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Abstract—The spread of computing-systems, especially the
real-time embedded ones, is rapidly growing in the last years,
since they find usage in numerous fields of application, including,
but not limited to, industry process, critical infrastructures,
transportation systems, as so forth. Indeed, in these fields, precise
time-constraints hold; hence, tasks need to be correct from
both the functional and temporal perspectives. As for the latter,
timing behavior has to be characterized, that is usually done
by exploiting either static or dynamic analysis techniques, which
leverage estimations based on either a model or the actual system.

In this paper, we foster an automated hybrid approach that
allows characterizing the timing behavior of systems while in-
troducing any alteration, i.e., relying on instruction-level tracing
rather than code instrumentation for profiling purposes. Our
approach is sensitive to the execution-context, — e.g., cache
misses — and it allows re-using results from the development
processes — e.g., unit tests. We considered a complex real-time
application from the railway domain as a case study to evaluate
our approach, empirically proving that it can provide a faithful
characterization of systems in terms of worst-case execution time.

Index Terms—Safety-Critical Systems, Real-Time Systems,
Hybrid Timing Analysis, Execution-Trace Analysis

I. INTRODUCTION

Critical systems, i.e., those systems for which failures or
malfunctions can cause environmental harms, severe economic
losses, and serious injuries to people, or even their death, are
increasingly common in many application fields, e.g., heavy
industries, critical infrastructures, and the medicine field. De-
pending on the actual application field, the development of
such systems has to comply with strict regulations — e.g., the
CENELEC 50128 for the railway domain [1] — which aim to
guarantee that systems exhibit a given Safety Integrity Level
(SIL), i.e., the probability of dangerous failures per hour must
be less than a specific threshold [2]. These systems typically
exhibit a real-time behavior, meaning that systems have to
behave correctly both from the functional and timing perspec-
tives. Hence, an upper bound to the timing behavior of such
systems, in terms of Worts-Case Execution Time (WCET), has
to be measured to prove that timing requirements are met. For
instance, the CENELEC 50128 recommends characterizing the
system behavior in terms of predictability and WCET, for all
the components of a given software system [1].

Whereas a significant number of solutions have been pro-
posed in the scientific literature to retrieve the WCET of real-
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time systems, at least two challenges still hold [3]. Specifically,
(1) coping with the complexity of modern computer programs,
which is growing exponentially, while being able to find the
longest execution-time, and (ii) how to consider the hardware
and all its possible states while estimating the WCET. Since
the WCET can only be estimated, as its quantification is
resource-intensive [4], [5], an additional challenge regards
the quality of its estimation, which can be discussed in
terms of (i) safety, i.e., the estimate should not be smaller
than the actual WCET, and (ii) precision, i.e., the estimate
should be as close as possible to the actual value. As far
as the first challenge is concerned, to cope with growing
complexity, several approaches consider segments of a given
program, rather than the program as a whole. Consequently,
the overall WCET is estimated based on the execution time
of program segments [6], [7]. For what pertains to safety and
precision, when the former has to be preferred over the latter,
contributions from the scientific literature attempt to consider
all the possible execution states of the analyzed system, as
well as formal methods, for characterization purposes [8].

The scientific literature identifies three different approaches
for the WCET estimation, namely the static, dynamic and
hybrid approaches. Static timing analysis approaches leverage
timing models formal approaches to characterize the system,
placing safety before precision, while dynamic-approaches
rely on the actual execution of the program as a mean to
estimate the WCET. Hybrid approaches attempt to combine
the advantages of both the latter.

In this paper, we present a novel hybrid approach for the
estimation of the WCET of complex real-time systems. The
program to be analyzed is decomposed into code units — i.e.,
set of statements — which execution time is measured while
introducing no alteration to the timing behavior, relying on
instruction-level tracing rather than code instrumentation. The
approach is sensible to hardware states — e.g., cache-misses —,
that can be injected for safety of the estimation, and it allows
leveraging results from the development processes — e.g., unit
or integration tests — for measurement purposes. To evaluate
our approach, we consider a complex real-time application
taken from the railway domain as a case study.

The remainder of the paper is organized as follows: Sec-
tion II provides the reader with a brief overview of related
works from the scientific literature. Section III deeply dis-
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cusses our timing-characterization technique, while Section IV
discusses the case study. Finally, we draw conclusions, and we
outline possible future extensions in Section V.

II. RELATED WORKS

Computing an upper bound of the execution time of a
program, i.e., estimating the WCET, is a problem that research
efforts have focused on for numerous years. Despite this,
it is still of interest to the scientific community. Indeed,
over the years, a plethora of methods and tools have been
developed [3].

The scientific literature identifies three different approaches
for the WCET estimation, namely the static, dynamic and
hybrid approaches. Static timing analysis approaches leverage
a timing model, derived from the hardware and software
under investigation, and formal methods for characterization
purposes; hence, they require neither running the system nor
simulating it to estimate the WCET [9]. They favor safety
of the estimation: they attempt to consider all the possible
execution states of the analyzed system [8]. Anyway, the
precision of the estimation strongly depends on the faithfulness
of the model. Dynamic-approaches, on the other hand, rely on
the actual execution of the program [7]; hence, they allow
for a more precise estimation, giving up safety [8]. Indeed,
there is no guarantee that every execution-state — e.g., cache-
misses, pipeline flushes, branch misprediction, and so forth — is
witnessed during simulations, as well as every execution path
is taken. Hence, improper simulation approaches may result
in underestimating the WCET, possible leading to a wrong
characterization [10]-[12].

Hybrid approaches generally provide better trade-offs be-
tween safety and precision, since they attempt to combine
both the latter approaches. The program to be analyzed is
decomposed first, to bound its complexity, and the execution
time of each code fragment is measured while running frag-
ments on the actual hardware; then, the WCET is estimated
through formal methods, based on the execution time of each
fragment. As the measurement technique for the execution
time is concerned, pioneering hybrid approaches rely on
source-code instrumentation [13]. The latter adds specific code
to the program under analysis, such that the execution of the
code produces dump-data for runtime analysis, or component
testing. Clearly, this alters the timing behavior of the system,
and, consequently, resulting measurements suffer from the
probe effect. Furthermore, the delays introduced by insertion
or removal of code instrumentation may result in a non-
functioning application, or unpredictable behavior.

Conversely, recent works leverages non-intrusive measure-
ment techniques [14]-[17]. For instance, the authors of [18],
[19] exploited execution traces to seek for performance issues
in real-time tasks, the authors of [20] leveraged machine learn-
ing to analyze execution traces while targeting GNU/Linux
system calls, while the authors of [14], [15] leverage execution
trace analysis to estimate the WCET while exploiting the Field
Programmable Gate Array (FPGA) for on-the-fly analysis.

Moreover, when combined with graph theory, execution
trace analysis allows modeling complex scenarios that may
arise during the execution of a system: the authors of [21] ex-
ploited a graph-based representation of dependencies between
software-threads and hardware resources with the aim to detect
bottlenecks, while the authors of [22] leveraged a dependency
graph to analyze latencies of hardware resource usage.

While the above-mentioned works allow resolving very
specific problems, our work is more generalizable and can be
applied in different contexts. Indeed, it is suitable to analyze all
kinds of execution trace, not only those generated from specific
executions, e.g., GNU/Linux system calls. Also, both latencies
of hardware resource usage and bottlenecks can be detected
because it provides a complete timing characterization of the
system. Finally, our technique does not require additional
hardware, FPGA for instance.

Besides formal methods and measurement-based ap-
proaches, recently, probabilistic-based techniques have been
proposed in the scientific literature [23]. Such techniques
characterize a system without relying on a scalar value such
as WCET, rather on a probability distribution, namely the
pWCET distribution, which is gathered from multiple execu-
tions of the system under analysis.

However, such an approach is costly, and it requires know-
ing the pWCET distribution and modelling dependencies be-
tween tasks, meaning that the complexity and the computa-
tional cost grow.

III. INVESTIGATING THE TEMPORAL BEHAVIOR OF
CRITICAL REAL-TIME SYSTEMS

In this Section, we detail our hybrid technique to analyze the
timing-behavior of critical real-time systems, which involves:
(i) static analysis of the code of the system, aiming to
test-cases generation, which is presented in Section III-A,
(i) the execution of the previous test-cases on the actual target,
that is discussed in Section III-B, to collect execution traces,
and (iii) a final analysis step, debated in Section III-C, which
provides a graph representation of the execution flow and an
accurate analysis of the execution time.

The description of each step is supplied with a running
example, which is shown in Listing 1. The code-snippet,
extracted from an actual code unit, has been intentionally
chosen to be as brief and simple as possible, to clearly and
concisely introduce our proposed technique.

A. Static analysis

In this step, the program under-analysis is decomposed into
its subunits — e.g., functions or tasks — and unit tests are
automatically generated by following the approach presented
in [24], in order to facilitate the WCET estimation.

Input test pattern generation resorts on the Abstract Syntax
Tree (AST)-representation of units. The AST is a tree-based
representation resulting from the syntax analysis step of the
compilation phase, and it often serves as an intermediate rep-
resentation of the program onto which compilers work through
the compilation and linking steps. For instance, Figure 1
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Fig. 1. AST-graph of the code in Listing 1.

represents the AST-graph referred to the code in Listing 1.
As depicted, each node denotes a language construct of the
analyzed code, and information pertaining to branches, loops,
function-calls, and so forth. The AST furnishes only structural
and content-related details of the program, yet it preserves
variable-types and their declaration, the order of statements,
identifiers, assignment statements, and the left and the right-
hand side operands of binary operators.

We generate input patterns by searching for specific nodes
within the AST, e.g., those corresponding to function defi-
nitions. Then, we search for branches and jumps — e.g., if-
then statements — parameter-declaration, variable-declaration,
constant-declaration, and literal nodes, to collect parameters
and variables involved in conditions and decisions. The latter
are identified by searching for binary-operator nodes within
the AST, and decomposed. Then, based on the binary operator
defining the condition and its operands, a proper input assign-
ment is generated to make the outcome either true or false.
Kindly note that the discussed test-case generation procedure
is clearly discretionary: if the concerned system has already
been tested, test-cases generated during the development life-
cycle can be reused, with no need to generate new ones.

Let consider, for instance, the addressl == NULL con-
dition from the Listing 1: to make the outcome either true
or false, the input assignments addressl = NULL and
addressl = value are generated, with value # NULL
being plausible for the executed code.

After suitable input assignments for conditions have been
determined, a minimum set of test cases is selected for
each of the decision within the concerned unit, while taking
into consideration the Modified Condition/Decision Coverage
(MC/DC) metric, which is the common choice for measuring
test coverage in safety critical environments [25]. It requires
that: (i) every entry/exit point in the program is invoked at

if ((NULL == addressl) ||
function ();

(OU > variablel))

Listing 1. Code snippet of the running example

000b048: cmp x0, #0x0

000b04c: b.ne 000b074

000b050: mov w4, #0xl12e
000b054: adrp x0, 0013000
000b070: bl 0010c6¢c <function>
000b074: adrp x0, 0015000
000b080: cmp w0, #0x0
000b084: b.ne 000bOac

000b088: mov w4, #0x12e
000b08c: adrp x0, 0013000
000b0a8: bl 0010c6¢c <function>
000bOac: ldr w0, [sp, #44]

Listing 2. ARM Assembly translation of the snipped code shown in Listing 1

least once; (ii) every decision in the program takes all possible
outcomes at least once; (iii) every condition in a decision takes
all possible outcomes at least once; (iv) each condition in a
decision shows to affect the outcome of the involved decision
independently.

Higher the coverage while utilizing the MC/DC metric,
higher the path coverage, as well as the probability of the
longest lasting execution path to be considered during our
analysis. Besides, to correctly observe all the executed in-
structions which contribute to the execution-time, it is required
to analyze the program while considering object-code. As an
example, Listing 2 shows the assembled code for Listing 1.
It is worth noticing that, by evaluating the second condition
of the if-then statement of the Listing 1, more Assembly
instructions will be executed. This is due to the short-circuit
logic being exploited by compilers to optimize the execution
time of computer programs.

B. Program execution and tracing

Once test cases are available, either automatically gen-
erated or resulting from the development process, they are
executed while targeting the actual hardware, and a non-
intrusive debugging is exploited to collect execution traces.
Non-intrusive debugging alters neither the source-code nor the
temporal behavior of the unit under test, while simultaneously
allowing to recreate preconditions for each of the test case
by introducing very precise modifications to the value of
variables during the execution. Besides, it allows altering the
hardware states: for instance, the cache can be invalidated to
cause a cache-miss, benefitting the precision of the estimated
WCET [11].

Once test-cases are performed, timestamped execution-
traces are extracted by using an off-chip tracing technique [26]
— that resort to an external device to store the trace, rather than
the on-chip ones — allowing to analyze the system for a longer
time.

Extracted execution traces are composed of several records,
each produced while observing the occurrence of events in
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the system. It is up to the trace-source what event generates a
record in the trace. The Embedded Trace Macrocell (ETM) of
the ARM CoreSight™, which is embedded into almost every
ARM CPU, for instance, generates records when jumps or
branches instructions are executed [27]. Kindly note that, to
be suitable for our technique, the above-mentioned records in
the execution trace have to include at least the address and the
timestamp of an occurred event. Specifically, the timestamp
is generally expressed in terms of the tracer clock-cycles,
measured as the time elapsed from the tracing-start to the
event-occurrence.

Before undergoing the analysis, execution traces have to be
parsed, record per record, to map them with the source code.
The parsing operation retrieves symbols — e.g., the name of a
function — at the source-code level, by leveraging the memory-
addresses within the trace record. Such knowledge is exploited
in the very next phase, i.e., during the execution-trace analysis.

C. Execution-trace analysis

Once tests have been executed and execution traces col-
lected, we exploit them to build the control-flow graph (CFG)
of the concerned software, i.e., a graph-based representation of
all paths that might be traversed through a program during its
execution. We annotate the CFG with the execution time for
each event of interest as the difference between its timestamp,
and that of a previous event in the execution trace, the
execution trace itself to which such execution time refers, and
the corresponding test being executed. All of these annotations
will serve the subsequent analysis. Kindly note that the same
given path can be identified in multiple different execution
traces, and that it can exhibit different execution times, as we
already observed while discussing Listing 2.

Once all the execution traces related to the same code
unit have been analyzed, our technique identifies which path
requires the longest execution time by traversing the annotated
CFG. Figure 2, for instance, shows results for Listing 1: the
longest lasting path is highlighted in red, and the annotation
provides information about the execution traces (and the
corresponding test being executed) to which such execution
time has been observed.

IV. EVALUATION

For evaluation purposes, we resort to a real-world safety-
critical software from the railway domain. The considered
software implements part of the functionalities of the Euro-
pean Rail Traffic Management System/European Train Control
System (ERMTS/ETCS) standard, and it consists of many
periodic real-time tasks, whose execution flow, albeit quite
complex, can be summarized as tasks either behaving as
producers, or as consumers. The considered software monitors
the location of the train on the rail route. It consists of
different processing units: Pos is the one assigned to calculate
the precise position, based on the odometric information and
that from the eurobalises, respectively, obtained by interfacing
with the Odo and Btm units. The latter perform decoding
and pre-processing operations of the information coming from

Parsed Trace #1
void function()f — A JT&L;‘WL
if ; — B 15
). - (B; c 220
else E 280
g — D G 374
wf H 523
i(..) —E
— F Parsed Trace #n
olse - [ Symbol | Trmestamp |
} — H A 0
H 387

Fig. 2. Exemplary application of our technique. The figure shows a unit —
to which the code in Listing 1 belongs — (on the left side), two example of
parsed trace (center) and the result on the CFG of the unit (on the right side).
The longest path, whose execution time is computed by exploiting its parsed
execution-trace, is highlighted in red.

Task
Driver_
btm

Task
Driver_
pos

Channel |
Pos !

send() receive()

Fig. 3. An application from the ERMTS/ETCS standard.

the Driver_Odo and Driver_Btm tasks, which implement the
device driver functions.

The whole system operates under memory segregation
constraints, and any communication between software units
is arbitrated by the real-time operating system (RTOS)
through message-passing inter-process comunications (IPCs).
The RTOS also orchestrate communications between tasks and
the underlying hardware.

The mentioned software runs on four ARM® Cortex-A53,
and it is two-out-of-two (2002) redundant, meaning that the
software is executed by two replicas, which receive the same
inputs and are expected to provide the same output. The
deployment to specific cores is statically defined by the vendor,
to guarantee a higher system predictability.

Given the complexity, we consider only a subset of the
mentioned software, as shown in Figure 3, to make the
discussion plain. Specifically, we focus on the communication
between Task Btm and Task Pos, which behave as producer
and as consumer, respectively. Both are periodic tasks, with
500us period, rather they exhibit different scheduling priority,
with Task Pos having higher priority than Task Btm.

Hereafter, we report a detailed analysis made on the pro-
ducer unit, i.e, send () function, whose source-code is shown
in Listing 3. As mentioned, the RTOS — whose source-code
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send_status_t send(uint32_t channel_id,
const uint8_t * const sendbuff ,
const uint32_t size)

{
int32_t channel_index = -1;
send_status_t send_status = send_error;
rtos_return_code_t retcode;
channel_index = get_channel(channel_id);
ASSERT_GTE(channel_index , 0);
ASSERT_WITHIN (size , 1, MAX_SIZE);
ASSERT_NOT_NULL( sendbuff);
retcode = rtos_send(channel_index , sendbuff, size);
send_status = send_error_handler (retcode , size);
return send_status;

}

Listing 3. Code of the function send (). The function is invoked by the

producer task and take as input the id of the channel used to send the message,
the address of buffer from what the message is colected, and its size. First,
the function retrieve from the id the channel and asserts its existence. After
asserting that the size of the message is correctly bounded and the address of
the buffer is not a null pointer, the message is sent to task consumer and the
result of such operation is compared to the one obtained by the other reply
of the redundant architecture.

is not accessible — orchestrates communications. Specifically,
it handles operations such as retrieving the channel from the
channel_id, message-exchange through the channel and error-
handling.

Concerning execution trace recording, we exploit unit test-
cases for the send () unit that have already been specified and
implemented during V&V, according to the MC/DC metric.
The execution of such tests and the timing behavior of the
system are observed by relying on the ARM ETMv4 [26],
and on the Lauterbach PowerTrace II [28]. The latter allows
us to execute test-cases, and to alter both inputs and variables
without altering the software. In addition, it provides the mean
to modify the hardware state, allowing the behavior of the
software to be evaluated starting from different preconditions,
e.g., under cache miss or cache hit. In this manner, we can
cover any possible execution path in the considered software,
defining specific execution scenarios to cover that path.

Once a trace is captured, it is first parsed and then analyzed
to compute execution times of the send () function, and
to find the longest lasting execution path. Figure 4 reports
the CFG of the concerned function, while Table I shows the
path covered by each test-case, according to Figure 4, and
the execution times of each path, expressed in terms of clock
cycle. As the reader can observe, the first test-case, and hence
the path it covers, requires more times to execute than the
others. Therefore, the concerned path is highlighted in the
CFG, as shown in Figure 5.

The results shown previously can be further exploited to
perform a schedulability analysis.

Our methodolgy proves both disclosed tasks complete their
operations within their period. Indeed:

e Task Btm only calls the send () function, which take
at most 36442 clock cycles to execute in case of cache-
hit and 99661 in case of cache-miss, i.e., 36.44us and
99.66 115

e Task Pos, by calling twice the receive () function,

Test Exe?ution Exe?ution

Case Path Covered Time . Time .
Cache-Hit | Cache-Miss

1 start 4 A —B —- D — F — H | 36442 99661

2 start > A — ¢ 6596 49871

3 stat 4 A —- B — E 7891 52871

4 stat 4+ A —-B —-D—>G 8931 57513

TABLE 1
EXECUTION TIMES OF THE FUNCTION SEND () EXPRESSED IN
CLOCK-CYCLES.

TC1 start

CFG

Fig. 4. of the function
send (). Each node is labelled with
a symbol represented the concerend
branch or jump.

Fig. 5. Result of the applied method-
ology.

receive from both Odo and Btm tasks, and then compute
the speed of the train. The above-mentioned function
has a WCET of 48563 clock cycles to execute in case
of cache-hit and 145702 in case of cache-miss, i.e.,
48.561s and 148.70us. Finally, the computation of the
train-position is performed by calling a new function —
which analysis are not reported in this paper — requires
at most 60.23us and 101.45us in case of cache-hit and
cache-miss, respectively.

V. CONCLUSION

In this paper, we discuss an automated hybrid approach that
allows characterizing the timing behavior of safety critical
systems while introducing any alteration, i.e., relying on
instruction-level tracing rather than code instrumentation for
profiling purposes. The approach allows re-using unit tests
resulting from the development processes to stimulate the
concerned software, aiming at collecting execution traces. The
latter are exploited to build the control-flow graph of the
concerned software, which is a graph-based representation of
all paths that might be traversed through a program during its
execution, on which we perform our execution time analysis.

We considered a complex real-time application from the
railway domain as a case study to evaluate our approach, em-
pirically proving that it can provide a faithful characterization
of systems in terms of worst-case execution time.
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The advantages provided by our approach can be summa-
rized as follows: (i) it automatically generates test-cases or
reuses them, if any, (ii) it does not counterfeit the temporal
behavior of the system under analysis, (iii) it is context-
sensitive, since it automatically forces certain hardware states,
e.g, cache-miss, (iv) it allows estimating either the WCET of
all units in the program or the entire program itself.
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