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Abstract: Insects possess an effective immune system, which has been extensively characterized in
several model species, revealing a plethora of conserved genes involved in recognition, signaling,
and responses to pathogens and parasites. However, some taxonomic groups, characterized by
peculiar trophic niches, such as plant-sap feeders, which are often important pests of crops and
forestry ecosystems, have been largely overlooked regarding their immune gene repertoire. Here we
annotated the immune genes of soft scale insects (Hemiptera: Coccidae) for which omics data are
publicly available. By using immune genes of aphids and Drosophila to query the genome of Ericerus
pela, as well as the transcriptomes of Ceroplastes cirripediformis and Coccus sp., we highlight the lack of
peptidoglycan recognition proteins, galectins, thaumatins, and antimicrobial peptides in Coccidae.
This work contributes to expanding our knowledge about the evolutionary trajectories of immune
genes and offers a list of promising candidates for developing new control strategies based on the
suppression of pests’ immunity through RNAi technologies.
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1. Introduction

Due to their constant exposure to a diverse range of pathogens, parasites, and en-
vironmental stressors, insects exhibit a multi-faceted immune system [1,2]. In addition
to behavioral adaptations and mechanical barriers, such as the exoskeleton, insects have
evolved effective innate immunity that acts through both cellular and humoral responses
directed against invaders [1,3]. Activation of these responses occurs through the recogni-
tion of pathogen-associated molecular patterns (PAMPs) by receptors, known as pattern
recognition receptors (PRRs), located on hemocytes (immune cells) and epithelial cells from
barrier sites throughout the insect’s body [4,5]. Cellular immune responses include phago-
cytosis, nodulation, encapsulation, and melanization events mediated by hemocytes [6–8].
Humoral responses orchestrated by signaling pathways such as Imd, Toll, Jak/Stat, and
JNK lead to the synthesis of various defense enzymes, complement-like proteins, and
antimicrobial peptides (AMPs) in response to infection [9–11]. Immune responses vary
depending on the size and PAMPs of the intruder. Encapsulation and melanization func-
tion as defensive strategies against larger intruders, such as the eggs laid by endophagous
parasitoids [12], whereas AMPs play a central role in mitigating the impact of pathogenic
microorganisms [13,14].

Although the immune system of insects has been extensively studied, the majority
of the studies on this subject are focused on holometabolous species, including the fruit
fly Drosophila melanogaster Meigen (Diptera: Drosophilidae), honey bees, mosquitoes, bee-
tles, and moths [15–19]. One of the first heterometabolous insects for which the immune
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system was characterized at both the genomic and functional levels was the pea aphid
Acyrthosiphon pisum (Harris) (Hemiptera: Sternorrhyncha; Aphididae) [20,21]. Several
studies indicate that this agricultural pest exhibits a reduced immune system [22], which
is enhanced by its secondary bacterial symbionts [23]. The pea aphid is widely accepted
as a model insect for studying a wide range of biological and physiological processes [24],
including those deriving from their interaction with parasites and symbionts [25]. Further-
more, its genetic information [26] has the potential to provide valuable insights into other
hemipteran pests that are less extensively studied. Indeed, recent omics studies pointed
out that immune system reduction is not restricted to aphids, but is a common feature of
several hemipteran species, such as Diaphorina citri (Hemiptera: Liviidae) [27], Plautia stali
(Hemiptera: Pentatomidae) [28], and Rodnius prolixus (Hemiptera: Reduviidae) [29].

Alongside closely related hemipterans such as aphids (Aphidomorpha) and whiteflies
(Aleyrodomorpha) [30], scale insects (Coccomorpha) are sap-sucking and obligate plant
parasites [31,32]. The feeding behavior of scale insects delays plant growth and, in severe
infestations, can lead to the death of the entire plant [31]. Indirect damage derives from
the production of honeydew, which results in the growth of saprophytic fungi, thereby
reducing the rate of plant photosynthesis and causing decline [31]. In addition, some species
may act as vectors of pathogenic viruses [33]. This taxonomic group shows remarkable
diversity in both external and internal morphology, as well as in reproduction and symbiotic
systems, making them a fascinating subject for scientific study [31]. Scale insects, whose
name derives from the commonly produced protective covering (“scale”), exhibit peculiar
adaptations. They have sexual dimorphism, characterized by ephemeral alate males lacking
functional mouthparts and stationary non-winged adult females, which produce a variety
of protective waxy secretions [31].

The majority of these insects, owing to their imbalanced diet rich in carbon, engage in
obligate symbiotic relationships with different species of bacteria or fungi [34–36]. Some
species exclusively harbor a single obligate symbiont responsible for the synthesis of essen-
tial nutrients [37,38], while others form additional associations with facultative symbiotic
organisms [39,40]. Symbiotic microorganisms are housed in specialized cells known as
bacteriocytes (or mycetocytes), fat body cells, or the midgut epithelium or are dispersed in
the hemolymph [34,41].

Among scale insects, the family Coccidae, commonly known as “soft scale insects”,
includes approximately 1180 species worldwide [42]. Some of these are important pests of
crops [43] or forest plants [44]. These pests have a diverse complex of natural enemies that can
control their populations, including commercially available predatory insects and naturally
occurring parasitoids [45]. The most important group of their antagonists comprises chalci-
doid wasps (Hymenoptera: Chalcidoidea) [46,47], which mainly belong to the Encyrtidae,
Aphelinidae, and Eulophidae families [46]. Ladybirds (Coleoptera: Coccinellidae), particularly
Cryptolaemus montrouzieri and Chilocorus sp., are well-known predators of Coccidae and have
proven effective in various biological control programs [48–50]. Furthermore, a number of
entomopathogenic fungi can infect and exert a detrimental effect on scale insects. Besides the
best known entomopathogens, such as species of Akanthomyces/Lecanicillium, which are com-
monly reported to haunt populations of Coccidae [51,52], new species have been characterized
in recent years for their pathogenicity to these pests [53–56]. Moreover, species in certain
fungal genera that are frequently reported to establish an endophytic association with plants,
such as Fusarium and Cladosporium, could play an ecological role in the containment of scale in-
sects [51,57,58]. However, the most intriguing relationship concerns species of Ophiocordyceps.
Also referred to with the anamorphic name Hirsutella, these fungi are commonly regarded
as specialized entomopathogens [59]. Notwithstanding, evidence from several independent
studies has demonstrated that they develop an intimate symbiotic relationship with soft scales
involving their transovarial transmission between generations [35,60,61], which deserves to
be examined more in depth in view of possible applications of its disruption in pest control.
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As with most sternorrhynchan species, the immunity of soft scale insects has not
been thoroughly investigated and remains to be clarified. To date, only a few studies
have been conducted on the immune response of Coccidae, mainly aimed at determining
the encapsulation response against eggs released by encyrtid parasitoid wasps [62–64].
The limited understanding of soft scales’ immunity hinders our comprehension of their
interactions with symbionts and pathogens, as well as the potential development of new
control strategies based, for example, on the suppression of the immune response through
RNA interference, as recently proposed [65,66].

In the present work, we aimed to identify and annotate immune genes in soft scale
insects by searching the recently published genome of the Chinese white wax scale insect
(Ericerus pela) (Chavannes), as well as the transcriptomes of Coccus sp. and Ceroplastes
cirripediformis Comstock (Hemiptera: Coccidae).

2. Results and Discussion
2.1. Overview of Immune Genes’ Annotation

We focused our annotation efforts on a subset of genes involved in the three phases
of the insect immune response: recognition, signaling, and response. All annotations are
based on the recently completed sequencing of E. pela (colony RIRI-1) [67]. By using protein
sequences from A. pisum and D. melanogaster, known to be involved in insect immunity, as
queries in BLAST searches, we successfully identified 66 potential immune genes in E. pela.
Specifically, we identified 12 genes related to recognition, 35 involved in signaling, and 19
associated with the response to pathogenic microorganisms (Figure 1).
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Figure 1. Overview of gene families involved in recognition, signaling, and response pathways in
Ericerus pela, Acyrthosiphon pisum, and Drosophila melanogaster. Numbers in blocks indicate the different
genes identified for each protein family. Abbreviations: peptidoglycan recognition (PGRP), Gram-
negative binding (GNBP), thioester-containing (TEP), scavenger receptor class C (SRC), antimicrobial
peptide (AMP), pro-phenoloxidase (PPO), phenoloxidase (PO), nitric oxide (NO).

2.2. Annotation of Recognition Genes

Our analysis pointed out the occurrence of 12 genes in Coccidae with significant
matches with A. pisum and Drosophila genes involved in recognition (Table 1). As occurs
in aphids, Coccidae species lack peptidoglycan recognition proteins (PGRPs), class C
scavengers, and Nimrod and eater receptors.
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Table 1. Immune genes of Ericerus pela involved in recognition. Genes not found in E. pela are colored
in red.

Role in Insect
Immunity Gene Symbol Gene Name 1 D. melanogaster

NCBI Protein ID
A. pisum

NCBI Protein ID
Best Matches

(E-Value) 2

bacterial
recognition PGRP-LC peptidoglycan

recognition protein AAF50302.3 not found not found

activation of PPO
cascade and
autophagy

PGRP-LE peptidoglycan
recognition protein NP_573078.1 not found not found

bacterial
recognition PGRP-SA peptidoglycan

recognition protein AAF48056.1 not found not found

bacterial
recognition PGRP-SD peptidoglycan

recognition protein CAD89193.1 not found not found

bacterial
recognition PGRP-LB peptidoglycan

recognition protein NP_650079.1 not found not found

bacterial
recognition PGRP-SC1a peptidoglycan

recognition protein CAD89161.1 not found not found

bacterial
recognition PGRP-SC2 peptidoglycan

recognition protein CAD89187.1 not found not found

pgn degradation
and antibacterial

activity
PGRP-SB1 peptidoglycan

recognition protein CAD89136.1 not found not found

blocking of imd
pathway PGRP-LF peptidoglycan

recognition protein NP_648299.3 not found not found

activation of imd
pathway PGRP-LA peptidoglycan

recognition protein AAF50304.2 not found not found

bacterial and
fungal pattern

recognition
GNBP1 Gram-negative

binding protein 1 Q9NHB0.2 XP_001944473.2

QBOQ01000878.1
(3 × 10−8)

QBOQ01000589.1
(2 × 10−6)

bacterial and
fungal pattern

recognition
GNBP2 Gram-negative

binding protein 2 ACU30172.1 XP_001944473.2

QBOQ01000878.1
(3 × 10−8)

QBOQ01000589.1
(2 × 10−6)

bacterial and
fungal pattern

recognition
GNBP3 Gram-negative

binding protein 3 CAJ18910.1 XP_029342159.1 QBOQ01000878.1
(1 × 10−18)

bacterial
recognition,

induction of PPO
cascade

DL1 c-type lectin 1 AAF53793.1 not found not found

bacterial
recognition,

induction of PPO
cascade

DL2 c-type lectin 2 NP_001014489.1
XP_016663197.1
XP_001950803.2
XP_001945032.2

QBOQ01000461.1
(1 × 10−52)

QBOQ01000461.1
(3 × 10−53)

QBOQ01000466.1
(4 × 10−24)

bacterial
recognition,

induction of PPO
cascade

DL3 c-type lectin 3 NP_001014490.1 XP_016663197.1
XP_001950803.2

QBOQ01000461.1
(1 × 10−52)

QBOQ01000461.1
(3 × 10−53)
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Table 1. Cont.

Role in Insect
Immunity Gene Symbol Gene Name 1 D. melanogaster

NCBI Protein ID
A. pisum

NCBI Protein ID
Best Matches

(E-Value) 2

several roles have
been hypothesized galectin galectin 9 ADZ99399.1 XP_001943769.2 not found

mark pathogens
for phagocytosis Tep1

thioester
containing protein

1
CAB87807.1 XP_029348718.1 QBOQ01000202.1

(2 × 10−38)

mark pathogens
for phagocytosis Tep2

thioester
containing protein

2
CAB87808.1 XP_029348718.1 QBOQ01000202.1

(2 × 10−38)

mark pathogens
for phagocytosis Tep3

thioester
containing protein

3
AAL39195.1 XP_029348714.1 QBOQ01000202.1

(2 × 10−38)

mark pathogens
for phagocytosis Tep4

thioester
containing protein

4
NP_523603.2 XP_029348718.1 QBOQ01000202.1

(2 × 10−38)

bacterial and
fungal recognition pes peste, scavenger

receptor class b AHN54246.1 XP_029341846.1 QBOQ01001218.1
(2 × 10−33)

bacterial and
fungal recognition crq croquemort AAF51494.1 XP_001944867.2 QBOQ01000024.1

(1 × 10−35)

bacterial and
fungal recognition drpr draper NP_477450.1 XP_001942552.2 QBOQ01001915.1

(2 × 10−29)

bind to
lipoproteins and

bacteria
sr-CI scavenger receptor

class c, type i AAW79470.1 not found not found

bind to
lipoproteins and

bacteria
sr-CII scavenger receptor

class c, type ii AAF58551.1 not found not found

bind to
lipoproteins and

bacteria
sr-CIII scavenger receptor

class c, type iii AAF37564.1 not found not found

bind to
lipoproteins and

bacteria
sr-CIV scavenger receptor

class c, type iv AAF51092.1 not found not found

receptor in
phagocytosis and
microbial binding

eater eater AAF56664.5 not found not found

receptor in
phagocytosis and
microbial binding

nim-C1 Nimrod c1 AAF53364.2 not found not found

1 Alternative names are separated by commas. 2 E-values refer to A. pisum proteins, if present, or D. melanogaster
if the gene was not found in A. pisum.

2.2.1. Peptidoglycan Receptor Proteins

Peptidoglycans are essential cell wall components of almost all bacteria, which are
recognized by the immune system through pathogen recognition receptors (PRRs). In
insects, several families of pattern recognition molecules that detect peptidoglycans have
been identified, and the role of peptidoglycan receptor proteins (PGRPs) in host defense is
relatively well-characterized in Drosophila [68]. PGRP-based recognition activates both the
Toll and IMD/JNK pathways, leading to proPO activation or the synthesis of antimicrobial
peptides [69]. Most insect species investigated possess several PGRP genes that differ
both structurally and functionally. For example, Drosophila has 13 PGRP genes encoding
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19 proteins, while Anopheles gambiae has 7 PGRP genes encoding 9 proteins [68]. However,
like the pea aphid [22], Coccidae appear to have no PGRPs (Table 1).

2.2.2. Gram-Negative Binding Proteins

Gram-negative binding proteins’ (GNBPs) architectures consist of a carbohydrate-
binding module (CBM) at the N-terminus and a glucanase-like domain (Glu) in the C-
terminus [70]. The CBM interacts with microbial polysaccharides, while the Glu domain
interacts with downstream proteases, thereby initiating immune pathways [71]. GNBPs
recognize both bacterial and fungal pathogens, resulting in the activation of immune
signaling pathways in insects [72]. Specifically, in Drosophila, GNBP1 and peptidoglycan-
recognition protein-SA (PGRP-SA) collaboratively activate the Toll pathway in response
to Gram-positive bacterial infections [73], whereas GNBP3 is essential for Toll pathway
activation in response to fungal infections [74].

A study based on gene knockdown revealed that the two GNBPs predicted in the
genome database of pea aphids [22] are involved in the antibacterial response in the pea
aphid, likely acting as PRRs in the prophenoloxidase pathway [75]. Our analysis identified
a single gene encoded in the transcriptome and the genome of C. cirripediformis and E. pela,
respectively, while two different genes seem to occur in the transcriptome of Coccus sp.
(Figure 2).
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Figure 2. Phylogenetic tree based on maximum likelihood analysis of GNBP1 putative homologs
identified in E. pela genome (in red) and in the transcriptomes of C. cirripediformis (in blue) and
Coccus sp. (in purple). GNBP1 sequences of Coccidae family form a monophyletic group, closely
related to GNBP1 of A. pisum. Sequences of E. pela are two isoforms encoded by the same gene,
while Coccus sp. shows two different genes encoding homologs of GNBP1. One of these proteins,
GCWW01035969.1, is more closely related to the GNBP1 identified in C. cirripediformis. The longest
branch of the unrooted tree is used as the outgroup. Bootstrap support values are indicated at each
node. The scale bar indicates the number of amino acid substitutions per site.

2.2.3. Lectins

Lectins, a diverse group of sugar-binding proteins, are integral to the immune response
of several insect species. They are known for their broad spectrum of pathogen binding and
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involvement in various immune processes such as opsonization, melanization, antibacterial
peptide synthesis, encapsulation, and direct killing of bacteria [76]. Drosophila c-type lectins
(CTLs) have been implicated in facilitating the encapsulation of parasitoid invaders by
marking surfaces for hemocyte recruitment [77]. Interestingly, as in A. pisum, in Coccidae,
no homologs of D. melanogaster DL1 (AAF53793.1) have been found (Table 1).

Our phylogenetic reconstruction (Figure 3) revealed that the two CTLs identified in
Coccidae are more closely related to DL2 (NP_001014489.1) than to DL3 (NP_001014490.1).
This suggests that the phylogeny of CTLs is characterized by species-specific contraction
and expansion events, influenced by factors such as environmental pressure, pathogen
interactions, and microbiota [78].
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Figure 3. Phylogenetic tree based on maximum likelihood analysis of CTL putative homologs
identified in E. pela genome (in red) and in the transcriptomes of C. cirripediformis (in blue) and Coccus
sp. (in purple). CTL sequences of Coccidae family form two monophyletic groups, one with c-type
domain signature (C_TYPE_LECTIN_1) and profile (C_TYPE_LECTIN_2), and another with c-type
domain profile alone (C_TYPE_LECTIN_2), marked in yellow and green, respectively. Sequences of
E. pela in the yellow group are two isoforms encoded by the same gene. The longest branch of the
unrooted tree (DL3) is used as the outgroup. Bootstrap support values are indicated at each node.
The scale bar indicates the number of amino acid substitutions per site.

Galectins, another widely distributed group of lectins [79], are upregulated in mosquitoes
in response to both bacterial and malaria parasite infection [80]. Insect galectins are thought to
be involved in pathogen recognition, agglutination, and phagocytosis [79,81]. Genome-wide
analyses have revealed variation in galectin transcripts across insect species, with 5 in D.
melanogaster, 8 in A. gambiae, 12 in Aedes aegypti [82], 4 in many Lepidoptera species [83], and 1
in aphids. In contrast, Coccidae lack galectin putative homologs (Table 1).
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2.2.4. Thioester-Containing Proteins

Thioester-containing proteins (TEPs) are a family of proteins structurally related to ver-
tebrate complement proteins, including an intramolecular β-cysteinyl-γ-glutamyl thioester
bond [84,85]. As observed in complement proteins, some TEPs are involved in the op-
sonization of microbes and pathogens, ‘marking’ them for phagocytosis, melanization, and
the formation of lytic complexes [86,87]. Due to their involvement in microbe recognition,
TEPs can be classified as PRRs [85].

As in aphids, Coccidae omics data showed the presence of one TEP gene encoding
two isoforms, except in Coccus sp., where only one isoform was found (Figure 4). The
most closely related proteins are the two isoforms encoded by the only TEP ortholog in
the A. pisum genome. Indeed, in contrast to what is reported in [22], referring to an old
annotation, only one TEP ortholog was identified by our analysis in the A. pisum genome
using four Drosophila homologs (TepI, TepII, TepIII, and TepIV) as the query (Table 1).
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2.2.5. Class C Scavenger and Nimrod Receptors

As observed in pea aphids, both class C scavenger and Nimrod receptors are absent
in Coccidae (Table 1). Class C scavenger receptors, which have been identified only
in Drosophila, exhibit a broad affinity toward both Gram-positive and Gram-negative
bacteria [88].

The Nimrod family of proteins is characterized by the presence of epidermal growth
factor (EGF)-like domains, also called ‘NIM repeats’ [89]. Several members of the Nimrod
superfamily appear to function as receptors in phagocytosis and bacterial binding [90,91].
NimC1 and Eater, two EGF-like repeat Nimrod surface receptors specifically expressed in
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hemocytes, synergistically contribute to bacterial phagocytosis [92] and are both absent
in Coccidae.

2.3. Annotation of Signaling Pathways

Our analysis revealed the occurrence of 35 genes in Coccidae with significant matches
with genes of Drosophila and A. pisum involved in signaling. Coccidae lack MyD88, TNF-
receptor-associated factor 3, and cactus genes, belonging to the Toll pathway, as well as
several members of IMD signaling pathway, which are present in Drosophila and A. pisum
genomes (Table 2).

Table 2. Immune genes of Ericerus pela involved in signaling. Genes not found in E. pela are colored
in red.

Role in Insect
Immunity

Gene
Symbol Gene Name 1 D. melanogaster

NCBI Protein ID
A. pisum

NCBI Protein ID
Best Matches

(E-Value) 2

Toll pathway spz1-1 spätzle 1B NP_733188.1 NP_001153589 QBOQ01001621.1
(7 × 10−13)

Toll pathway spz1-2 spätzle 1Bii NP_001138116.1 NP_001153590 QBOQ01001132.1
(9 × 10−8)

Toll pathway spz2 spätzle 2,
neurotrophin 1 NP_001261417.1 XP_001948459.1 QBOQ01001810.1

(4 × 10−20)

Toll pathway spz3 spätzle 3 NP_609160.2 XP_029341989.1

QBOQ01001601.1
(2 × 10−21)

QBOQ01001203.1
(2 × 10−14)

QBOQ01000537.1
(9 × 10−13)

Toll pathway spz4 spätzle 4 NP_609504.2 NP_001153592

QBOQ01000537.1
(2 × 10−28)

QBOQ01001203.1
(4 × 10−28)

QBOQ01001601.1
(2 × 10−14)

Toll pathway Spz5 spätzle 5 NP_647753.1 XP_001947495.2 QBOQ01001431.1
(2 × 10−17)

Toll pathway spz6 spätzle 6 NP_611961.1 XP_001944046 QBOQ01001423.1
(6 × 10−58)

Toll pathway Toll-1 protein Toll NP_524518.1 XP_008182102.1

QBOQ01001036.1
(3 × 10−57)

QBOQ01001364.1
(4 × 10−54)

QBOQ01000985.1
(8 × 10−48)

Toll pathway Toll-1 protein Toll NP_524518.1 XP_001942733.2

QBOQ01001036.1
(6 × 10−54)

QBOQ01001364.1
(7 × 10−49)

QBOQ01000985.1
(2 × 10−38)

Toll pathway 18w 18 wheeler, Toll-2 NP_476814.1 XP_001946943.2

QBOQ01000059.1
(0.0)

QBOQ01000985.1
(0.0)

QBOQ01000048.1
(0.0)
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Table 2. Cont.

Role in Insect
Immunity

Gene
Symbol Gene Name 1 D. melanogaster

NCBI Protein ID
A. pisum

NCBI Protein ID
Best Matches

(E-Value) 2

Toll pathway Toll-6 Toll-6 NP_001246766.1 XP_001947324.1

QBOQ01000985.1
(0.0)

QBOQ01000059.1
(0.0)

QBOQ01000048.1
(0.0)

Toll pathway Toll-6 Toll-6 NP_001246766.1 XP_003248960.1

QBOQ01000048.1
(0.0)

QBOQ01000985.1
(0.0)

QBOQ01000059.1
(0.0)

Toll pathway Toll-7 Toll-7 NP_523797.1 XP_001946943_2

QBOQ01000059.1
(0.0)

QBOQ01000985.1
(0.0)

QBOQ01000048.1
(0.0)

Toll pathway Tollo Tollo, Toll-8 NP_524757.1 XP_001948566.1

QBOQ01000985.1
(0.0)

QBOQ01000059.1
(0.0)

QBOQ01000048.1
(0.0)

Toll pathway tub
tube, interleukin-1
receptor-associated

kinase 4
NP_001189164.1 BAH72505.1 QBOQ01000327.1

(8 × 10−15)

Toll pathway Myd88
myeloid

differentiation primary
response gene

AAF58953.1 XP_001948320.2 not found

Toll pathway pll pelle AAF56686.1 XP_029346632.1

QBOQ01000327.1
(2 × 10−33)

QBOQ01002061.1
(3 × 10−12)

QBOQ01001518.1
(3 × 10−11)

Toll pathway cact cactus AAN10936.1 NP_001156668.1 not found

Toll pathway cactin cactin NP_523422.4 XP_001952287.2 QBOQ01001452.1
(1 × 10−88)

Toll pathway Pli pellino NP_524466.1 XP_001946282.3 QBOQ01001351.1
(4 × 10−29)

Toll pathway Traf1, Traf4 TNF-receptor-
associated factor 1 AAD34346.1 XP_001948355.1 QBOQ01000448.1

(3 × 10−67)

Toll pathway Traf2, Traf6 TNF-receptor-
associated factor 2 AAF46338.1 XP_029347356.1 QBOQ01001366.1

(1 × 10−17)

Toll pathway Traf3, Traf-like TNF-receptor-
associated factor 3 NP_727976.1 not found not found

Toll pathway dl dorsal AAF53611.1 XP_001949498.2 QBOQ01000587.1
(1 × 10−68)
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Table 2. Cont.

Role in Insect
Immunity

Gene
Symbol Gene Name 1 D. melanogaster

NCBI Protein ID
A. pisum

NCBI Protein ID
Best Matches

(E-Value) 2

Toll pathway Dif

dorsal-related
immunity factor,

embryonic polarity
protein

NP_523589.2 XP_001949498.2 QBOQ01000587.1
(1 × 10−68)

Jak/stat pathway dome
domeless 1,
interleukine

JAK/STAT receptor
CAD12503.1 XP_029341085.1 QBOQ01000913.1

(1 × 10−114)

Jak/stat pathway dome2 domeless 2 Not found XP_029341036.1 QBOQ01000913.1
(6 × 10−111)

Jak/stat pathway hops, jak hopscotch, Janus
kinase NP_511119.2 XP_008188128.1

QBOQ01001628.1
(2 × 10−29)

QBOQ01002061.1
(4 × 10−28)

QBOQ01000952.1
(6 × 10−24)

Jak/stat pathway Stat92E
signal-transducer and

activator of
transcription, marelle

AAX33462.1 XP_008188159.1

QBOQ01001541.1
(5 × 10−44)

QBOQ01000405.1
(1 × 10−42)

Jak/stat pathway upd1 unpaired 1 NP_525095.2 not found not found

Jak/stat pathway upd2 unpaired 2 NP_001356882.1 not found not found

Jak/stat pathway upd3 unpaired 3 NP_001097014.1 not found not found

Imd pathway imd immune deficiency NP_573394.1 not found not found

Imd pathway dFadd dFadd NP_651006.1 not found not found

Imd pathway Dredd death related ced-3,
caspase-1 NP_477249.3 XP_029344969.1 QBOQ01001252.1

(4 × 10−61)

Imd pathway Rel Relish NP_477094.1 not found not found

Imd pathway Tab2 TAK1-associated
binding protein 2 NP_611408.2 XP_003244590.1 QBOQ01001392.1

(7 × 10−8)

Imd pathway Tak1 TGF-β activated
kinase 1 AAF50895.1 XP_029347425.1

QBOQ01001920.1
(3 × 10−35)

QBOQ01001518.1
(6 × 10−29)

QBOQ01000779.1
(1 × 10−17)

Imd pathway key kenny NP_523856.2 not found not found

Imd pathway Diap2 death-associated
inhibitor of apoptosis 2 NP_477127.1 XP_016661891.1

QBOQ01002166.1
(3 × 10−20)

QBOQ01001565.1
(2 × 10−12)

QBOQ01001600.1
(4 × 10−12)

Imd pathway ird5

immune response
deficiency 5, IK-β,

IKKB, I-kappaB kinase
beta

NP_524751.3 XP_001946184.1 QBOQ01000860.1
(0.0)

Jnk pathway hep hemipterous NP_727661.1 XP_008180171.1 QBOQ01001476.1
(1 × 10−126)
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Table 2. Cont.

Role in Insect
Immunity

Gene
Symbol Gene Name 1 D. melanogaster

NCBI Protein ID
A. pisum

NCBI Protein ID
Best Matches

(E-Value) 2

Jnk pathway bsk basket P92208.1 XP_001945460.2

QBOQ01001118.1
(6 × 10−45)

QBOQ01001795.1
(4 × 10−40)

QBOQ01001783.1
(4 × 10−26)

Jnk pathway Jra Jun-related antigen AAF58845.1 XP_001947556.1 QBOQ01001648.1
(8 × 10−16)

Jnk pathway kay kayak NP_001027579.1 XP_016663984.1 not found

Jnk pathway egr Eiger AAF58848.2 XP_008178962.1 QBOQ01000141.1
(7 × 10−5)

1 Alternative names are separated by commas. 2 E-values refer to A. pisum proteins, if present, or D. melanogaster
if the gene was not found in A. pisum.

2.3.1. The Toll Signaling Pathway

The Toll pathway in Drosophila functions in both development and innate immunity.
Deletion of its component genes increases the susceptibility to various pathogens, including
Gram-positive bacteria, fungal pathogens, some Gram-negative bacteria, and viruses [93].
Moreover, upregulation of Toll pathway components occurs in response to parasitoid wasp
invasion [94]. The Toll pathway appears to be intact in Coccidae, except the MyD88 adaptor
and the inhibitor molecule cactus (a homolog of IkB) (Table 2), which are instead present
in A. pisum. We found convincing matches for genes encoding the extracellular cytokine
spätzle, the transmembrane receptor Toll (Figure 4), the tube adaptor, the kinase pelle,
cactin, pellino, Traf, and the transactivator dorsal (Table 2). Coccidae seem to have multiple
spätzles, putative homologs of Drosophila spätzles 1, 2, 3, 4, and 6 (Table 2), for which a
phylogenetic reconstruction was not possible due to high divergence between the different
spätzle subfamilies [95].

Coccidae also have multiple genes encoding Toll receptors (Figure 5), which function
as transmembrane receptors in both mammals and insects. While nine single-copy Toll
genes have been identified in D. melanogaster (Toll1 to Toll9), it seems that Coccidae, like
other insects, lack some of these genes, but have multiple isoforms of others. Notably, no
Toll6 and Toll2/7 homologs have been found in the C. cirripediformis transcriptome, while
Coccus sp. lacks Toll10 homologs (Figure 5).

In other organisms, some Toll subfamilies are involved in immune function, while others
function in developmental processes [96]. However, an accurate homology-based approach
including different species is essential for understanding Toll functions in Coccidae.

2.3.2. The JAK/STAT Signaling Pathway

In Drosophila, the JAK/STAT pathway, similar to the Toll pathway, plays roles in
both development and immunity. Despite being the least understood of the core in-
sect immune pathways, it appears to induce hemocyte overproliferation and antiviral
responses [97]. Additionally, changes in gene expression observed after parasitoid wasp
invasion of Drosophila larvae indicate the involvement of the JAK/STAT pathway in the
response to parasitoids [98].

As in A. pisum, Coccidae have homologs of all core JAK/STAT genes, including genes
encoding the cytokine receptor domeless (Figure 6), JAK tyrosine kinase (also known as
Hopscotch), and the STAT92E transcription factor (Table 2). However, no homologs were
found for upd (unpaired), considered a key ligand in Drosophila JAK/STAT induction. This
ligand is also missing in other insects (e.g., A. mellifera) [99]. The presence of the core
JAK/STAT pathway members (Table 2) suggests that JAK/STAT remains functional in
Coccidae and is triggered by a currently unrecognized ligand.
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The scale bar indicates the number of amino acid substitutions per site.

2.3.3. IMD and JNK Signaling Pathways

The IMD pathway is critical for fighting Gram-negative bacteria in Drosophila [93],
and IMD pathway member knockouts influence the susceptibility to some Gram-positive
bacteria and fungi as well [100]. As in A. pisum, Coccidae appear to be missing many crucial
components of the IMD signaling pathway, such as IMD, dFADD, kenny, and Relish (Rel)
(Table 2).

Pea aphids lack genes associated with the IMD pathway but possess orthologs for
most components of the JNK pathway. In Drosophila, the JNK pathway is involved in
various developmental processes, along with wound healing, and has been suggested
to regulate antimicrobial peptide gene expression and cellular immune responses [93].
The genes involved include hep, basket, and JRA. Searches for homologs to the Drosophila
kayak (kay) gene found no hits in Coccidae. Considering that this gene is also involved
in controlling viral infections [101], understanding its role in the Coccidae family, whose
members are known for their capacity to transmit plant viruses [33], may be of importance
in the management of vector-borne plant pathogens.
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Given that in Drosophila, the IMD pathway activates components of the JNK path-
way [93], the presence of JNK but absence of the IMD signaling pathway in Coccidae
suggests that an alternative pathway for JNK activation, independent of IMD, involving
the inducer Eiger, may occur [22].
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2.4. Annotation of Response Genes

Our analysis revealed the occurrence of 19 genes in Coccidae with significant matches
with genes of Drosophila and A. pisum involved in the immune response. As occurs in aphids,
Coccidae species lack antimicrobial peptides; moreover, they do not possess thaumathins,
which are present in the A. pisum genome (Table 3).

Table 3. Immune genes of Ericerus pela involved in response. Genes not found in E. pela are colored
in red.

Role in Insect
Immunity

Gene
Symbol Gene Name 1 D. melanogaster

NCBI Protein ID
A. pisum

NCBI Protein ID
Best Matches

(E-Value) 2

antimicrobial
peptide Att attacin NP_523745.1 not found not found

antimicrobial
peptide Cec cecropin C0HKQ7.1 not found not found
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Table 3. Cont.

Role in Insect
Immunity

Gene
Symbol Gene Name 1 D. melanogaster

NCBI Protein ID
A. pisum

NCBI Protein ID
Best Matches

(E-Value) 2

antimicrobial
peptide Def defensin ANY27112.1 not found not found

antimicrobial
peptide Dro drosocin XP_016946682.1 not found not found

antimicrobial
peptide Mtk metchnikowin AAO72489.1 not found not found

antimicrobial
peptide andropin P21663.1 not found not found

antimicrobial
peptide diptericin QER92349.1 not found not found

antimicrobial
peptide Drs drosomycin ANY27466.1 not found not found

antimicrobial
peptide holotricin XP_051861657.1 not found not found

antimicrobial
peptide bomanin A1ZB62.1 not found not found

antimicrobial LOC100164856 thaumatin-like
protein not found XP_001942718.2 not found

antimicrobial LOC100160062 thaumatin-like
protein 1b not found XP_001942572.1 not found

antimicrobial LOC100570639 thaumatin-like
protein 1 not found XP_003248856.4 not found

antimicrobial LOC100162111
uncharacterized
LOC100162111,

thaumatin family
not found NP_001155516 not found

antimicrobial LOC100168942 TLP-PA-domain
protein not found NP_001156304.1 not found

antimicrobial LOC100169496
pathogenesis-

related protein
5-like

not found NP_001313585.1 not found

microbial
degradation LysX lysozyme X, i-type CAL85493.1 not found not found

microbial
degradation LysB lysozyme B, i-type NP_001261245.1 not found not found

microbial
degradation LysP lysozyme, i-type NP_476828.1 not found not found

microbial
degradation LysC lysozyme CAA80228 not found not found

microbial
degradation LysD lysozyme NP_476823.1 not found not found

microbial
degradation LysE lysozyme NP_476827.2 not found not found

microbial
degradation LysS lysozyme NP_476829.1 not found not found
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Table 3. Cont.

Role in Insect
Immunity

Gene
Symbol Gene Name 1 D. melanogaster

NCBI Protein ID
A. pisum

NCBI Protein ID
Best Matches

(E-Value) 2

microbial
degradation lysozyme, i-type LOC100167742,

lysozyme ACD99447.1 XP_001949318.2

QBOQ01000327.1
(6 × 10−19)

QBOQ01001156.1
(5 × 10−18)

QBOQ01000040.1
(7 × 10−18)

microbial
degradation lysozyme, i-type LOC100168424,

destabilase NP_611164.3 NP_001156290.1

QBOQ01002128.1
(5 × 10−17)

QBOQ01000327.1
(6 × 10−8)

QBOQ01000040.1
(9 × 10−8)

microbial
degradation lysozyme, i-type LOC100160909,

destabilase NP_611163.2 NP_001155465.1

QBOQ01000040.1
(3 × 10−11)

QBOQ01002128.1
(8 × 10−8)

fungal degradation Cht2 chitinase-like
protein 2, mucin NP_001261282.1 XP_016663378.1

QBOQ01000205.1
(1 × 10−40)

QBOQ01000535.1
(1 × 10−19)

QBOQ01001282.1
(3 × 10−19)

fungal degradation Cht4

chitinase-like
protein 4,

flocculation
protein

NP_524962.2 XP_029343203.1

QBOQ01001282.1
(3 × 10−40)

QBOQ01000205.1
(3 × 10−20)

QBOQ01000535.1
(5 × 10−19)

fungal degradation Cht5
chitinase-like

protein 5,
endochitinase

NP_650314.1 XP_008181779.1

QBOQ01000410.1
(3 × 10−47)

QBOQ01000205.1
(3 × 10−16)

QBOQ01001282.1
(5 × 10−21)

fungal degradation Cht6

chitinase-like
protein 6,

flocculation
protein

NP_001245602.1 XP_029343203.1

QBOQ01001282.1
(3 × 10−40)

QBOQ01000205.1
(3 × 10−20)

QBOQ01000535.1
(5 × 10−19)

fungal degradation Cht7
chitinase-like

protein 7, chitinase
10

NP_647768.3 XP_001950380.1

QBOQ01000535.1
(9 × 10−87)

QBOQ01000062.1
(2 × 10−61)

QBOQ01001282.1
(3 × 10−24)

fungal degradation Cht7 chitinase 3-like,
LOC100169240 NP_647768.3 XP_008182858.1

QBOQ01002026.1
(6 × 10−19)

QBOQ01000535.1
(8 × 10−14)

QBOQ01000205.1
(4 × 10−8)

fungal degradation Cht6 LOC100162732 NP_001245599.1 XP_001945470.2 QBOQ01001292.1
(2 × 10−7)
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Table 3. Cont.

Role in Insect
Immunity

Gene
Symbol Gene Name 1 D. melanogaster

NCBI Protein ID
A. pisum

NCBI Protein ID
Best Matches

(E-Value) 2

fungal degradation idgf6 idgf NP_001286499.1 NP_001162142.1 QBOQ01000713.1
(3 × 10−55)

prophenoloxidase
response PPO1 prophenoloxidase

1 NP_476812.1 XP_001949307.1

QBOQ01000687.1
(5 × 10−45)

QBOQ01000496.1
(8 × 10−33)

QBOQ01002014.1
(3 × 10−27)

prophenoloxidase
response PPO2 prophenoloxidase

2 NP_610443.1 XP_001951137.1

QBOQ01000687.1
(2 × 10−43)

QBOQ01000496.1
(2 × 10−37)

QBOQ01002014.1
(5 × 10−27)

phenoloxidase
activation PAF2, PPAF2 phenoloxidase-

activating factor 2 AAO24923.1 XP_003244500.1

QBOQ01000870.1
(3 × 10−13)

QBOQ01001093.1
(2 × 10−12)

QBOQ01001364.1
(2 × 10−9)

phenoloxidase
activation PAF2, PPAF2 phenoloxidase-

activating factor 2 AAO24923.1 XP_001952301.1

QBOQ01000870.1
(2 × 10−24)

QBOQ01001093.1
(2 × 10−28)

QBOQ01002068.1
(1 × 10−15)

phenoloxidase
activation SP

serine
protease-like

precursor
NP_001097766.1 NP_001155379.1

QBOQ01000877.1
(2 × 10−24)

QBOQ01000234.1
(2 × 10−23)

QBOQ01001364.1
(6 × 10−8)

cell aggregation Hmct, hemolectin hemocytin NP_001261809.1 XP_001952865.2 QBOQ01002094.1
(3 × 10−22)

production of
nitric oxide, a toxic

gas
Nos nitric oxide

synthase NP_001027243.2 XP_029343919.1 QBOQ01001094.1
(4 × 10−29)

peptidoglycan
degradation ldca putative LD

carboxypeptidase not found XP_029341985.1 QBOQ01000175.1
(2 × 10−43)

1 Alternative names are separated by commas. 2 E-values refer to A. pisum proteins, if present, or D. melanogaster
if the gene was not found in A. pisum.

2.4.1. Antimicrobial Peptides

Antimicrobial peptides (AMPs) play a key role in the immune response of many
organisms, including insects. They are the most widely studied humoral effectors and
can be produced constitutively or following induction through particular signaling path-
ways. In the Drosophila genome, there are currently seven well-characterized families of
inducible AMPs, including 21 AMP/AMP-like genes, which play an important role both
in counteracting the onset of infections and in maintaining homeostasis with symbiotic
microorganisms [102]. The main site of production of these molecules is represented by
fat body cells; however, hemocytes and cells of the cuticular epithelium, intestinal epithe-
lium, and reproductive tract are also involved in the synthesis of AMPs. Most AMPs are
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15–50 amino acids long and have an amphipathic structure; they are able to alter the per-
meability of the microbial membrane, generating an alteration of the osmotic balance, with
consequent lysis [10]. Currently, several structural families of AMPs from insects are known
(defensins, cecropins, drosocins, attacins, diptericins, metchnikowins, and melittins), some
of which are peculiar to a particular taxonomic group. For example, drosomycins have
only been identified in Drosophila, while gloverins have been specifically described in
Lepidoptera; cecropins, and attacins, meanwhile, are known in several insect species, while
defensins are widely distributed throughout the animal kingdom [14].

As observed in pea aphids [22], Coccidae are missing many of the antimicrobial
peptides common to other insects. Extensive searches for genes encoding AMPs previ-
ously identified in Hemiptera species (thanatin, pentatomicin, lugensin, cicadin, cryptonin,
pyrrhocoricin, oncocin, hemiptericin) also revealed no hits (Table S1). Even the six thaumatin
homologs in the A. pisum genome, which show overall sequence and predicted structural
similarities to plant thaumatins [22], are absent in Coccidae (Table 3). Recently, it was
suggested that the impact of selection on the innate immune system can act on AMPs, indi-
cating that some AMPs can be deleterious molecules in the absence of microbial challenges,
due to their costly production and/or their toxic effects [102]. We speculate that such AMP
loss derives from a reduced pathogen pressure in Coccidae and other hemipterans, which
feed on the generally microbe-free plant phloem [103].

2.4.2. Lysozyme and Peptidoglycan Degradation

Lysozymes, enzymes responsible for breaking down bacterial cell walls by targeting
the polysaccharide component of peptidoglycan, are classified into two classes in insects:
the c-type, with muramidase activity, and the i-type, which possess both muramidase
and isopeptidase activities [104,105]. As observed in A. pisum [22], Coccidae lack genes
for several lysozymes (LysB, LysD, LysE, and LysP), which are highly expressed in the gut
of Drosophila and are involved in regulating the microbial composition and in degrading
peptidoglycan from dietary bacteria [106].

Only three genes encoding i-type Lys were identified in the genome of E. pela (Table 3)
and in the transcriptome of Coccus sp., while there were only two in the transcriptome of C.
cirripediformis. The i-type Lys sequences of Coccidae formed three monophyletic groups:
two contain an invertebrate (I)-type lysozyme domain profile (LYSOZYME_I) and EF-hand
calcium-binding domain, and one contains the LYSOZYME_I domain alone (Figure 7).
Notably, C. cirripediformis lacks the lysozyme with the LYSOZYME_I domain alone.

Although numerous insect genes encoding both c-type and i-type lysozymes have
been identified through genome and transcriptome analyses, i-type lysozymes have been
poorly investigated from a functional perspective [107]. An i-type lysozyme of the beetle
Harmonia axyridis was recombinantly expressed in the yeast Pichia pastoris, but the purified
protein showed no muramidase and no isopeptidase activity [108]. Transcription and
immunofluorescence analysis revealed that this i-type lysozyme is produced in the fat
body cells but is not inducible by immune challenge. These findings suggest that i-type
lysozymes in insects may have acquired novel and as yet undetermined functions during
evolution [108].

One of the defining characteristics of the Hemiptera biology is their mutualistic sym-
biosis with microorganisms. Symbiotic bacteria and fungi play crucial roles in tasks such
as nutrition and defense, often residing within specialized cells (bacteriocytes) or dispersed
throughout the hemolymph [35,109].

In the bacteriocytes of A. pisum, two genes thought to be involved in the degradation
and recycling of peptidoglycan, LD carboxypeptidase (ldcA) and rare lipoprotein A (rlpA),
are expressed at high levels [110]. These genes have been acquired from bacteria of the
genus Wolbachia or Rickettsia through horizontal gene transfer [111–113].
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identified in E. pela genome (in red) and in the transcriptomes of C. cirripediformis (in blue) and
Coccus sp. (in purple). Lysozyme sequences of Coccidae family form three monophyletic groups,
one with the invertebrate (I)-type lysozyme domain profile (LYSOZYME_I) alone, and another with
LYSOZYME_I and EF-hand calcium-binding domain (EF_HAND_1), marked in light and dark blue,
respectively. The longest branch of the unrooted tree is used as the outgroup. Bootstrap support
values are indicated at each node. The scale bar indicates the number of amino acid substitutions
per site.

Our analysis did not yield any significant matches for rlpA, but for ldcA, we found a
single hit in the genome of E. pela. However, our phylogenetic reconstruction revealed that
the protein is encoded by ldcA clusters for Rickettsia and is poorly related with sequences
found in aphid genomes (Figure 8). This suggests that the identified protein is likely
encoded by the genome of the bacterial symbiont Rickettsia sp., known to colonize the
gut of E. pela [114]. The presence of this sequence in the assembled genome of E. pela is
likely due to contamination of the sample with DNA from the gut symbiont. The lack
of ldcA acquisition by the E. pela genome is in line with previous studies on symbiotic
microorganisms of Coccidae, which, rather than being intracellular bacteria as in aphids,
are mostly fungi localized in hemolymph, fat body cells, and ovarioles [36].

Moreover, we assessed the presence of homologs of bacteriocyte-specific cysteine-rich
(BCR) peptides, which are small disulfide bond-rich proteins expressed exclusively in aphid
bacteriocytes putatively involved in endosymbionts’ control and belonging to a structural
class of defensins [115,116]. However, our analysis did not yield any significant matches,
supporting the hypothesis that Coccidae lack bacteriocytes and their specific mechanisms
of symbiosis mediation.

2.4.3. Chitinases

Chitinases, which are glycosyl hydrolases, are enzymes responsible for breaking down
chitin, a polymer of N-acetyl-D-glucosamine and the second most abundant biopolymer
worldwide. Chitin serves as a structural component in various biological matrices, such as
arthropod exoskeletons and fungal cell walls [117]. In arthropods, chitinases fulfill dual
roles: aiding in molting processes and serving as defense mechanisms against parasites
like fungi and nematodes [118,119]. These enzymes target chitin by hydrolyzing the 1,4-β-
linkages between its constituent glucosamine units. Chitinases and lysozymes belong to
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the same superfamily of hydrolases, exhibiting similar catalytic activities. In fact, certain
chitinases possess lysozyme activity, and vice versa [120].
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putative homologs identified in E. pela genome (in red). The sequence of E. pela groups with LD
carboxypeptidases of Rickettsia sp., which is a bacterial symbiont of several insect species, including
E. pela. Sequences identified in Wolbachia species are used as the outgroup. Bootstrap support values
are indicated at each node. The scale bar indicates the number of amino acid substitutions per site.

Chitinase-like proteins of Coccidae are included in the majority of the groups classified
on a phylogenetic basis [118], except for groups IV and VII where no Coccidae sequences
have been identified. In group II, the only member is from C. cirripediformis, while group I
includes only sequences from E. pela and Coccus sp. (Figure 9). Further studies are required
to determine the biochemical properties and enzymatic activities of these chitinase-like
proteins in Coccidae.

2.4.4. Prophenoloxidase

Phenoloxidase-mediated melanin formation is a characteristic feature accompanying
wound clotting, phagocytosis, and encapsulation of pathogens and parasites [122]. In
aphids, the inactive enzyme prophenoloxidase (ProPO) is activated by serine proteases to
produce phenoloxidase [123,124]. ProPO-activating proteinases, such as phenoloxidase
activating factor 2 (paf2) in A. pisum, are upregulated in response to parasitization by
parasitic wasps [125]. Coccidae appear to possess more than one ProPO homolog, as
observed in A. pisum.

Furthermore, our analysis revealed the presence of two paralogs belonging to the
paf2 family in the considered species of Coccidae. The sequences from the three Coccidae
species form two monophyletic groups, with the most closely related sequences being their
orthologs in the A. pisum genome (Figure 10).



Int. J. Mol. Sci. 2024, 25, 4922 21 of 28

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 21 of 28 
 

 

required to determine the biochemical properties and enzymatic activities of these chi-
tinase-like proteins in Coccidae. 

 
Figure 9. Phylogenetic tree based on maximum likelihood analysis of chitinase putative homologs 
identified in the E. pela genome (in red) and in the transcriptomes of C. cirripediformis (in blue) and 
Coccus sp. (in purple). Chitinase sequences of the Coccidae family are included in all the groups 
identified in [118], except for groups IV and VII. Chitinase groups are marked by a vertical colored 
bar, along with their domain architecture and length, except for sequence GCWZ01013619.1_1 of C. 
cirripediformis, which is the only member identified in Coccidae belonging to group II. Domain ar-
chitecture identified by ScanProsite consists of the glycosyl hydrolases family 18 (GH18) domain 
(GH18_2) and active site (GH18_1) and chitin-binding type-2 domain (CHIT_BIND_II). Imaginal 
disk growth factor (group V) chitinase-like proteins, involved in morphogenesis and CO2 response 
rather than immunity [121], are used as the outgroup. Bootstrap support values are indicated at each 
node. The scale bar indicates the number of amino acid substitutions per site. 

  

Figure 9. Phylogenetic tree based on maximum likelihood analysis of chitinase putative homologs
identified in the E. pela genome (in red) and in the transcriptomes of C. cirripediformis (in blue) and
Coccus sp. (in purple). Chitinase sequences of the Coccidae family are included in all the groups
identified in [118], except for groups IV and VII. Chitinase groups are marked by a vertical colored
bar, along with their domain architecture and length, except for sequence GCWZ01013619.1_1 of
C. cirripediformis, which is the only member identified in Coccidae belonging to group II. Domain
architecture identified by ScanProsite consists of the glycosyl hydrolases family 18 (GH18) domain
(GH18_2) and active site (GH18_1) and chitin-binding type-2 domain (CHIT_BIND_II). Imaginal disk
growth factor (group V) chitinase-like proteins, involved in morphogenesis and CO2 response rather
than immunity [121], are used as the outgroup. Bootstrap support values are indicated at each node.
The scale bar indicates the number of amino acid substitutions per site.

2.4.5. Nitric Oxide Synthase

Nitric oxide is a highly unstable free radical gas that has been shown to be toxic to both
parasites and pathogens [126]. Production of nitric oxide is mediated by the enzyme nitric
oxide synthase (Nos) and triggers the activation of the Toll/IMD signal pathway [127]. In
insects, Nos is upregulated after both parasite [128] and bacterial infection [129]. Like pea
aphids, E. pela have one Nos homolog (Table 3).
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Figure 10. Phylogenetic tree based on maximum likelihood analysis of phenoloxidase activating
factor 2 (paf2) putative homologs identified in the E. pela genome (in red) and in the transcriptomes
of C. cirripediformis (in blue) and Coccus sp. (in purple). Each Coccidae species has two paralogs
belonging to the paf2 family. The sequences of the three Coccidae species form two monophyletic
groups, whose most closely related sequences are their orthologs in the A. pisum genome. The longest
branch of the unrooted tree is used as the outgroup. Bootstrap support values are indicated at each
node. The scale bar indicates the number of amino acid substitutions per site.

3. Materials and Methods

Immune gene candidates from A. pisum, identified by [22] and reported in Tables 1–3,
were used to query the E. pela genome (GenBank: GCA_011428145.1). Most searches utilized
the tblastn search to search for hits against the assembled E. pela genome, considering as
positive only the hits with an e-value less than 1 × 10−5. For genes absent in the A. pisum
genome, genes from D. melanogaster were used to query the E. pela genome.

To identify immune-related genes in Coccidae, we aligned the A. pisum major immune
protein sequences on the E. pela genome, using exonerate [130], and we extracted the
translated CDS, using getorf [131]. In brief, the protein sequences of A. pisum immune genes
were used as inputs in exonerate using the protein2genome model, which allows introns in
the alignment, but also allows frameshifts, and exon phase changes when a codon is split
by an intron [130]. The resulting sequences were translated using getorf, which finds and
outputs the sequences of open reading frames (ORFs) in nucleotide sequences [131].

To reconstruct the immune gene phylogeny of Coccidae, the identified immune-related
protein sequences of E. pela were used as a query in tblastn searches against the assembled
transcriptome of C. cirripediformis (TSA project accession: GCWZ01) and Coccus sp. (TSA
project accession: GCWW01). Putative homologous sequences in other insect species (Apis
mellifera, Tribolium castaneum, and Bombyx mori) were identified by sequence similarity
searches through BlastP, using D. melanogaster proteins (Tables 1–3) as the query versus the
non-redundant NCBI database (nr NCBI db). However, using the ldcA protein sequence
as a query resulted in no hits in the above-mentioned species. Therefore, a blastP search
against the whole nr NCBI db was also performed to reconstruct the ldcA phylogeny. One
best hit per query was selected and all the protein sequences were aligned using Muscle
3.8 [132], with default settings.
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Alignments were automatically trimmed using Gblocks version 0.91b [133] to avoid
comparisons of non-conserved regions present only in a subset of the taxa. The best-fit
model of amino acid substitution and phylogenetic reconstruction was generated using
RAxML 8.2.12 [134]. The maximum likelihood tree was run for 1000 bootstrap replicates
and the tree figure was plotted using FigTree v1.4.3. Protein sequences were analyzed with
ScanProsite (https://prosite.expasy.org/scanprosite/, accessed on 5 March 2024) in order
to identify active sites and conserved patterns [135].

4. Conclusions

Our annotation of Coccidae immune genes sheds light on the poorly explored reper-
toire of defense molecules and mechanisms used by a group of insects with a peculiar
morphology and habits. The immune gene loss pattern recalls what is observed in aphids,
with some exceptions (i.e., genes that are absent in Coccidae, but present in aphids). These
are (1) galectins, involved in recognition; (2) some members of the Toll and JNK pathways;
and (3) thaumatins, which are antimicrobial effectors also identified in Coleoptera and even
in plants. Understanding if this erosion of the immune repertoire is the result of a reduced
pressure due to the fungal endosymbiont presence or sterile lifestyles, such as plant-sap
feeding, requires further investigations.

Our approach consisted of running searches using the immune gene repertoire of
aphids as the query against Coccidae genomics and transcriptomics assemblies. Indeed,
aphids are one of the closest relatives of Coccidae, which have a deeply characterized
immune gene repertoire. This approach has the advantage of being robust, although
somewhat conservative, because it does not take into account alternative pathways and
uncharacterized genes that may have evolved in Coccidae (and scale insects, in general),
also as an adaptation to the observed loss of immune genes.

However, this work represents the first overview of the immune gene diversity of
Coccidae, which we hope will inspire future studies aimed at functionally characterizing
the identified genes. Indeed, understanding the role of Coccidae immune genes is a key
step for developing new strategies of pest management based on the suppression of the
immune response, to enhance the killing activity of entomopathogens.
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