
chemicals (e.g., QSAR, read-across, grouping, EcoToxicological 
Threshold of Concern (Eco-TTC)); open-access repositories for chemical 
water pollution data support identification of pollution trends and 
typical mixtures on a larger scale (Barron et al., 2021; Beasley et al., 
2015; Belanger et al., 2015; Connors et al., 2019; Olker et al., 2022; 
Williams et al., 2017). 

Despite its increasing applicability, it is well acknowledged that 
CBMRA reliability depends on many factors associated with all com
ponents of the metrics (Jesenska et al., 2013; Markert et al., 2020). 
Therefore, the reasons behind any choice need to be evaluated in depth 
and reported. A factor that can significantly impact the CBMRA decision 
regards the approach used for handling data below the limits of detec
tion (LOD) or quantification (LOQ) (from here on, they are generically 
referred to as records below the method limit: records < ML). Records < 
ML can represent a sizable part, or even the dominant part, of envi
ronmental monitoring datasets. Therefore, the issue can arise as to 
whether the approach to their handling can significantly drive the risk 
decision, resulting in insufficient protection or risk overestimation. Risk 
decisions of particularly difficult interpretation are those triggered by 
substances always assessed below their ML (from here on, non-detected 
substances, or non-detects). In fact, in routine applications of CBMRA, 
risk decisions can be triggered by: i) single non-detects monitored by the 
use of analytical methods not sensitive enough to assess low concen
trations already toxic to the organisms (i.e., method limits higher than 
the reference toxicity thresholds), or ii) a number of non-detects in a 
cumulative way (Gustavsson et al., 2017). 

In CBMRA, there could be a significant difference in how records < 
ML are treated. Researchers often apply practical methods rather than 
strictly adhering to existing guidelines in various risk assessment (RA) 
domains (Helsel, 2010, 1990; USEPA, 1991, 2000). This is because 
systematically applying these guidelines can be challenging, especially 
when dealing with complex wide-scope pollution screening datasets 
aggregated from different sources and multiple surveys. Therefore, the 
majority of published CBMRA studies have adopted various approaches 
for managing records < ML, such as: i) the complete removal of records 
< ML from the dataset (Rorije et al., 2022), ii) treating them as true zero 
concentration (Finckh et al., 2022; Rodea-Palomares et al., 2023), or iii) 
replacing them with fractions of the ML values (Finckh et al., 2022) 
besides the use of ML values tout court (Rodea-Palomares et al., 2023). At 
times, authors have applied more than one approach to investigate the 
impact from different data treatments and deal with the related uncer
tainty (Finckh et al., 2022; Gustavsson et al., 2017; Kienzler et al., 2019; 
Rodea-Palomares et al., 2023). Nevertheless, it is often difficult to un
derstand why a certain approach is selected over another; and how the 
results can be compared to the available alternative approaches; as well 
as how reliable the final CBMRA result is. 

The present work highlights the importance of considering how the 
choice of approach for handling records < ML can impact the risk 
evaluation within the CBMRA context. To practically address this 
objective, the paper focused on:  

1) defining an informed CBMRA procedure that traces the role of records 
< ML in the risk evaluation and discriminates between risk decisions 
triggered by non-detects;  

2) developing a conceptual map and guidance criteria that facilitate: i) 
the selection of the most suitable approach for handling records < 
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ML under specific mixture risk assessment (MRA) assignments, and 
ii) the correct interpretation of the CBMRA outcome; 

3) implementing the developed informed CBMRA procedure, the con
ceptual map, and the guidance criteria in a specific case-study, 
thereby validating these tools and demonstrating their practical 
effectiveness. 

The paper's ambition was to develop tools that are sufficiently broad 
and flexible to accommodate a large variety of CBMRA end-goals and 
monitoring datasets and, possibly, find applications beyond the default 
approaches considered in the present study. 

2. Materials and methods 

2.1. Informed CBMRA procedure 

The development of informed CBMRA procedure was based on: i) the 
use of RQ under the assumption of the concentration addition model; ii) 
the assumption of a unique ML value for each substance in a mixture; iii) 
the similar handling of records < LOD and records < LOQ; and iv) the 
aggregation of concentrations recorded within a selected time-span and 
monitoring area (hereafter, time-space unit, TSU). Briefly, the RQ is 
computed for each substance i (RQi) in the mixture (TSU) by dividing the 
exposure level (i.e., measured environmental concentration, MECi) by 
the correspondent effect level (i.e., reference toxicity threshold, TTi; eq. 
1). Then, the risk due to the simultaneous exposure to multiple 

Fig. 1. Problem formulation outline underneath the informed CBMRA. Questions driving the transition of the standard CBMRA to the informed CBMRA. This 
advancement entails breaking down the risk complexity into separate subcomponents meaningful for the risk posed by i) single detects, ii) a group a detects 
cumulatively, iii) single non-detects, iv) a group of non-detects cumulatively. The diagram shows the intended five risk notifications (with the associated operational 
elements) in the priority order dictated by the selected problem formulation logic. Users can design alternative outlines, as needed. Abbreviations: RQi: risk quotient 
of the substance i; RQdi : risk quotient of the detected substance i; RQndi : risk quotient of the non-detected substance i. 
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chemicals is calculated as a linear aggregation (sum) of the RQi 
computed for all substances in the mixture (eq. 2). When 

∑
TSURQi is 

below 1, there is no appreciable risk to aquatic life. 

RQi =
MECi

TTi
(1)  

∑

TSU
RQi = RQx +RQj +RQy +… (2) 

Compared to the standard RQ-based CBMRA, the informed CBMRA 
procedure was intended to provide the following additional informa
tion: 1) to notify whether the risk evaluation is decided by detected 
substances vs non-detected substances; 2) to notify when some chem
icals can be of concern already individually or, contrarily, when risk is 
exclusively a matter of mixture exceedance. The diagram in Fig. 1 shows 
the problem formulation outline that underlies the informed CBMRA 
developed for the present study. It presents the questions addressed 
stepwise and the resulting risk notifications. This approach entails 
breaking down the risk complexity into four separate subcomponents 
assessing the harm specifically posed by i) single detects, ii) a group of 
detects cumulatively, iii) single non-detects, iv) a group of non-detects 
cumulatively. In this regard, users have the flexibility to design a 
different problem formulation outline for their case-study by applying 
different decision rules. 

2.2. Conceptual map and criteria to guide the selection of the approach 
for handling records < ML 

Being a solution-oriented tool for chemical prioritization and man
agement, real-world CBMRA is commonly performed to meet specific 
MRA assignments (e.g., setting priorities among impacted water bodies 
for further monitoring and action; identifying risk drivers; evaluating 
the impact of specific land uses; prioritizing chemicals for abatement or 
mitigation measures; anticipating the effects of future emission sce
narios; monitoring pollution trends; exploring possible impacts of future 
developments in society (Posthuma et al., 2019a)). The MRA question at 
hand typically establishes the exposure scenario and the conditions 
under which it is necessary to make the risk-related decision (e.g., con
servative decision, over-protective decision, decision with the highest 
relative certainty, realistic decision, decision under worst/best sce
nario). The method for handling records < ML can affect how the 
planned decision setting is actually implemented. 

The development of the conceptual map aimed to establish a 
coherent foundation for identifying the most suitable handling option to 
align with the MRA assignment, thereby securing the achievement of the 
final protection and management goal. It is intended to be used in 
conjunction with the informed CBMRA procedure. The map compares 
the roles of detects and non-detects in triggering single-substance and 
cumulative risk across common handling approaches, pinpointing the 
specific approaches that are the most and the least effective in ac
counting for these risks. This information is then used to set objective 
criteria for selecting the handling approach that best fits the exposure 
scenarios and the final MRA goal. 

The map was generated from both exclusion and substitution criteria 
commonly used to deal with records < ML. More precisely, the selected 
exclusion criteria include: i) no records < ML eliminated, ii) records < 
ML with MLi ≥ TTi eliminated, iii) records < ML with MLi ≥ a fraction of 
TTi eliminated, and iv) all records < ML eliminated. The criterium iii) 
represents the possible circumstance where the minimal analytical 
performances required for the methods used under regulatory moni
toring are retrospectively applied for selectively excluding records < ML 
(e.g., for WFD monitoring, Directive 2009/90/EC requires that methods 
feature a LOQ value equal to or lower than 30 % of the associated EQS 
(Directive 2009/90/EC)). The selected substitution criteria involve 
replacing records < ML with: i) full ML values, ii) fixed fractions of ML 
values, and iii) zero value. The map is built on the simplest case in which 

each substance in a mixture (TSU) is assigned a single ML value. 

2.3. Background considerations about the proposed case-study 

The informed CBMRA procedure was applied to the 2020 Italian 
freshwater pesticide dataset (ISPRA, Rapporti 371/2022), handling the 
records < ML by ten different approaches closely following the con
ceptual map. The conceptual map and guidance criteria were then used 
to identify the most suitable approach to be used under representative 
MRA assignments. 

In 2020, water sampling and analytical measurements were carried 
out by Italian Regional Environmental Agencies under the WFD moni
toring program. The full dataset included 764,069 individual MECs (i.e., 
a total of 406 chemicals resulting from 1836 sampling sites across Italian 
rivers); in particular, 740,656 records (i.e., 96.9 % of the total dataset) 
referred to non-quantified concentrations (records < LOQ). 

The average annual concentration of each monitored substance at 
each sampling station was considered to derive the co-exposure infor
mation (i.e., TSU = sampling site – year combination). To calculate the 
RQi, the hazard concentration for 5 % of species (HC5) derived from 
chronic species sensitivity distribution (SSDNOEC) was used as the 
reference toxicity threshold. This hazard metric characterizes the con
centration below the No Observed Effect Concentration (NOEC) for 95 % 
of the species in an assemblage (Posthuma et al., 2001). Practically, HC5 
values were extracted from the SSDNOEC recently computed by Posthuma 
et al. (2019b) in an extensive effort to screen, aggregate, and analyse 
patterns in global ecotoxicity database for 12,386 chemicals. 

The exclusion criteria applied to the proposed case-study included: i) 
no records < LOQ excluded, ii) records < LOQ with LOQi ≥ HC5i 
excluded, iii) records < LOQ with LOQi ≥ 1/3 HC5i excluded, and iv) all 
records < LOQ excluded. Regarding the substitution criteria, the three 
numerical concentration values used to replace records < LOQ corre
sponded to: i) LOQ, ii) half LOQ, and iii) zero. 

Before running the CBMRA, the dataset underwent a preliminary 
curation to meet the objectives of this exercise. We retained records 
reporting surficial MECs associated with substances with available 
SSDNOEC in Posthuma et al. (2019b). Controls were conducted to identify 
possible duplicated data and typos. After the refining procedure, the 
consolidated dataset featured 702,097 records covering 353 chemicals 
and 1798 sampling locations; 680,094 records (i.e., 96.9 % of the whole 
consolidated dataset) were records < LOQ. In order to validate the 
conceptual map, LOQ values were equalized when multiple values 
existed for the same substance at the same TSU (from here on, we refer 
to it as the LOQ-equalized dataset). The results of the informed CBMRA on 
the LOQ-equalized dataset are presented in this manuscript. However, to 
demonstrate the applicability of the developed tools to datasets with 
non-uniform LOQ values, the informed CBMRA was also carried out in 
the original dataset and results are reported in Supporting Information 
File 2. 

Technically, the informed CBMRA procedure was implemented with 
the support of Microsoft Excel 2016. 

3. Results 

3.1. Informed CBMRA procedure: description 

The classification and computation steps required by the informed 
CBMRA are presented in Tables 1–2. Initially, substances within each 
TSU are classified as detects or non-detects (Table 1, step 1). Briefly, 
substances measured at concentrations higher than their associated ML 
at least once within a TSU are classified as detects, whereas substances 
with their concentrations always below their ML are defined as non- 
detects. The risk quotient is then computed for each substance i (RQi) 
according to eq. 1 (step 2 and step 3), and classified based on its po
tential to harm (i.e., TTi exceedance; step 4). At the end of this two-step 
classification, all chemicals fall into one of the four RQi classes: 
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– detected substance i that poses harm singly (RQdi ≥ 1)  
– detected substance i that does not raise individual concern 

(RQdi < 1)  
– non-detected substance i that triggers risk at single substance level 

(RQndi ≥ 1)  
– non-detected substance i that does not trigger risk at single substance 

level (RQndi < 1) 

Four risk components are then calculated to assess the cumulative risk 
posed by each RQi class (step 5). Risk components are operationally ob
tained by summing the RQi of substances belonging to the same RQi 
class, according to eq. 2 (i.e., 

∑(
RQdi ≥ 1

)
, 

∑(
RQdi < 1

)
, 

∑(
RQndi ≥ 1

)
, 
∑(

RQndi < 1
)
). Thus, the overall risk of a mixture (TSU) 

corresponds to the sum of the four risk components (step 6). 
By applying the definition of risk in CBMRA (

∑
TSURQi ≥ 1), 

ecological threat is not negligible when at least one of the four risk 
components is equal to or greater than 1 (i.e., 

∑(
RQdi ≥ 1

)
≥ 1; 

∑

(
RQdi < 1

)
≥ 1;

∑(
RQndi ≥ 1

)
≥ 1;

∑(
RQndi < 1

)
≥ 1), or when com

ponents that are not a concern by themselves have a cumulative risk of 1 
or more (i.e., 

( ∑(
RQdi < 1

)
+
∑(

RQndi < 1
) )

≥ 1). These five condi
tions represent the risk alerts of the informed CBMRA procedure 
(Table 2). Finally, the last two steps entail identifying all “active” risk 
alerts in a TSU (step 7, Table 2) and the priority one (step 8), i.e., the risk 
alert driving the final informed risk decision based on the priority order 

dictated by the CBMRA problem formulation (Fig. 1). 
The decision-key within the CBMRA framework of Fig. 1 is reported in 

Table 2. It identifies twenty possible risk patterns and their corre
sponding informed risk decisions. This specific assessment primarily 
notifies when the risk is triggered by detects or non-detects and, secondly, 
when risk results from particular compounds exceeding their safe levels 
(i.e., single substance risk) or, on the contrary, from the cumulative 
contribution of many substances (i.e., cumulative risk). Emphasising 
that the system reacts to specific alerts leaving hidden some others that 
could potentially co-exist due to the chosen prioritization, users are 
advised to carefully tailor their decision logic at the problem formula
tion stage (i.e., an informed CBMRA outline) in order to make risk con
clusions informative of the risk type they deemed as the most critical. 

As depicted in Table 2, the informed CBMRA decisions are consistent 
with the standard CBMRA decisions in terms of distinguishing between 
risk/no risk concern. However, in addition, they differentiate:  

• TSUs where the risk is driven by detects. Within this group, the 
assessment further discriminates whether the risk is already driven 
by detects individually (i.e., single substance risk) or, alternatively, 
when mixture components, although compliant with their own 
safety thresholds, sum up to unacceptable levels (i.e., cumulative 
risk); 

Table 1 
Informed CBMRA workflow. a) Steps 1–3. The table refers to the model substances x, y, and z, each repre
senting one of the three possible patterns of measured environmental concentrations (MECs; i.e., x: all MECx 
above the method limit (MLx); y: at least one MECy below MLy; z: all MECz below MLz). It provides the scheme 
to classify substances in a mixture (TSU) as detects and non-detect (step 1) and the equations for computing 
individual risk quotients (RQi; steps 2, 3). b) Steps 4–6. Starting from the output of step 3 (i.e., RQi classified 
as detected RQi (RQdi ) and non-detected RQi (RQndi )), the table provides the scheme to further classify in
dividual RQi based on whether they exceed their associated toxicity thresholds (TTi, step 4). Additionally, it 
provides equations for calculating each risk component (step 5) and the overall cumulative risk (step 6). 
Abbreviations: ML: analytical method limit; di: average concentration of the detected substance i; ndi: nu
merical concentration value substituting record < MLi; TTi: Toxicity Threshold of the substance i; RQdi : risk 
quotient of the detected substance i; RQndi : risk quotient of the non-detected substance i. 
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• TSUs where the risk is triggered by a group of non-detects that 
cumulatively exceed the risk threshold of 1. These cases can raise the 
issue of dataset oversizing.  

• TSUs where the risk is triggered by at least one single non-detect 
monitored via analytical methods not sufficiently sensitive to detect/ 
quantify low concentrations already toxic for organisms (i.e., the 
method limit is higher than the reference toxicity threshold). These 
cases call into question the sensitivity of the analytical methods 
employed to track target pollutants. 

It is important to note that while the knowledge of the role of detects 
vs non-detects in the risk decision is informative for uncertainty, the 
knowledge of the risk type (single substance exceedance vs mixture 
exceedance) has a solution-oriented value as it helps to better focus the 
subsequent steps of the MRA path. 

Technically, the informed procedure can be implemented through a 
spreadsheet which can operationalize the steps described above (e.g., 
Microsoft Excel). 

3.2. Conceptual map and guidance criteria 

The developed map is shown in Fig. 2. It considers ten approaches for 
handling records < ML (10 squares in the central grid) obtained by 
combining the exclusion and substitution criteria selected in Section 2.2. 
Each substance monitored within a TSU is assumed to have a unique 
LOQ value. 

The map develops from the systematic analysis of the variation 
pattern of three mixture elements sensitive to handling treatments of 
records < ML: 1) the number of non-detects (n◦ ndi), 2) the concentration 
value assigned to non-detects (ndi), and 3) the average concentration of 
detects (di). The two external blocks graphically outline their variation 
when applying the exclusion and substitution criteria separately. These 
changes are closely linked to the variation of the four risk components (i. 
e.,
∑(

RQdi ≥ 1
)
; 
∑(

RQdi < 1
)
; 
∑(

RQndi ≥ 1
)
; 
∑(

RQndi < 1
)
) and of the 

number of non-assessable TSUs (n◦ na TSUs), which are depicted in the 
lower part of the blocks. 

The inner grid represents the core of the conceptual map, displaying 

Table 2 
Informed CBMRA workflow: steps 7–8. The table can be intended as the decision-key linked to the CBMRA 
outline of Fig. 1. It shows the five risk alerts of the informed CBMRA and lists all the risk patterns that can result 
from their possible co-occurrence. For each risk pattern, it indicates the informed CBMRA decision by iden
tifying the priority risk alert. Operationally, for a given TSU, assessors identify the risk pattern based on the 
“active” risk alerts (step 7), and the associated informed CBMRA decision (step 8). Additionally, the standard 
CBMRA decision is provided here for the purpose of comparison. Abbreviation: RQdi : risk quotient of the 
detected substance i; RQndi : risk quotient of the non-detected substance i. 
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the pattern of variation of the four risk components and n◦ na TSUs across 
the 10 handling approaches. This variation pattern is visually depicted 
by the size of the overlapped areas obtained by superimposing the 
variation trends of the risk components and n◦ na TSUs under the 
exclusion and substitution criteria separately (intense colour). 

The notes on the right side of the map identify in which handling 
approach the magnitude of each risk component and the number of na 
TSUs are biased at the maximum and at the minimum. As explained 
below, this information represents the foundation for identifying guid
ance criteria supporting the selection of the most suitable handling 
approach on a case-by-case basis. 

The guidance for decisions of risk/no risk concern, as depicted in 
Fig. 3, addresses 4 default CBMRA assignments: a) decision of risk with 
the relative highest certainty, b) decision of risk under the worst-case 
scenario, c) decision of risk under the conservative scenario, and d) 

decision of no risk concern under the conservative scenario. For each 
decision setting, it specifies: i) the relevant informed risk notifications to 
consider, ii) the conditions underpinning the intended decision of risk/ 
no risk concern (i.e., guidance criteria), and iii) the handling approaches 
that implement these criteria (framed approaches in the map). The suite 
of reference CBMRA assignments is not exhaustive, and more specific 
scenarios can be addressed by users by extending its rationale. 

Overall, Fig. 3 points out that the criteria underlying a planned de
cision may lead to either distant handling approaches (Fig. 3c, d) or 
approaches that could be considered questionable under common cir
cumstances (Fig. 3a, b). On the latter aspect, for example, replacing 
records < ML with a true zero concentration usually demands strong 
weight-of-evidence arguments by assessors, as it can result in the un
derestimation of exposure to potentially sensitive organisms. Similarly, 
deleting all records < ML can lead to the loss of valuable information. In 

Fig. 2. Guidance Map. Map showing the relative magnitude of the risk components and number of non-assessable TSUs (n◦ na TSUs) in ten handling approaches 
applying increasingly selective criteria of exclusion and substitution of records < ML. The map assumes that each substance in a TSU has a unique ML value (i.e., the 
mean concentration value assigned to non-detects (ndi) corresponds to the concentration value chosen for replacing records < MLi). In the two blocks dedicated to the 
exclusion and substitution criteria, the map shows: i) the pattern of variation of mixture elements which are sensitive to handling treatments of records < ML (i.e., 
number of non-detects (n◦ ndi), the concentration value assigned to non-detects (ndi), and the average concentration of detects (di)), ii) the resulting variation trends of 
the four risk components (i.e., 

∑(
RQdi ≥ 1

)
; 
∑(

RQdi < 1
)
; 
∑(

RQndi ≥ 1
)
; 
∑(

RQndi < 1
)
) and n◦ of na TSUs. In the central grid, the map shows the relative magnitude 

of the risk components and n◦ of na TSUs for the ten approaches resulting from the combination of the overlying criteria (i.e., graphically derived by the size of the 
overlapped area obtained by superimposing the variation trends of the risk components under the exclusion and substitution criteria separately). The map highlights 
the approaches where the highest and the lowest values for risk components and n◦ na TSUs are observed. Abbreviations: MLi: analytical method limit of the substance 
i; HC5i: hazard concentration safe for the 95 % of a species assemblage; n◦ ndi: number of non-detects; di: average concentration of the detected substance i; ndi: 
numerical concentration value substituting record < MLi; TTi: toxicity threshold of the substance i; RQdi : risk quotient of the detected substance i; RQndi : risk quotient 
of the non-detected substance i; n◦ na TSUs: number of non-assessable TSUs. 
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Fig. 3. Guidance criteria to select the approach for handling records < ML under default MRA assignments. The guidance provides instructions for i) identifying the 
informed decisions that require attention, ii) understanding the conditions that support these decisions (i.e., guidance criteria), and iii) identifying the handling 
approaches that implement the identified criteria (framed approaches in the map). The guidance is provided with reference to the following MRA assignments: a) 
decision of risk with the relative highest certainty, b) decision of risk under the worst-case scenario, c) decision of risk under the conservative scenario, and d) 
decision of negligible risk under the conservative scenario). Abbreviations: LOQ: limit of quantification; HC5i: hazard concentration safe for 95 % of a species 
assemblage; n◦ ndi: number of non-detects; di: average concentration of the detected substance i; ndi: numerical concentration value substituting record < MLi; TTi: 
toxicity threshold of the substance i; RQdi : risk quotient of the detected substance i; RQndi : risk quotient of the non-detected substance i; n◦ na TSUs: number of non- 
assessable TSUs. 
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fact, this procedure can turn mixtures that did not reveal hazardous 
contamination (i.e., mixtures featuring only non-detects with 
∑

RQndi < 1) into non-assessable TSUs. Furthermore, this approach can 
lead to an unrealistic overestimation of the average concentrations of 
detects (di), justifiable only under the requirement of worst-case 
scenarios. 

Due to these limitations, the final decision should rely on “expert- 
evaluation”, where assessors evaluate the obtained guidance on a case- 
by-case basis, considering additional factors (e.g., the relative proportion 
of detected and non-detected risk in the dataset, the availability of 
additional information, level of realism, etc.). The disentanglement of 
the risk complexity into four distinct risk components, meaningful for 

Fig. 4. Map validation. Magnitude of the risk components and number of non-assessable TSUs output by the informed CBMRA performed on the case-study dataset 
(LOQ-equalized) treated according to the ten target handling approaches. Information is provided at the dataset scale. Within each approach, the numbers along the 
diagonal correspond to: a) the magnitude of the four risk components (i.e., 

∑(
RQdi ≥ 1

)
; 
∑(

RQdi < 1
)
; 
∑(

RQndi ≥ 1
)
; 
∑(

RQndi < 1
)
) and the number of na TSUs; b) 

the overall magnitude of detected risk (i.e., 
∑

RQdi =
∑(

RQdi ≥ 1
)
+

∑(
RQdi < 1

)
) and non-detected risk (i.e., 

∑
RQndi =

∑(
RQndi ≥ 1

)
+

∑(
RQndi < 1

)
); c) the 

number of RQi used to compute each risk component (i.e., n◦
(
RQdi ≥ 1

)
; n◦

(
RQdi < 1

)
; n◦

(
RQndi ≥ 1

)
; n◦

(
RQndi < 1

)
); d) the total count of detected and non-detected 

RQi (i.e., n◦RQdi ; n
◦RQndi ). Validation is proved by the consistency between the trends outlined by the conceptual map and those indicated by the computed risk 

magnitude (a, b). Fig. 4d highlights that the approaches using the same exclusion criteria are based on the same sub-datasets (i.e., n◦RQdi and n◦RQndi ). Furthermore, 
it demonstrates that applying increasingly stricter exclusion criteria progressively reduces the n◦RQi, as visible for the non-detected risk component (n◦RQndi ). The 
unchanged number of n◦RQdi across the approaches (with the exception of the approach eliminating all records < LOQ) has to be considered a haphazardness 
associated with the specific features of the case-study dataset. Abbreviations: LOQ: limit of quantification; HC5: hazard concentration safe for 95 % of a spe
cies assemblage. 
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uncertainty and risk type (i.e., single substance vs. mixture), helps as
sessors identify the key elements that should influence the final risk 
decision, and thus the most appropriate handling option. Risk managers 
would take a similar approach, but in the opposite direction, to correctly 
interpret CBMRA outcomes. In fact, given the data handling pipeline, 
they would correctly evaluate the risk decision considering the uncer
tainty brought by the treatment applied for handling records < ML. 

3.3. A perspective of the informed CBMRA application from the case- 
study 

The informed CBMRA procedure was applied to the 2020 Italian 
freshwater pesticide dataset (LOQ-equalized) to achieve the following 
goals: 1) to provide a real-world interpretative context for the concep
tual map and guidance criteria, 2) to compare the informed CBMRA 
outcomes obtained under the application of ten handling approaches, 
and 3) to critically evaluate the use of the map and criteria to guide the 
selection of the most suitable approach under specific MRA assignments. 
The following three subsections describe the evidence in response to 
these scopes. An example of the spreadsheet used for computation is 
provided in Supporting Information File 1. The environmental signifi
cance of CMBRA results is not commented on here due to being out of 
the scope of the present work, and further aspects, beyond the handling 
of record < ML, would have been considered for this purpose (e.g., HC5i 
quality score, minimum number of samples to ensure meaningful annual 
concentration average, minimum number of chemicals to ensure 
meaningful mixture metrics) (Price et al., 2012). 

3.3.1. Conceptual map validation 
The magnitude of the risk components and the number of non- 

assessable TSUs (n◦ na TSUs) computed upon treating records < LOQ 
is reported in Fig. 4 according to the ten target handling approaches. 
More precisely, Fig. 4a reports the sum of RQi featuring each single risk 
component (i.e., 

∑(
RQdi ≥ 1

)
; 

∑(
RQdi < 1

)
; 

∑(
RQndi ≥ 1

)
; 

∑(
RQndi < 1

)
), whereas Fig. 4b presents the same information in rela

tion to the overall detected risk (i.e.,
∑

RQdi =
∑(

RQdi ≥ 1
)
+

∑(
RQdi < 1

)
) and non-detected risk (i.e., 

∑
RQndi =

∑(
RQndi ≥ 1

)
+

∑(
RQndi < 1

)
). In support of this information, the numbers of RQi un

derpinning summations are reported symmetrically in the two maps 
below (Fig. 4c and d, respectively; see comments in the caption). 

The conceptual map's proof-of-concept is demonstrated by the con
sistency between its relative trends and the risk magnitude values 
computed from the study, as detailed below. 

Focusing on the detected risk components, Fig. 4b proves that their 
overall magnitude (

∑
RQdi ) aligns with the map's trend. Correctly, this 

pattern is not visible when looking at the two detected risk components 
individually (Fig. 4a, i.e., 

∑(
RQdi ≥ 1

)
and 

∑(
RQdi < 1

)
). This phe

nomenon can occur because, as more stringent exclusion criteria are 
applied, the “dilution effect” of records < LOQ on the average concen
tration of detects (di) progressively reduces, affecting the relative pro
portion of the two detected risk components (i.e., some RQdi < 1 can turn 
into RQdi ≥ 1). 

With respect to the non-detected risk components (i.e., 
∑(

RQndi ≥ 1
)

and 
∑(

RQndi < 1
)
), Fig. 4a confirms that they are present when no re

cord < LOQ is excluded, and they are absent when all such records are 
eliminated. Gradually stricter exclusion criteria in-between result in the 
elimination of 

∑(
RQndi ≥ 1

)
and in the reduction of 

∑(
RQndi < 1

)
. 

Fig. 4a also highlights a distinctive feature of the informed CBMRA in 
LOQ-equalized datasets: the two approaches substituting with full LOQ 
values i) all records < LOQ and ii) the ones that remain after removing 
those with LOQ ≥ HC5, yield the same 

∑(
RQndi < 1

)
. 

Fig. 4b demonstrates that the choice of substitution has a significant 
impact on the magnitude of the non-detected risk. It highlights that the 
overall 

∑
RQndi halves when halving the replacing concentration value 

(i.e., from LOQ to ½ LOQ), and it zeros when substituting with zero. This 
phenomenon does not apply to detected risks. 

Lastly, Fig. 4a indicates that the approach eliminating all records < 
LOQ results in the highest proportion of non-assessable TSUs, as pre
dicted by the conceptual map. 

3.3.2. Informed risk decision 
A summary of the informed risk decisions obtained under the ten 

handling approaches is represented in Fig. 5. Each pie chart shows the 
proportion of the TSUs that were evaluated to be: i) unconcerned about 
the cumulative risk, ii) at risk according to the five risk notifications, and 
iii) not assessable (na) since they had less than two substances present. 
More detailed results are reported in Supporting Information File 1 (i.e., 
risk evaluations assigned to each TSU under the 10 handling 
approaches). 

Overall, the general outcome is aligned with the pattern anticipated 
by the map. Eliminating all records < LOQ resulted in a high proportion 
of na TSUs. As mentioned in Section 3.2, many of these na TSUs were 
assessed unconcerned about risk under other approaches (Supporting 
Information File 1), confirming the potential loss of valuable informa
tion when using this option. 

When evaluating TSUs with no appreciable risk, the best scenario 
was obtained with the true zero substitution, whereas the worst scenario 
was obtained with the replacement of all records < LOQ with the full 
LOQ value. 

Risk decisions triggered by non-detects were absent in the approaches 
that eliminated all records < LOQ or replaced them with zero. Single 
non-detects triggering risk decisions were present only when no records 
< LOQ were eliminated. The full deletion of these records in the ap
proaches applying different elimination criteria reveals, conversely, 
situations of no concern or risk triggered by non-detects cumulatively 
(Supporting Information File 1). This outcome is a consequence of 
prioritizing risk alerts based on single substance exceedance over 
mixture exceedance such as in the proposed case-study (Fig. 1 and 
Table 2). 

Using increasingly stricter exclusion criteria progressively reduced 
the proportion of TSUs deemed at risk in favour of negligible risk 
decisions. 

3.3.3. Guidance for expert-evaluation 
The case-study results according to the guidance provided in Fig. 3 

for four representative CBMRA assignments are reported in Fig. 6. They 
highlight the handling approaches that match the criteria (framed ap
proaches) and display the number of TSUs that respond to each target 
decision (numbers on the top-right corners). This guidance represents 
the foundation for assessors to make their expert-evaluation and select 
the handling approach that better fits the case-study's features, as 
exemplified below. 

In the pesticide case-study, the high prevalence of records < LOQ in 
the dataset (97 %) is especially important when assessing risk and no 
risk concern in conservative exposure scenarios (Fig. 6c, d), where non- 
detected risk components influence the decision (i.e., criteria: 
∑(

RQndi ≥ 1
)
MAX; 

∑(
RQndi < 1

)
MAX). In such circumstances, 

substituting all records < LOQ with their full LOQ values is preferred to 
maximize consideration of undetected risk. In contrast, for risk assess
ments with higher relative certainty (Fig. 6a) or under worst exposure 
scenarios (Fig. 6b), where decisions rely solely on detected risk compo
nents (i.e., criteria: 

∑
RQdi MIN and 

∑
RQdi MAX, respectively), the 

prevalence of non-detects becomes irrelevant. 
In the evaluation of risk with higher relative certainty, experts 

should ensure that there is sufficient evidence to support substituting 
values below LOQ with zeros to avoid underestimating risks, and 
consider the best alternative option, if needed (e.g., substituting with 
half the LOQ value). 
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4. Discussion 

All in all, the case-study well-exemplified the significant impact that 
records < ML may have in real-world CBMRA and, in particular, the 
major uncertainty that can arise from data referring to substances al
ways assessed below their LOD/LOQ values (i.e., non-detects). In the 
daily practice of CBMRA, the number of non-detects can result in a high 
proportion because MEC dataset are often gathered from several 
chemical monitoring programs having distant scopes (e.g., extensive 
investigative monitoring, surveillance, targeted diagnostic programs). 
Therefore, especially in the so-called “big data” case-studies, it is 
possible that the suite of monitored substances is excessive, and that 
many substances are monitored through routine analytical methods that 
are not powerful enough to determine whether the retrospectively 
selected toxicity benchmarks are exceeded. In the long term, it is likely 
that analytical methods with lower detection limits will reduce this 
source of uncertainty. 

Through the joint application of the developed tools, the uncertainty 
associated with records < ML can be traced and kept to a minimum 
when interpreted at its best, but it cannot be eliminated. In fact, asses
sors, advised by the conceptual map and guidance criteria, can select the 
approach that minimizes the magnitude of this uncertainty based on the 
MRA question at hand and the available data. Furthermore, through the 
application of the informed CBMRA procedure, they can identify the 
cases (i.e., TSUs) in which risk decisions are driven by non-detects, and 
therefore undeniably affected by higher uncertainty compared to detects- 

triggered risk decisions. This information can facilitate both risk asses
sors and managers in better focusing their efforts during the subsequent 
steps of the risk process. In fact, when additional information is avail
able, enabling the acquisition of exposure data from modelling or the 
realistic evaluation of the likelihood of non-detects' presence (e.g., 
chemical fingerprints for major anthropogenic sources in the area, 
background patterns of water bodies), assessors may attempt to refine 
the assessment. Similarly, risk managers who are aware of these aspects 
can avoid drawing misleading risk conclusions, and take better 
decisions. 

To conclude, it is important to emphasise that the bias introduced by 
the approach for handling records < ML is just one of the causes of 
uncertainty in CBMRA. Other notable biases include missing data on 
toxicity and exposure, methods used for bridging data gaps, data cura
tion and validation approaches, CBMRA assumptions, reference values, 
etc. (Hahn et al., 2014; Scharmüller et al., 2020). Therefore, to coher
ently tackle the overall uncertainty, CBMRA is usually performed within 
more structured frameworks, adopting the principle of a tiered analysis 
(Kortenkamp et al., 2018). According to these systematic tiering pro
cesses, the assessment commonly begins with simplified worst-case as
sumptions concerning chemical exposures and hazards, and progresses 
to the subsequent levels with step-wise refinements and more sophisti
cated concepts only if concerns are pointed out. Within these over
arching frameworks, the tools developed in the present work can 
provide additional support for dealing with CBMRA complexity and 
interpreting results. 

Fig. 5. Results of the informed CBMRA performed on the case-study dataset treated according to 10 approaches for handling records < LOQ. For each handling 
approach, the pie chart reports the number of TSUs, along with their relative percentages, evaluated as either posing negligible concern for cumulative risk, causing 
risk under the five uncertainty notifications, or being non-assessable. Abbreviations: LOQ: limit of quantification; HC5: hazard concentration safe for 95 % of a 
species assemblage. 
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5. Conclusions 

This study focused on the impact of commonly used approaches for 
handling records < ML in the context of CBMRA and stressed the 
importance of working out and transparently reporting the choice of the 
handling method. 

The developed informed CBMRA procedure is a useful addition to the 
standard CBMRA as it traces uncertainty in the final risk decision due to 
substances always assessed below their LOD/LOQ. The conceptualised 
map, in combination with the guidance criteria, can effectively support 
assessors in coherently accommodating the informed CBMRA to a variety 
of assessment situations. The obtained informed outcomes facilitate risk 
professionals to focus on single chemicals or co-exposures that are more 
likely to matter most and take effective measures. The present work 
made these tools ready for use in CBMRA, as demonstrated by their 
application to a real-world case-study. The tools are easy to implement 
and flexible for applications beyond the default approaches considered 
in the present work. 

The utility of CBMRA approaches for obtaining a good approxima
tion of the combined toxicity of mixtures is well recognised. Its use is in 
line with the holistic principles of contemporary water protection 

policies. 
Supplementary material to this article can be found online https:// 

doi.org/10.1016/j.scitotenv.2023.167670. 
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