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Measuring magic on a quantum processor
Salvatore F. E. Oliviero 1,6✉, Lorenzo Leone 1,6, Alioscia Hamma1,2,3 and Seth Lloyd4,5

Magic states are the resource that allows quantum computers to attain an advantage over classical computers. This resource
consists in the deviation from a property called stabilizerness which in turn implies that stabilizer circuits can be efficiently
simulated on a classical computer. Without magic, no quantum computer can do anything that a classical computer cannot do.
Given the importance of magic for quantum computation, it would be useful to have a method for measuring the amount of magic
in a quantum state. In this work, we propose and experimentally demonstrate a protocol for measuring magic based on
randomized measurements. Our experiments are carried out on two IBM Quantum Falcon processors. This protocol can provide a
characterization of the effectiveness of a quantum hardware in producing states that cannot be effectively simulated on a classical
computer. We show how from these measurements one can construct realistic noise models affecting the hardware.

npj Quantum Information           (2022) 8:148 ; https://doi.org/10.1038/s41534-022-00666-5

INTRODUCTION
In the era of Noisy Intermediate Scale Quantum Computers
(NISQs)1 it is of paramount importance to be able to characterize
the proposed quantum hardware in order to check how good
these machines are in performing quantum computation with the
purpose of attaining an advantage over classical computers. This
paper shows how to perform accurate and robust measurements
of the stabilizer Rényi entropy, which in turn is known to quantify
the resource known as “magic”2.
It is well known that the preparation of stabilizer states, the

implementation of Clifford gates and measurements in the
computational basis can be made fault tolerant3–9. However,
computers based on the Clifford resources can be efficiently
simulated on classical computers10–13, similarly to what happens
for matchgate circuits (MGCs). This means that the power of
quantum advance requires resources beyond the Clifford group, like
the Phase π/8 gate (T gate) or the Toffoli gate and non-Gaussian
states for the MCGs14,15. The precious resource that makes quantum
computers special is colloquially dubbed as ‘magic’ and a resource
theory of magic has been developed in recent years2–4,16–27.
It is a striking fact that these resources are difficult to

implement3,5,28–33. The very reason why these resources are
powerful makes them fragile. Moreover, the amount of these
resources that needs to be used in a computation must be
calibrated accurately: just like entanglement34, too much magic is
not useful for quantum computation (see Supplementary Note 1),
see also21. Moreover, decoherence is not magic preserving, and it
can both increase or decrease the amount of magic in a system, as
we will show in the experiments. To the extent that decoherence is
spoiling quantum computation, then one needs the amount of
magic created and manipulated throughout the computation to be
accurate: in this paper, we prove that an excess amount of
unwanted magic makes the task of distinguishing the state ψ from a
random state an exponentially difficult task, see Supplementary
Note 1 for the proof. Moreover, since inaccurate Clifford gates can
produce magic, the presence of excess magic is in fact a signal of
noise. We exploit this fact to show that the measurement of magic
can be used to quantify and characterize the noise in the quantum

circuit. It is thus important to be able to quantify this resource and
measure it to characterize the fitness of real quantum hardware.
Unfortunately—until recently—proposed measures of magic4,17,22,35

have been based on extremization procedures and no experimental
measurement scheme has been proposed.
In this work, we propose and experimentally demonstrate a

protocol based on randomized measurements36–49 to measure
magic in a quantum system with n qubits and to characterize
quantum hardware. We adopt the magic measure called stabilizer
2-Rényi entropy defined as2

M2ð ψj iÞ :¼ �log2WðψÞ � S2ðψÞ � log d (1)

where WðψÞ :¼ trðQψ�4Þ, Q≔ d−2∑PP⊗4, and d= 2n, where the
sum is taken over all multi-qubit strings of Pauli operators, applied
to four copies of the state, and S2ðψÞ ¼ �log2trψ

2 is the 2-Rényi
entropy. In order to measure M2 we propose an improved protocol
compared to the one presented in ref. 2 as it only involves
randomized one-qubit measurements instead of global multi-
qubit measurements, with obvious advantages in terms of errors
and quantum control.
As M2 depends on the state ψ, a direct evaluation of M2 would

be possible by knowing all the expectation values trðPψÞ of multi-
qubit Pauli strings in the state ψ. This, of course, is equivalent to
tomography and it is very expensive as it involves the evaluation
of d2 expectation values for a total cost in resources scaling as
Oðd3Þ. Here, we employ a protocol based on randomized
measurements which does not rely on tomographic techniques.
Remarkably, randomized measurement protocols are highly
favorable compared to state tomography38,39,41,43. As we shall
see, we will employ a number of resources scaling as Oðϵ�2d2Þ for
an estimate with error ϵ.

RESULTS
The protocol
The protocol consists in first drawing a string of random one-qubit
Clifford operations, namely C¼ Nn

i¼1ci and applying it to four
copies of the state of interest. The protocol extracts correlations
between these copies. Indeed, the quantity of interest in the first
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term of Eq. (1) can then be computed as

�log2trðQψ�4Þ ¼ �log2
X
s!

ð�2Þ�k s!kECPðs1jCÞPðs2jCÞPðs3jCÞPðs4jCÞ

(2)

The formula above features the expectation value over the
randomized measurements of the Clifford operator C on states of
the computational basis sa and the Hamming weight k s!k of the
string s1⊕ s2⊕ s3⊕ s4. The quantity PðsajCÞ ¼ trðCψCysaÞ repre-
sents the probability of finding the computational basis state sa
when measuring the state CψC†. The second term in Eq. (1) is the
usual 2-Rényi entropy and can be measured by randomized
measurements using the techniques of ref. 41. An important feature
of our protocol is the fact that it only needs randomized operations
over the Clifford group instead of the full unitary group as in ref. 38. In
fact, by collecting the occupation probabilities P(CψC†∣sa) one can
estimate both W(ψ) and the purity P(ψ) together thanks to the fact
that the Clifford group forms a 2-design. See Methods. The
operational meaning of the protocol is the following: randomized
measurement protocols are usually conducted on a (Haar) random
basis. Here we select a (local) stabilizer basis. Clifford rotations
constitute the free resources for magic state resource theory. General
unitaries would result in a change in quantum magic. Clifford orbits
of a given quantum state instead are filled out by iso-magic states. A
Clifford randomized measurement protocol measures the magic of
the entire Clifford orbit, rather than of a single quantum state.
The experiments have been conducted on two IBM Quantum

Falcon processors: a 5 qubit system, ibmq_quito and a 7 qubit
system ibmq_casablanca50.
The experiment can be schematized as follows (see Fig. 1).

Starting with a n-qubit state initialized in the 0j i�n state, we pass it
through a unitary quantum circuit U resulting in the state
preparation ψj i. We want to characterize the fitness of such a
circuit in providing a state with the promised magic. At this point,
one extracts n one-qubit Clifford operations ci, applies them to the
state ψj i, and measures the state in the computational basis.
At this point, we want to analyze the scaling of the cost of

necessary resources, both analytically and numerically. The
experiment is repeated NM times for every string C¼ Nn

i¼1ci in
order to collect statistics to compute the occupation probabilities
P(CψC†∣sa). Then, in order to compute the expectation value over
the whole Clifford group EC , one samples the Clifford group with

NU elements. In order to sample the Clifford group properly and to
build sufficient statistics we simulate numerically the total number
of measurements needed for M2, i.e. NTOT= NM × NU. By evaluating
the variance of the estimator for W, through the use of standard
statistical analysis (Bernstein inequality), one can bound the
probability of making an error ϵ as a function of the total resources
NU × NM employed. In Methods, we prove that by employing a
total number of resources Oðϵ�2d2Þ the randomized measure-
ment protocol is able to estimate the purity within an error ≤ϵ and
the stabilizer purity within an error ϵd−1. These theoretical bounds
can be optimized by numerical analysis. The optimal number of
unitaries NU and of measurements NM is found by numerical
simulations imposing that the relative error on the theoretical
value of stabilizer purity to be below 12% and an average value of
the purity greater than 0.88, thus imposing a relative error of 12%
on the purity as well. An important remark is that both NU and NM

depend on the state ψ. Remarkably, low-magic states (like the
states in the computational basis—which have exactly zero magic)
require a higher NU × NM compared to states with high magic, see
Supplementary Table I in Supplementary Note 4.
In order to characterize the fitness of a quantum processor in

producing resources beyond stabilizer states, we adopt the model
of a t-doped Clifford circuit51–53. This circuit consists of a block of
Clifford gates in which t non-Clifford gates are injected. The non-
Clifford gates we inject are Pϑ ¼ 0j i 0h j þ eiϑ 1j i 1h j gates: these
constitute the resources that are injecting magic in the system,
while the Clifford circuits are free resources. For ϑ= π/2 one
obtains the phase flip gate that still belongs to the Clifford group
and thus is a free resource. The value ϑ= π/4 instead, the so-called
T gate, yields the maximal amount of magic achievable for a Pϑ
gate. The T-gates will be called the “magic seeds” of the quantum
circuit. These circuits are efficient in entangling so the output state
of the circuit is in general not a trivial product state but a state
that is both entangled and possesses magic.

Measuring magic
We start with the characterization of the quantum processor on
single-qubit states, and thus without entanglement. The single-
qubit magic states are obtained by applying Pϑ on the states þj i ¼
1ffiffi
2

p ð 0j i þ 1j iÞ obtaining Pϑj i � Pϑ þj i ¼ 1ffiffi
2

p ð 0j i þ eiϑ 1j iÞ whose

stabilizer 2-Rényi entropy reads M2ð Pϑj iÞ ¼ �log2
7þcosð4ϑÞ

8

� �
,

achieving its maximum for M2ð Pπ=4
�� �Þ ¼ 1� log23=2 and its

minimum for M2ð Pπ=2
�� �Þ ¼ 0.

The results of the experiment on the ibmq_quito are shown in
Fig. 2. As we can see, the experimental data are in very good
accordance with the theoretical prediction for the target state,
showing the fitness of ibmq_quito in preparing single-qubit magic
states. Decoherence effects are also very low, as we can see from
the purity, see Fig. 2.
We now proceed to the more difficult task of characterizing a

quantum processor capable of preparing entangled states. Starting
from the computational basis state 0j i�n, i.e. the input state of the
quantum processor, we first apply a layer of Hadamard H-gates to
obtain þj i�n ¼ H�n 0j i�n. Then, we apply T-gates on n1 qubits, with
n1= 0,… , n. The T-gates inject magic into the system. For n1= n,
the state obtained is the maximal magic product state achievable. If
one wants to pump more magic into the system, one needs to
create some entanglement between the qubits. To do so, we apply a
layer of CX-gates, i.e. Clifford entangling 2-qubit gates defined as
CXi,j= Ii⊗ (Ij+ Xj)+ Zi⊗ (Ij− Xj) and nested in the following way:
CXn−1,nCXn−2,n−1⋯ CX1,2. Then we can inject some more magic in
the system by applying another layer of n2T-gates with n2= 1,… ,
n− 1 followed by another layer of CX: CX1,2⋯ CXn−2,n−1CXn,n−1. For
the pictorial representation of the previously described architecture
see Fig. 3. At the end of the state preparation, the magic seeds in the

Fig. 1 Schematic of the implementation of the experiment for
measuring magic on a quantum processor. From left to right:
initialization of the system in the state 0j i�n ; preparation of the
target state ψj i by a unitary quantum circuit Ut containing a number
t of non-Clifford gates; intervention of the noise N p affecting the
system effectively prepares the (mixed) state ψp; measurement. The
measurement apparatus is composed of n local Clifford operators
C¼ Nn

i¼1ci randomly sampled from the single qubit Clifford group
ci 2 C1, followed by n measurements in the computational basis
f sj ig that are performed to estimate the occupation probabilities
P(CψC†∣s). The gate imperfection in the application of the Clifford
operators is denoted by c(ϵ).
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circuit are t= n1+ n2 and the state prepared is the Γ
ðnÞ
ðn1;n2Þ

��� E
-state,

where 1 ≤ t ≤ 2n− 1. In the following, we fill in T-gates starting from
(0, 1), then (n1, 1) with (n1,= 1,… , n; n2= 1), and finally (n, n2), with
n2= 2,… , n− 1. With this prescription, the label t uniquely
describes the circuit. For example, t= 4 on a system with n= 6
qubits means three T-gates on the first layer and one T-gate on the
second layer, see Fig. 3. The optimal number of NU, NM for a system
with n= 3, 4, 5 qubits can be found in Supplementary Table I in
Supplementary Note 4 and Fig. 7 in “Methods.”
In a system with n qubits, we can prepare the states jΓðnÞt i with

t= 1,… , 2n− 1. The results of the experiment for n= 3, 4, 5 are
shown in Figs. 4, 5, and 6, respectively. We can see that, for larger
values of n, the purity of the prepared state is compromised, due to
decoherence. The measured experimental values of magic shoot off
the theoretical prediction, especially for low magic states. Somewhat
counterintuitively, the experimental value of magic is higher than the
theoretical one. As we mentioned above, spurious injection (or
subtraction) of magic can happen for two reasons. Inaccurate
implementation of the Clifford gates—and thus turning them into

non-free resources—or noise affecting them, or decoherence. That is,
our experimental characterization of how magic is created in a
quantum circuit tests not only the quantity of magic, but the accuracy
with which the desired magic is created. The fact that the circuit must
not only create magic, but must do it so with a certain accuracy,
allows us to use the experimental data obtained from our protocol to
characterize the noise affecting the system. A first insight comes from
the realization, see Figs. 4, 5, and 6 that the noise is affecting more the
preparation of low-magic states than that of high-magic states, mostly
because of imperfection in the implementation of the resource-free
Clifford gates like the CX gate. Let us see how we can characterize the
noise affecting the system. A very general error model for the target
state ψ is through a quantum channel EðψÞ :¼ P

iqiPiψPi . Random
states are a good model for high-magic states2 and thus, to
understand why the noise affecting the system does not disturb the
magic injected in high-magic states, we compute the average
difference in magic between a random state ψ and the noisy state
EðψÞ as: hδMiHaar :¼ hjMðEðψÞÞ �MðψÞjiHaar. Calculation shows (see
Supplementary Note 2) that hδMiHaar ¼ OðS2ðqÞÞ. In other words, at
high levels of magic, this quantity is robust under the noise model
provided that the distribution q= {qi} is low in entropy S2(q).
Guided by this result, we model the noise in two factors (i) noise

in state preparation due to decoherence and (ii) imperfection in the
realization of the ci gates in the randomized measurement. This
latter error is unitary. We then tune the factors quantifying the noise
in our model to match the difference between the experimentally
measured and the theoretically predicted amounts of magic.
The ansatz for the (non-unitary) quantum channel N p affecting

the state preparation is

ψp � N pð ψj i ψh jÞ :¼ p ψj i ψh j þ ð1� pÞ
n

Xn
i¼1

Zi ψj i ψh jZi (3)

where Zi is a phase flip error on the i-th qubit happening with
probability (1− p)/n. This channel is not the simple phase-flip
channel as the probability p in principle depends on the target
state ψj i. The imperfection in the gates ci is modeled by the
unitary phase displacement ci ! cεi � ciPεc0i , where use the
Pε-gate described above. The measured stabilizer purity will be
denoted by Wexpð ψj iÞ.
Our ansatz on how the noise affects the measurement results is

then Wexpð ψj iÞ ¼! trðψ�4
p Qε�n

2 Þ where Qε
2 represents the correction

to the projector onto the single-qubit stabilizer code due to the
gate imperfection error ε. The two free parameters p and ε can be
determined experimentally, see Supplementary Note 2.
Several points are in order here. First, notice that the purity trψ2

p
is protected against gate imperfection errors, so it can be
measured independently. Second, one can measure the ε error
directly by measuring the purity of the initial state 0j i�n, thus
avoiding the decoherence effect altogether. The values of the

Fig. 2 Stabilizer 2-Rényi entropy for Pϑj i. Plot of the magic of the
single qubit Pϑj i-states, for θ ¼ 0; π

16 ;
π
8 ;

π
6 ;

π
5 ;

π
4. The data displayed

(blue dots) are obtained from the quantum processor ibmq_quito.
The blue dashed curve represents the theoretical value of the magic
for Pϑj i-states, i.e. M2ð Pϑj iÞ ¼ 3�log2 7þ cosð4ϑÞð Þ. Additionally, a
plot of the purity for these states is displayed in the upper right
corner: as the data show, the purity is 1 within the experimental
errors, showing that the decoherence affecting the system is
negligible for n= 1 and also the experimental values of magic are
in perfect agreement with the theoretical ones. See Supplementary
Table II in the Supplementary Note 4 for the data.

Fig. 3 Preparation of ΓðnÞt

��� E
-states. The magic seeds (T-gates) are placed either on the first layer (immediately after the Hadamard gates H), or

in the second layer (immediately after the first layer of C− NOT gates). We start with a T-gate in the second layer, then start filling up the first

layer. Upon completion of the first layer, we start filling up the second layer again. The figure shows: ðaÞ ΓðnÞ1

��� E
, ðbÞ ΓðnÞnþ1

��� E
and ðcÞ ΓðnÞ2n�1

��� E
which

is the final doped Clifford circuit which we consider in this paper.
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stabilizer 2-Rényi entropy given by the noise model are
represented by the Gray squares in Figs. 4, 5, and 6 which show
that they provide a better approximation to the experimental
data, an approximation which in fact improves as the number of T
gates in the circuit increases. By measuring the stabilizer 2-Rényi
entropy, thus, we provide a characterization of the noise model
and an estimate of its parameters p, ε.

DISCUSSION
Magic is a quantity of central importance for quantum computa-
tion: no quantum advantage can be obtained without it.

This paper showed how to measure the amount of magic
produced by a quantum circuit in terms of stabilizer Rényi
entropy, and evaluated experimentally how that amount of magic
scales as a function of the number of T-gates in the circuit. A
central result of our experimental demonstration is that it is not
enough just to create magic: the circuit must create an “accurate
amount” of magic. Imperfectly implemented Clifford gates inject
or subtract uncontrolled/unwanted magic into the circuit: just as
excess entanglement can hinder the ability of a quantum circuit
to perform some desired task34, uncontrolled excess magic can
result in the degradation of the performance of a quantum
computation. Generating the correct amount of stabilizer Rényi

Fig. 4 Stabilizer 2-Rényi entropy for n= 3. Plot of the stabilizer 2-Rényi entropy for a ibmq_quito and b ibmq_casablanca. Both figures
contain the experimental values (blue dots), the theoretical values (green triangles) of the magic for the desired pure state, and the noise

model values (gray squares) of the magic for the mixed state prepared on the quantum processor. The values of the magic of the Γ
ð3Þ
t

��� E
-states

for t= 1,… , 5 are plotted as functions of the number of T-gates t in the doped random Clifford circuits (see Supplementary Tables III and IV in
the Supplementary Note 4 for the data). See Fig. 3 for the preparation of such states. Both figures contain in the upper left corner the purity
(orange dots) of the output state prepared on the quantum processor and its average value (dashed line). Here the number of resources
NTOT≡ NU × NM depends on the number of T-gates t thrown in the circuits as NTOT ¼ 2A3þB3ð5�tÞ, where A3= 10.6 ± 0.3, B3= 0.56 ± 0.08, see
Supplementary Table I in Supplementary Note 4 and Fig. 7 in “Methods.” Note that the experimentally observed magic can be—and typically
is—higher than the theoretically predicted magic. This is because imperfectly performed Clifford gates are no longer exactly Clifford and can
inject uncontrolled/unwanted magic into the system. This effect is enhanced for more qubits and deeper circuits.

Fig. 5 Stabilizer 2-Rényi entropy for n= 4. Plot of the stabilizer 2-Rényi entropy for a ibmq_quito and b ibmq_casablanca. Both figures
contain the experimental values (blue dots), the theoretical values (green triangles) of the magic for the desired pure state, and the noise

model values (gray squares) of the magic for the mixed state prepared on the quantum processor. The values of the magic of the Γ
ð4Þ
t

��� E
-states

for t= 1,… , 7 are plotted as functions of the number of T-gates t in the doped random Clifford circuits, (see Supplementary Tables III and IV in
Supplementary Note 4 for the data). See Fig. 3 for the preparation of such states. Both figures contain in the upper left corner the purity
(orange dots) of the output state prepared on the quantum processor and its average value (dashed line). Here the number of resources
NTOT≡ NU × NM depends on the number of T-gates t thrown in the circuits as NTOT ¼ 2A4þB4ð7�tÞ, where A4= 11.3 ± 0.3, B4= 0.49 ± 0.05, see
Supplementary Table I in Supplementary Note 4 and Fig. 7 in “Methods.” Note that the experimentally observed magic can be—and typically
is—higher than the theoretically predicted magic. See the caption of Fig. 4 for an explanation.
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entropy is thus an important component of the certification
process for quantum hardware. More generally, in a quantum
device, e.g. a circuit based on superconducting qubits, there can
be errors beyond decoherence, like gate implementation errors,
or other unitary errors. Typically, these errors are investigated
through gate fidelity while the loss of purity is a good figure of
merit to quantify decoherence. However, not always gate
fidelity is available as a tool. As we can see in Figs. 4 and 6, an
inaccurate level of magic compared to the theoretical one signals
the presence of unitary errors: a measurement of magic can then
be used as a further tool to evaluate the accuracy of an
experimental set-up.

Methods
Theoretical framework. In ref. 2, we proved that a global
randomized measurements protocol can be employed to measure
the stabilizer 2-Rényi entropy for multiqubit states.
Here, we make a decisive improvement by establishing a

protocol that only requires local measurements. Local measure-
ments are usually the best measurements in terms of quantum
control an experimenter has access to. Let us recall the definition
of stabilizer 2-Rényi entropy: for ψ a n-qubit quantum state,
the stabilizer 2-Rényi entropy of ψ is defined as
M2ðψÞ :¼ �log2WðψÞ � S2ðψÞ � log d, where WðψÞ :¼ trðQψ�4Þ,
S2ðψÞ ¼ trðTψ�2Þ and the operator T is the swap operator while
Q≔ d−2∑PP⊗4. The local randomized measurements protocol we
introduce here aims at measuring W(ψ) and P(ψ) by only using
single qubit gates and then measuring the qubits in the
computational basis. In this way, we reduce access to multi-
qubit gates that are typically noisier and whose control is poorer.
The logic behind any randomized measurement protocol is to
reconstruct operators (e.g., the swap operator for the purity or
higher order permutations for higher order purities, see
refs. 36,38–40,43,54,55) from correlations between randomized mea-
surements. The measurement is randomized by means of Clifford
single qubit gates. It is fundamental to use Clifford gates as magic
is invariant under these unitary operations. The ideal experimental
protocol for measuring simultaneously W(ψ) and P(ψ) is (see Fig. 1
for a pictorial schematization):

(I) pick NU random local Clifford operators C¼ Nn
i¼1ci where

ci 2 C1 are single qubit Clifford gates. For each C do:

(i) obtain the desired state ψ from the quantum circuit U,
(ii) apply C on the state ψC≡ CψC†,
(iii) measure in the computational basis,
(iv) redo steps (i), (ii) and (iii) NM times to estimate the

occupation probabilities PrðψC jsÞ � trð sj i sh jψCÞ for
s= 1,… , 2n,

(II) Estimate the probabilities ~PrðψC jsÞ by measuring the
frequencies of obtaining the bit-string s2 in the state ψC.
The estimator ~PrðψC jsÞ for such probability converges to the
true probability Pr(ψC∣s) in the limit NM→∞.

Fig. 6 Stabilizer 2-Rényi for n= 5. Plot of the stabilizer 2-Rényi for a ibmq_quito and b ibmq_casablanca. Both figures contain the
experimental values (blue dots), the theoretical values (green triangles) of the magic for the pure state one would have liked to obtain, and
the noise model values (gray squares) of the magic for the mixed state prepared on the quantum processor. The values of the magic of the

Γ
ð5Þ
t

��� E
-states for t= 1,… , 9 are plotted as functions of the number of T-gates t in the doped random Clifford circuits,(see Supplementary Tables

III and IV in Supplementary Note 4 for the data). See Fig. 3 for the preparation of such states. Both figures contain in the upper left corner the
purity (orange dots) of the output state prepared on the quantum processor and its average value (dashed line). Here the number of resources
NTOT≡ NU × NM depends on the number of T-gates t thrown in the circuits as NTOT ¼ 2A5þB5ð9�tÞ, where A5= 13.7 ± 0.1, B5= 0.041 ± 0.02 , see
Supplementary Table I in Supplementary Note and Fig. 7 in “Methods.” Note that the experimentally observed magic can be—and typically is
—higher than the theoretically predicted magic. See the caption of Fig. 4 for an explanation.

Fig. 7 Number of optimal resources NU and NM. The figure shows
the log-plot of the optimal number of resources NTOT= NU × NM for
n= 3 (blue dots), n= 4 (orange dots) and n= 5 (gray dots) as a
function of the number of T-gates t injected in the circuit. The
dashed lines represent the fit NTOT= 2a+b[(2n−1)−t]; the values for a
and b with the respective errors are reported in the bottom-left
corner. The fitted curves are in perfect agreement with the
experimental data, whose error bars are due to the finite resolution
of the grid: the R-squared parameters are R2ð3Þ ¼ 0:985 for n= 3,

R2ð4Þ ¼ 0:985 for n= 4, and R2ð5Þ ¼ 0:995 for n= 5.
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(III) Obtain P(ψ) and W(ψ) can be computed from the ideal
probabilities Pr(ψC∣s) by:

PðψÞ ¼ 1
24n

X
C2C�n

1

X2n
s1;s2¼1

O2ðs1; s2ÞPrðψC js1ÞPrðψC js2Þ (4)

WðψÞ ¼ 1
24n

P
C2C�n

1

P2n
s1;¼ ;s4¼1

O4ðs1; s2; s3; s4ÞPrðψC js1Þ

PrðψC js2ÞPrðψC js3ÞPrðψC js4Þ
(5)

the weighting coefficients O2(s1, s2) and O4(s1, s2, s3, s4) are
obtained in the following way. First, define two diagonal operators
defined in H�2 and H�4 respectively:

Ô2 :¼
X
s1;s2

O2ðs1; s2Þ s1s2j i s1s2h j (6)

Ô4 :¼
X

s1;s2;s3 ;s4

O4ðs1; s2; s3; s4Þ s1s2s3s4j i s1s2s3s4h j (7)

Let us now prove Eqs. (4) and (5) and show the exact form of O2

and O4. Let us rewrite Eqs. (4) and (5) writing the purity as PðψÞ ¼
trðTψ�2Þ and WðψÞ ¼ trðQψ�4Þ
trðTψ�2Þ ¼ 1

24n
P
C
trðCy�2Ô2C�2ψ�2Þ

trðQψ�4Þ ¼ 1
24n

P
C
trðCy�4Ô4C�4ψ�4Þ

(8)

from the above equation is clear that the task is to find
two diagonal operators Ô2 and Ô4 whose local Clifford
average gives T and Q respectively. Recalling that
T ¼ 1

2n ð1�2 þ X�2 þ Y�2 þ Z�2Þ�n
, and Q ¼ 1

4n ð1�4 þ X�4

þY�4 þ Z�4Þ�n, it is sufficient to find two single qubit diagonal
operators ô2 and ô4 living in C2�2 and C2�4 respectively, such
that their Clifford average gives T1 � 1

2 ð1�2 þ X�2 þ Y�2 þ Z�2Þ
and Q1 � 1

4 ð1�4 þ X�4 þ Y�4 þ Z�4Þ respectively. At this point, it
is straightforward to verify that one should choose ô2; ô4 to be

ô2 � 1�2

2
þ 3
2
Z�2 (9)

ô4 � 1�4

4
þ 3
4
Z�4 (10)

To conclude the proof is sufficient to write ô2 and ô4 in the
computational basis to restore the forms of Eqs. (4) and (5). It’s
easy to verify:

O2ðs1; s2Þ ¼ ð�2Þ�
Pn

i¼1
si1�si2

O4ðs1; s2; s3; s4Þ ¼ ð�2Þ�
Pn

i¼1
si1�si2�si3�si4

(11)

where sk ¼ s1ks
2
k ¼ snk a n-length bit string for k= 1, 2, 3, 4 and⊕ is

the logic sum between bits.

Statistical analysis
In this section, we discuss the effect of a finite number of
realizations of the experiment. In our scheme, statistical errors
arise from two factors: (i) a partial sampling of the local (single
qubit) Clifford group, that is, NU < 24n, and (ii) the finite number of
measurement shots NM per unitary selected to estimate the
occupation probability ~PrðψC jsÞ, introduced in the previous
section, that converge to the true probability only in the limit
NM→∞. The total number of resources is thus NU × NM. We
assume that different rounds of random local unitary and different
shots for a given unitary are generated independently and
identically distributed. One describes the i-th shot for a given
sampled unitary C as ~sCðiÞ which takes value sj i sh j with probability

PrðψC jsÞ � trð sj i sh jCψCyÞ. An unbiased estimator for the stabilizer
purity is given by:

~WðψÞ ¼ 1
NU

X
C

~WCðψÞ (12)

where ~WCðψÞ :¼ NM

4

� ��1P
i<j<k<ltrð~sCðiÞ � ~sCðjÞ � ~sCðkÞ � ~sCðlÞÔ4Þ.

Let us prove that it is an unbiased estimator:

ECEs ~WðψÞ ¼ EC
NM

4

� ��1 P
i<j<k<l

trðEs~sCðiÞ �Es~sCðjÞ �Es~sCðkÞ �Es~sCðlÞÔ4Þ

¼ ECtrðC�4ψ�4Cy�4Ô4Þ ¼ WðψÞ
(13)

where we used the fact that Es~sUðiÞ �
P

s sj i sh jPrðψC jsÞ ¼ ψC . Our
task now is to bound the number of resources needed to
estimate W within an error ϵ. We compute the variance given a
finite number of shot measurements NM and a finite sample NU

of the local Clifford group. The variance of the estimator ~WðψÞ
can be written as:

Var½ ~WðψÞ� ¼ 1
NU
Var½ ~WCðψÞ�

¼ 1
NU
EC Esð ~W2

CðψÞjCÞ
h i

� 1
NU

ECEsð ~WCðψÞjCÞ
	 
2

(14)

After some lengthy algebra (see Supplementary Note 3), it is
possible to bound the above variance as:

Var½ ~WðψÞ� � 1
NU

8ffiffi
d

p þ 192
d1=3N4

M

þ 6792
d1=2N4

M

h

þ 5056
N3
M
þ 8179

d1=2N2
M

þ 128
NM

� tr½Qψ�4�2
i (15)

Finally, we make use of Bernstein’s inequality to bound the
probability of an estimation within an error ϵ:

Pr j ~WðψÞ �WðψÞj � ϵ
� � � 2

� NU ϵ
2

Varð ~WU ðψÞÞþ2ϵ
3

(16)

In the regime of interest, i.e., d≫ 1 and NM≫ 1 the variance scales

like Var½ ~WðψÞ�t 1
NU

c1ffiffi
d

p þ c2
NM

� �
, where c1, c2 are two constants.

Setting NM ¼ Oð ffiffiffi
d

p Þ, in order to have an error ϵ, and an
exponentially small probability to fail, the total number of
resources NU × NM for the stabilizer purity scales as Oðϵ�2Þ.
At this point, a comment is necessary. The stabilizer purity is

bounded between d�2 � ~WðψÞ � d�1, which means that, to
have a faithful measurement of W(ψ), the error ϵ must be (at
least) exponentially small in the number of qubits, ϵ ~ d−1. This
makes the number of resources exponentially large in n.
Similarly, for the purity P(ψ) (see Supplementary Note 3), setting
NM ¼ Oð ffiffiffi

d
p Þ, the variance is Var½ ~Pur ðψÞ� ¼ OðdN�1

U Þ. Thus the
number of resources to estimate the purity up to an error ϵ

scales as Oðϵ�2
ffiffiffiffiffi
d3

p
Þ.

Therefore, employing a total number of resources

NU ´NM ¼ Oðϵ�2d2Þ (17)

the randomized measurement protocol is able to estimate the
purity within an error ≤ϵ and the stabilizer purity within an error
ϵd−1. In the next section, we describe the experimental protocol
used to perform the experiments on IBM quantum processors.

Experimental protocol. To measure the magic of multiqubit states
on a quantum processor via statistical correlations between
randomized measurements we need three steps: (i) state
preparation, (ii) the application of NU random local Clifford
unitaries to sample the local n-qubit Clifford group, whose
dimension is ∣Cloc(2n)∣= 24n, and (iii) NM projective measurements
to estimate the probabilities ~PMðψC jsÞ. Then, the experimental
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purity and stabilizer purity are measured as:

PðψÞ ¼ 1
NU

P
C

P2n
s1 ;s2¼1

O2ðs1; s2Þ~PMðψC js1Þ~PMðψC js2Þ

WðψÞ ¼ 1
NU

P
C

P2n
s1 ;¼ ;s4

O4ðs1; s2; s3; s4Þ~PMðψC js1Þ~PMðψC js2Þ~PMðψC js3Þ~PMðψC js4Þ

(18)

We proved that one needs NU ´NM ¼ Oðϵ�2d2Þ total measure-
ments to estimate the stabilizer purity within a error ϵ−1d−1. Since
we obtained such an accuracy guarantee through crude bounds,
we expect fewer resources to be spent. We thus follow the
protocol employed in41 to find the optimal number of unitaries NU

and measurements NM. We first build a preliminary 10 × 10 grid
and make 100 numerical simulation for 10 different values of
NU= 8,… , 1024 and 10 different values NM= 32,… , 1024 (the
latter taken with logarithmic spacing) for 2 extreme states, namely

the input state 0j i�n and the final doped Clifford state Γ
ðnÞ
2n�1

��� E
, see

Fig. 3. Then, for each value of NU and NM we compute the average
WNU ;NMð ψj iÞ over 100 different realizations, the average purity
PNU ;NMð ψj iÞ and the average percent distance δNU ;NM from the
average

δNU ;NMð ψj iÞ :¼ jWNU ;NMð ψj iÞ �WNU ;NMð ψj iÞj
WNU ;NMð ψj iÞ

(19)

To obtain the optimal number of NU and NM for the given states
0j i�n and jΓðnÞ2n�1i, we set a threshold on the average distance
δNU ;NM and on the average purity PNU ;NMð ψj iÞ:
(i) δNU ;NMð ψj iÞ<12%
(ii) jPNU ;NMð ψj iÞ � 1j<12%

and pick the pair of NU, NM satisfying conditions (i) and (ii)
minimizing their product NUNM, i.e. the optimal number of
resources. Indeed the product of NUNM is the number of physical
times that one redoes the actual experiment and thus the
number of necessary resources to perform an experiment.
Remarkably, the number of unitaries NU and the number of
measurements NM do depend on the state of interest ψj i. In
particular, denoting Nt¼2n�1

U ;Nt¼2n�1
M and Nt¼0

U ;Nt¼0
M the number

of resources for Γ
ðnÞ
2n�1

��� E
and 0j i�n respectively, we find

Nt¼2n�1
U <Nt¼0

U and Nt¼2n�1
M <Nt¼0

M . These findings suggest that
the optimal number of resources NU × NM do depend on the
number t of magic seeds, i.e. T-gates, thrown in the circuit. Thus,
in order to find optimal values for NU and NM for all the states of

interest Γ
ðnÞ
t

��� E
t ¼ 1; ¼ ; 2n� 1, we build a linear spaced 10 × 10

grid for 10 different value of NU ranging in ½Nt¼2n�1
U ; ¼ ;Nt¼0

U �
and 10 different values of NM ranging in ½Nt¼2n�1

M ; ¼ ;Nt¼0
M � for

fixed n; then we make 100 numerical simulations and pick the
optimal number of resources satisfying conditions (i) and (ii). In
this way, we are able to determine the optimal number of
resources state by state, see Supplementary Table I in
Supplementary Note 4 for the results. The data are fitted to
depend exponentially upon the number t of magic-seeds, as
NTOT= 2a+b[(2n−1)−t], see Fig. 7. The experimental errors on the
estimated P(ψ) and W(ψ) are chosen to be the standard error of
the average over NU, i.e. over the local Clifford operators used to
estimate these two quantities from randomized measurements
(see Supplementary Note 4).
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