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ABSTRACT Increasing motorization represents a severe problem worldwide, also affecting the emission
levels of the road network. Accordingly, congestion management has obtained growing importance because
of its strong economic, social, and environmental implications. Macroscopic Fundamental Diagram (MFD)
based traffic control is a popular and efficient approach in this scientific field. In our research work the
urban network has been divided into homogeneous regions, each of them characterized by its own MFD,
and they are regulated using a network-level control scheme. The proposed Multiobjective Model Predictive
Control (M-MPC) takes into account the congestion and CO2 emission levels of the urban network,
modelled by the emerging Emission Macroscopic Fundamental Diagram (e-MFD). The applied strategy
has been demonstrated in a realistic traffic scenario (Luxembourg City) using validated microscopic traffic
simulation. According to the introduced multiobjective approach, the control method can better exploit the
road network capacity while efficiently reducing traffic-induced emissions.

INDEX TERMS Traffic congestion, emission, traffic management, MFD, e-MFD, Multiobjective Model
Predictive Control, Route Guidance.

LIST OF NOTATIONS

αij Accumulation rate
∆i Zone i oversaturation duration
γi e-MFD of region i
λ Cost function weigth
N Set of urban regions
Nc Set of regions of the city centre
Ni Set of regions adjacent to i
θhij Route choices reflecting crossing zone h, starting

from zone i, to reach zone j
Cih Receiving capacity of region h from region i
CS Congestion severity
ECO2 CO2 normalized value of the city centre
fih Linear transfer flow
FTMPC MPC feedback time
Gi Outflow of region i

J1M CO2 maximum value of the city centre
J2M Production maximum value of the city centre
k Time instant
Kp Observation time
kp Control time step
Li Average trip length of region i
li Length of road lane segment i
Mh

ij Transfer flow of vehicles that are in i and must
cross to region h, in order to reach destination j

Mii Internal trip completion rate of region i
ni Total accumulation of region i
Np Prediction horizon
ncr,i Zone i critical accumulation value
ni,max Maximum accumulation of region i
nij Number of vehicles in region i which have as their

destination the region j
npeak,i Zone i peak accumulation value
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P Production normalized value of the city centre
Pi Travel production of region i
qwI Zone I weighted average flow
qi Measure flow on road lane segment i
qij Demand for vehicles, which are in region i to

reach destination j
sP Deviation between P and thd
sCO2

Deviation between ECO2
and thd

si% Zone i oversaturation degree
t1 Time instant in which zone congestion appears on

the first time
t2 Time instant in which zone congestion defini-

tively ends
Tp Controller sample time
thd Threshold parameter
co2i Measure CO2 on road lane segment i

I. INTRODUCTION
Traffic congestion is a growing problem and is responsible
for many externalities, such as emissions and delays, and
its management is vital in order to efficiently use the road
infrastructure. Severe problems of urban traffic congestion
have characterized many cities worldwide since most of the
population activities are placed in the urban context. Indeed,
since the 70s, different control strategies have been devel-
oped. In this regard, model-based control strategies are used
in order to optimize urban network performance through the
use of mathematical traffic models [1]. The most developed
model-based control techniques are UTOPIA [2], MITROP
[3], OPAC [4], PRODYN [5], RHODES [6], CRONOS [7]
and MOTION [8]. These strategies use simple mathemati-
cal models offering limited prediction capabilities. Alterna-
tively, some control techniques use very detailed micro and
mesoscopic models that deal with local information of the
network; it is worth mentioning in this regard, SCATS [9]
and SCOOT [10]. Most parts of the above-mentioned control
techniques applied on urban networks only focus on one part
of the network, allowing local optimization [11]. In some
cases, a local optimization could compromise the mobility
performances of the rest of the uncontrolled urban network.
Indeed, it is not easy to coordinate local controllers placed
in different areas of an urban network, and then it is often
not possible to guarantee the management of a large-scale
network [12], [13], [14].
Another critical aspect is related to the computational burden
associated with these approaches, in particular when they are
based on very detailed traffic models since it is difficult to
acquire and analyze in real-time, thereby imposing a com-
putational burden on the system [15], [16]. An opportunity
to solve this issue is represented by macroscopic traffic
flow models such as Cell-Trasmission-model (CTM) and
Link-Trasmission-model (LTM) that could be employed in
control applications based on more aggregated information
about the network [17]. This leads to increasing interest
in research about the topic of network-level traffic control
characterized by low computation effort [18]. In this regard,

control techniques based on the paradigm of the Macroscopic
Fundamental Diagram (MFD) [19] gained great interest [20].

A. LITERATURE REVIEW OF MFD BASED CONTROL
APPROACHES
The MFD provides aggregated information through the use of
a concave relationship between only two variables, the accu-
mulation (e.g. link-length weighted average density/number
of vehicles), and the production (e.g. link-length weighted
average flow) which can be measured in real-time, and thus
strongly reduces the computational burden of the measure-
ment procedure inside a control framework [21], [22].
For the above reason, the MFD modelling paradigm tool has
gained a lot of popularity in managing network-level control
techniques such as Perimeter control and Route Guidance.
Typically the MFD is defined for different portions of an ur-
ban network, generating the so-called multireservoir models
that allow the performing of Hierarchical control schemes
[23], [24], [13]. In this hierarchical scheme, at the upper
level, the controller uses the MFD information to understand
the congestion level of each region and consequently manip-
ulates the macroscopic traffic flows through an inter-regional
actuation system. At the lower level, some local controllers
are used to regulate the mesoscopic traffic flows through an
intraregional actuation system (e.g. signalized intersections,
variable message signs).
A lot of works in literature combine the modelling paradigm
of the MFD with the use of the Model Predictive Control
(MPC) technique [25]. The motivation for the aggregation
of the MFD paradigm inside the MPC framework is the
computational complexity of the MPC, scaling poorly for
high-dimensional and non-convex problems [26]. One of
the first works using this control paradigm is proposed by
[27], where the authors solved an optimal perimeter control
problem, also known as gating, by using the MPC, where the
prediction model and the plant are formulated by MFD. The
gating protects a specific network area by limiting access to
it using a traffic light system. But this strategy increases the
waiting time and the queue could compromise the congestion
levels of the other zones. The Perimeter Control problem
has become the main object concerning network-level con-
trol and different aspects of the problem have been deeply
investigated [28], [29], [30] [31], [32]. Indeed, the Perimeter
control problem is still nowadays capturing the attention of
researchers [33], [34], [35], [36].
An alternative to Perimeter Control is the Routing strategy,
also known as Route Guidance, used to suggest alternative
paths offered by the road infrastructure. This application
has some advantages since its applicability suits well in a
period in which the spread of information is guaranteed by
the development of different technological systems such as
smartphones providing floating car data (FCD) [37], [38],
and emerging vehicle-to-everything (V2X) communication
technologies [39], [40], [41]. A second advantage relies on
the minor infrastructure costs since it is not necessary to
control the traffic light system, but the usage of Intelligent
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Transportation Systems (ITS) technologies such as Variable
Message Signs (VMS) panels and emerging communication
technologies represents a valid way to spread the control
decisions among the network users [42], [43]. One of the
most relevant application in this field was proposed by [44],
where the authors used the MFD and MPC-based approach to
deal with traffic congestion mitigation. Most recently, in [13]
the authors show the great potential of a large-scale Route
Guidance scheme in achieving coordination and efficient use
of network capacity, leading to increased mobility. Addition-
ally, in [45] the authors demonstrated how the integration
of a Route Guidance system in a Perimeter Control scheme
improves the performance of the MPC and MFD-based con-
troller.

B. LIMITATIONS AND CHALLENGES
Although very significant and promising, all the previous
applications were characterized by a common aspect related
to experimental validation in a simplified context. In all the
depicted cases, indeed, the highlighted strategies have been
applied in toy networks whose topology was not related to
existing road infrastructures. Furthermore, no MFD curves
calibration activity was carried out, and pre-defined curve
parameters established in the work of Yokohama [19] were
used for them. In this regard, typically, a unique reference
MFD curve was used for all the network regions [27], [45],
[46], [13], [28], [30], [31], [29], [14]. It has been extensively
demonstrated that traffic congestion is typically heteroge-
neously distributed along the network [24], [47], [48], [49],
[50]. In this regard, the partition procedure is carried out
in order to guarantee homogeneous regions in an urban
network. As a consequence, it is quite improbable that the
different regions obtained by the partition procedure have
the same topology. Consistently with results of [51], specific
curves should be defined for zones with different topological
characteristics.
Another relevant aspect concerns the proper representation
of the response of the controlled system and/or of the mech-
anisms underlying the actuation system. These assumptions
could compromise the prevision procedure carried out by the
MFD-model dynamics in the MPC framework. Undeniably, a
simplified and straightforward response of the traffic context
to the control actuation could be not enough to test and
evaluate the system’s robustness in real-world applications.
The approaches introduced by [27], [45], [13], [28], [30],
[31], [29], are characterised by this limitation. Simulating the
controlled environment by means of an external tool could
help to overcome the issue ( [52], [53], [54]). Specifically,
a microscopic traffic simulator could strongly improve the
realism of the application case study, given its ability to emu-
late more precisely the stochasticity of flow propagation and
traffic dynamics. In this regard, during the last years some
efforts have been made in order to provide more realistic
case studies through the usage of Simulation tools in [55],
[56], [57]. Moreover, typically the operating scenarios of
these works are not based on real (historical data) data taken

from the field, and the provided network infrastructures do
not cover the dynamics of a whole city. In this regard, in
[55] the demand generated with the traffic simulator Aimsun1

does not cover a whole day. In addition, the scenario created
does not cover the whole city of Barcelona, but 12km2 of
it (600 intersections and 1500 links have been modelled in
the network). In [56] the test network is made up of the
3rd and 6th districts of Lyon and the city of Villeurbanne
(3363 links) while in [57] the test site is a 64.7km2 area
of Downtown San Francisco. The ability of the proposed
approaches to improve the mobility performances of the
tested areas has been demonstrated, but a question remains
about what happens in the rest (uncontrolled) portion of
the network. Certainly, all the applications mentioned focus
on analyzing and explaining their outcomes by referencing
the section of the network where control is implemented.
However, there is a notable absence of modelling the entire
network to assess the controller’s impact beyond the specific
test case.
A shared characteristic among all the examined works is the
common objective of control: either to minimize the overall
network travel time or maximize the network throughput
[36]. Nevertheless, it is widely acknowledged that transporta-
tion systems exhibit conflicting dynamics, such as the tension
between maximizing network throughput and minimizing
network emission levels. For instance, the pursuit of higher
network throughput could potentially result in elevated emis-
sion levels, as a larger volume of vehicles moves through
the infrastructure. Hence, there is an intriguing prospect to
develop a control framework that can effectively balance
these different aspects simultaneously. The need to develop
a monitoring system of network-wide emissions is recently
gaining popularity [58], [59]. The works of [60] and [61]
open the door for research in this direction. In particular, in
[60] the authors found a relationship between the network
aggregated variable average speed and the emission levels
of the network. In this way, they introduced new aggregated
curves called emission-Macroscopic Fundamental Diagrams
(e-MFDs). So, the e-MFD relates aggregate traffic dynamics
to emissions providing a mechanism to apply network-wide
traffic control and demand management policies to emissions
reduction objectives. This is confirmed in [62] in which the
authors explored the three branches of the e-MFD (i.e. free
flow, saturation and congested). In this regard, in Fig. 1 the
empirical e-MFD points collected by [62] are reported by
highlighting the free flow, the saturation and the congested
branches of the curve. The challenge of striking a balance
between congestion alleviation and emission reduction is
notably intricate, particularly when the network operates at
level of accumulations up to the saturation regime. Many
network control strategies focus on steering the network
into the saturation domain, where throughput is maximised.
However, by analysing the e-MFD curve, it becomes evident
that emission levels increase proportionally to the accumu-

1https://www.aimsun.com/aimsun-live
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FIGURE 1: An empirical e-MFD curve, [62]

lation values. Therefore, while a traffic management pol-
icy maximizes throughput, it may cause excessive emission
levels. Moreover, the importance of adopting a harmonized
approach in urban management strategies, which recon-
ciles divergent objectives through the employment of multi-
objective methodologies, is underscored by recent literature
works [63], [64].

C. CONTRIBUTIONS
The objective of the current research is to make a fur-
ther step in the investigation of the MPC and MFD-based
network control. Indeed, the proposed application falls in
the stream of hierarchical network-level control where the
upper level optimizes network performance based on route
choice recommendations through different regions, whereas
the lower-level control performs a path assignment mecha-
nism satisfying the regional split ratios established by the
MPC controller at the upper level, and is inspired by the
modelling representation introduced in [12], [27], and [13].
However, the advocated improvement with respect to the
literature concerns several different aspects that make this
contribution interesting.
First of all, the strategy is validated here on a large-scale
scenario, representing the whole city of Luxembourg; this
represents a unique case in the analyzed literature. The
complexity of the current application not only concerns the
width of the scenario itself, but also the realism of the con-
trolled system responses, since the Luxembourg City demand
and supply system is reproduced in the microscopic traffic
simulator SUMO [65], and is based on the mobility studies
performed in [66] that deal with city traffic characteristics
over recent years available on LuxTram official Internet site2.
The higher realism has also led to an increased need for
calibration activities which confirmed that different zones
with different characteristics exhibit different dynamics (and
then MFD curves).

2https://www.luxtram.lu

A second element of interest in the paper concerns the
investigation of the effects of the control when different
conflicting objectives are considered. In particular, the CO2

aggregated emission levels of the urban network, modelled
by the emerging e-MFD, are taken into account in the con-
troller objective function in different combinations with the
generally used throughput maximization objective. Notably,
e-MFD curves have been calibrated specifically for each
zone. Finally, to implement the M-MPC a weighted cost
function in the MPC framework has been introduced, and
the original modelling framework has been improved with
a real-time mechanism for setting the value of the weights
according to the current network condition in order to balance
throughput maximization and CO2 levels minimization. The
multiobjective strategy has been benchmarked with respect
to simpler strategies, specifically:

• A Dijkstra Routing algorithm based on instantaneous
cost and user optimum already implemented in SUMO;

• A mono objective MPC framework for the maximiza-
tion of the network throughput;

• A mono objective MPC framework for the minimization
of the emission levels.

II. METHODS
An MPC-based control strategy is implemented in this work
to solve a routing problem. The MPC framework is integrated
into a simulation environment, and it is tested and validated
in a realistic traffic scenario. In Fig. 2 the block diagram
of the control scheme is reported. The plant is the urban
network, i.e. the physical system whose behaviour should
be optimized. The network is divided into N regions, each
of which is characterized by its own MFD curve used to
estimate its congestion level; this is aggregated information
based on the accumulation values of each zone (the num-
ber of vehicles in the region) through the MFD modelling
paradigm. The state variable x(k) (veh) is an array of N
elements containing the accumulation level of each zone
of the network at the time instant k. The state variable at
the time instant k initializes the forecasting model that is
used in the MPC framework in order to solve in real-time
the optimization problem. The optimal value of the control
variable u∗(k) represents the optimal flow split ratios among
the regions (i.e. regional route choices) at the time instant
k that the users of the network should follow in order to
improve the network performances. This optimal sequence
is applied, through a proper actuation system, to the whole
network, by closing the loop. The control variable u∗(k)
and the traffic demand q(k) (veh/sec) at the time instant
k alter the network behaviour according to the loop principle
proposed in Fig. 2. However, the MPC represents the high-
level controller and the optimal value of the control variable
is the input of a lower-level controller. The spread of the
control signal throughout the urban network is applied aim-
ing to enhance the realism and applicability of this routing
strategy. This is achieved by replicating the functionality
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FIGURE 2: The control loop scheme

of a conventional Intelligent Transportation System (ITS)
technology, specifically Variable Message Signs (VMSs).

Of course, VMSs are located in specific points of the
network, here defined SWitching Points (SWPs), that are
used to spread routing information in order to actuate the
optimal route choices. On the SWPs, the vehicle receives the
rerouting suggestion and it can change its route.
In the MPC framework, during the whole observation time
Kp [sec], the controller every control time step kp =
nTp, n ∈ N, solves a constrained optimization problem by
using a forecasting model that predicts, within a prediction
horizon window Np, the state variable values of the plant
whose behaviour it wants to optimize [25]. The parameter
Tp [sec] represents the controller sample time that establishes
its operating frequency, while the prediction horizon window
Np is an integer number expressed as the number of control
time steps kp in which the forecasting procedure is carried
out.

A. THE MFD AND E-MFD MODELLING TOOLS
In this approach, we use the MFD to have an aggregated
representation of the traffic flow dynamics of the urban
network. The MFD provides a relationship between accumu-
lation (the number of vehicles in the district) and production
(the weighted average flow in the district). Fig. 3 shows a
typical MFD curve of an urban network region distinguishing
each operating condition on it (free flow, saturation, oversat-
uration). In the free flow regime, the accumulation values
are lower than the critical accumulation value (i.e. sweet
spot), and to an increase of accumulation, an increase of
production corresponds. Beyond the critical value, the pro-
duction decreases with the accumulation increasing since the
region’s capacity is reached. In the saturation regime, the
region achieves its optimal operating conditions since the
production is maximized and the zone reaches the optimal
throughput. We want to solve a routing strategy in order
to drive the network as nearest possible to this operating
domain, by controlling the accumulation values near the
critical one through an adequate manipulation of the regional
route choices. To apply the proposed control strategy, the
urban network is divided into different regions, each of
which is characterized by its MFD, as represented in Fig. 4.
Furthermore, an e-MFD curve has been associated with each

FIGURE 3: A region MFD curve

zone. In this work, the region e-MFD provides a relationship
between the zone accumulation and the CO2 level expressed
in kg, but this approach could be extended for other exhaust
emissions such as NOx and PMx. Nevertheless, focusing
only on optimizing for CO2 is adequate, given that the e-
MFD curves for various pollutants exhibit strong correla-
tions. Again, there is a need for proper calibration of each
curve, since [60], through experimental analysis, suppose
that the e-MFD might depend (similarly to the MFD) on the
spatial distribution of congestion, the driver adaptability, and
the unloading demand profile [48], [24]. In this regard, there
is some similarity between aspects that affect the shape of
an MFD (link length, signal settings, signal offsets, spatial
distribution of congestion) and the shape of an e-MFD curve.
Furthermore, emissions are significantly influenced by local
congestion phenomena such as stop-and-go traffic, that are
correlated with aggregated traffic quantities. Specifically, the
highest emission rates are linked to vehicle accelerations,
and the duration spent in acceleration is connected to the
frequency of stops each vehicle encounters during its path.
For these reasons, we assume that the same zone partitioning
of the network is used for the calibration of MFD and e-
MFD curves. It is worth noting that in [67] some properties of
the e-MFD have been highlighted. In this regard, it has been
demonstrated that the macro-emission reaches its peak value
at the peak traffic flow (i.e. the MFD sweet spot point). The
observations in [67] showed that the flow breakpoint around
the sweet spot point segregates the e-MFD diagram into three
phases: stable (i.e. free flow), saturation and unstable (i.e.
congested). Indeed, the emission rate increases rapidly with
an increase in density/accumulation and reaches a saturation
level of maximum at the sweet spot value during the loading
phase. Then, the flow breakdown occurs and the emission
rate ([ton/hour]) starts to decrease by accumulation increase
until the recovery (unloading phase) begins. It should be
noted that, beyond the sweet spot point, during the unstable
phase, vehicles spend more time on the network and produce
more emissions. Therefore, although the emission rate de-
creases during the unstable phase, vehicles spend more time
in the network and generate more emissions. Indeed, more
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congestion results in more cumulative emissions overall.
This is confirmed in [62] in which the authors explored the
three branches of the e-MFD already highlighted in Fig. 1.
Particularly, more details about the usage of the e-MFD curve
to model emission monitoring systems have been provided
in [62]. To conclude, it is obvious that by relating aggregate
traffic dynamics to emissions, the e-MFD could provide a
mechanism to link network-wide traffic control and demand
management policies to emissions reduction objectives. For
this reason, in this research, we propose a multiobjective
controller trying to find a good compromise between the
maximization of the network throughput and the minimiza-
tion of network emissions.

B. THE MACROSCOPIC TRAFFIC FLOW MODEL
The proposed control strategy needs a mathematical model
to perform the forecasting procedure within the optimization
problem. In this regard, the mathematical model in [12] is
used to apply the forecasting procedure. For each region i a
set of equations is provided to describe the evolution in time
of the zone i accumulation.

nii(k + 1) = nii(k) + Tp

(
qii(k)−Mii(k)

−
∑
h∈Ni

Mh
ii(k) +

∑
h∈Ni

M i
hi(k)

)
,

(1)

nij(k + 1) = nij(k) + Tp

(
qij(k)

−
∑
h∈Ni

Mh
ij(k) +

∑
h∈Ni

M i
hj(k)

)
,

(2)

while the total accumulation of zone i is computed as
follows:

ni(k) =
∑
j∈N

nij(k), (3)

where:
• N = 1, 2, .., N represents the set of regions of the urban

network;
• Ni indicates the set of all regions adjacent to region i;
• qij(k)[veh/s] represents the demand for vehicles,

which are in region i to reach destination j, aggregated
in the sample time Tp, at time instant k;

• nij(k) the number of vehicles in region i which have as
their destination the region j at the time instant k;

• M ii(k)[veh/s] is the internal trip completion rate of
region i (without going through another region);

• Mh
ij(k)[veh/s] the flow of vehicles that are in i and

must cross to region h, in order to reach destination j
(transfer flows).

The total accumulation values of each zone compose the state
variable x in the array form: x = [n1(k)n2(k) . . . nN (k)].
The transfer flow Mh

ij represents the minimum between the
sending flow from the region i to the adjacent region h and
the receiving capacity of the receiving region h Cih(nh(k)).

FIGURE 4: Network zoning [12]

This flow capacity is presented as a piecewise function of
the receiving zone accumulation nh [12]. It is introduced to
mitigate the occurrence of overflow events within specific
areas; in other words, each region, denoted as i, possesses
a maximum accumulation, ni,max such that:

0 ≤ ni(k) ≤ ni,max. (4)

The transfer flows and the internal trip completion rates have
the following expression:

Mh
ij(k) = min

(
Cih(nh(k)),

θhij(k)
nij(k)

ni(k)

Pi(ni(k))

Li

)
,

(5)

Mii(k) = θii(k)
nii(k)

ni(k)

Pi(ni(k))

Li
, (6)

in which:
• Pi(ni(k)) represents travel production, calculated

through the MFD function [(vehm)/s];
• θhij(k) ∈ [0, 1] and θii(k) ∈ [0, 1] the route choices,

that reflect the percentage of choices of the route that
involves crossing zone h, starting from zone i, to reach
zone j and the percentage of choices of the route that in-
volves remaining in zone i, to reach zone i, respectively;

• Li, the average trip length [m], independent of the time
and the destination area associated with the crossing of
zone i.

The values θhij(k) compose the control variable u(k) in the
form u = [u1 u2 . . . uN ], where:

uh =


θh11 θh12 . . . θh1N
θh21 θh22 . . . θh2N
. . . . . .
. . . . . .
. . . . . .

θhN1 θhN2 . . . θhNN

 ,∀h = 1, 2, ..., N.

In Eq. (5) it is clear that there is a non-linear relationship
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between transfer flows and accumulation. A linearization
is carried out in order to implement a linear optimization
problem. Some dummy variables are used:

• The accumulation rates αii(k) = nii(k)/ni(k) and
αij(k) = nij(k)/ni(k), ∀i, j ∈ N , measured every
time that we roll the horizon and considered constant
during the optimization horizon;

• The new decision variables fii = θiiGi(ni(k))αii and
fih = Gi(ni(k))

∑
j∈N

θhij(k)αij(k),∀i, j ∈ N , h ∈
Ni, where the function Gi(ni(k)) represent the outflows
of the regions of interest Pi(ni(k))/Li.

Similar to numerous other studies, the expression for the
capacity Cih(nh(k)) in Equation (5) is excluded, as observed
in [12]. This exclusion is justified from a control perspective,
deeming it unnecessary. The implemented control actions
are designed to prevent the system from operating in states
approaching gridlock, making the modelling of receiving ca-
pacity unnecessary within the M-MPC problem. This assur-
ance is further reinforced by incorporating the constraint (4)
in the formalization of the optimization problem. Moreover,
a simple assumption is considered: the source-destination
information regarding the zone accumulations is not tracked,
since is not necessary for control purposes. So the set of
equations (1), (2) and (3) becomes:

ni(k + 1) = ni(k) + Tp

(
qi(k)− fii(k)

−
∑
h∈Ni

fih(k) +
∑
h∈Ni

fhi(k)
)
.

(7)

C. HIGH-LEVEL CONTROLLER: MULTIOBJECTIVE MPC
(M-MPC)
Eq. (7) is used to perform the forecasting procedure inside the
optimization problem. The goal is to optimize the congestion
and emission levels in the city centre, where the traffic
situation is the most critical. In this regard, the objective
function has the following expression:

J(k) = λ
J1(k)

J1M
− (1− λ)

J2(k)

J2M
, (8)

where:

• J1(k) =
∑

i∈N
γi(ni(k)) represents the CO2 level of

the urban network of the city centre, estimated by using
the e-MFD curves γi of each region i;

• J2(k) =
∑

i∈N
Li(fii(k) + fih(k)),∀h ∈ Ni repre-

sents the Travel Production of the city center;
• λ ∈ [0; 1] is the weight used to give priority to an aspect

or the other one.

In Eq. (8) the two cost functions J1 and J2 are normalized by
their maximum values J1M and J2M respectively, in order
to make a consistent comparison between the two quantities.
The parameters J1M and J2M were determined during the
calibration processes, through to the collection of simulation

data. Therefore, the optimization problem to be solved from
an MPC perspective is as follows:

min
θh

ij(k)

Np−1∑
k=kp

J(k) (9)

subject to (7), (4),

fii = θiiGi(ni(k))αii, (10)

fih = Gi(ni(k))
∑
j∈N

θhij(k)αij(k), (11)

∑
h∈Ni

θhij(k) = 1, (12)

0 ≤ θhij(k) ≤ 1, (13)

∀i, j ∈ N , h ∈ Ni, h ̸= i,with
k = kp, kp + 1, ..., kp +Np − 1.

The objective function takes into account the congestion
level of the city centre and the CO2 levels at the same time
by predicting the network congestion state in the following
Np control time steps. The decision variables are the route
choices θhij , the MPC computes in real-time the optimal se-
quence of them in order to minimize the levels of congestion
(i.e. maximize the travel production) and CO2 in the city
centre.
In this strategy, the value of the weight λ in the cost function
(8) is set in real-time (i.e. each control time step), according
to a specific weight-assignment criterion. Once the value of
λ has been established by the assignment criterion, the cost
function (8) is set accordingly and the MPC can start the
optimization procedure. The assignment criterion is based
on the comparison between the current normalized values
of the city centre emission and production at time instant k,
called ECO2(k) and P (k), respectively. The goal is to set λ
in order to assign the weight in (8) that guarantees an MPC
optimization providing Emission levels at least lower than
a given threshold of its maximum value (i.e. thd ∈ [0, 1])
and Production levels higher than thd. An example of the
criterion application can be found in Fig. 5 which shows
the comparison of ECO2(k) and P (k) with a value of thd
fixed to 0.7. The comparison is made each time we roll
the horizon and it can lead to 4 different cases covering all
the possible combinations between the normalized values of
CO2, Production, and thd. In each case a specific value is
assigned to λ and in this framework, the only parameter that
needs to be calibrated is the threshold value thd since it is
fixed a priori. The list of the 4 possible cases resulting from
the comparison is reported below:

1 ECO2
(k) ≤ thd and P (k) ≤ thd;

2 ECO2
(k) ≤ thd and P (k) > thd;

3 ECO2
(k) ≥ thd and P (k) > thd;

4 ECO2
(k) ≥ thd and P (k) ≤ thd.
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FIGURE 5: Time evolution of normalized Emission and normalized Production w.r.t. the chosen thd and comparison in the
time step k

In the first case, according to the expression of the cost
function (8), λ is set to 0 because the control needs to
guarantee a level of city centre production of at least the
thd value. In the 2nd case, there is no need to apply the
control since city centre emission levels don’t exceed the thd
and production is higher than the threshold. The 3rd case
is the opposite of the 1st one, so λ is set to 1. Finally, in
the 4th case, the controller needs to act in both directions
(minimization of ECO2 and maximization of P ); it is needed
to take into account the deviations between ECO2 and thd
that is called sCO2

= |ECO2
− thd| and between P and thd,

called sP = |P − thd|. The 4th case includes three different
subcases:

a. sp > sCO2 , in which λ is set to sCO2 ;
b. sp < sCO2

, in which λ is set to thd+ sCO2
;

c. sp = sCO2
in which λ is set equal to 1/2.

All the rules mentioned above are defined a priori and they
include all the possible states that the network could as-
sume. It’s noteworthy that the specified criterion enhances
the flexibility of the cost function by establishing a direct
correlation between the weight values in the cost function (8)
and the network states related to congestion and emission.
An alternative approach could involve integrating constraints
such as emission thresholds or throughput, either as hard
constraints or as soft constraints using barrier functions.
However, adopting such a solution may introduce added
complexity to the optimization problem, as it necessitates
consideration of other constraints. Furthermore, the weight
assignment criterion described above imparts dynamism to
the weights in the cost function, making them more respon-
sive to changes in network states and thereby enhancing the
robustness of the cost function in the face of such variations.

D. LOW-LEVEL CONTROLLER: ACTUATION SYSTEM

As foreseen in the methodology section, the proposed control
framework adheres to a hierarchical structure. Specifically,
the upper and lower levels maintain communication as the
MPC utilized at the upper level and the central command
governing the actuation system are co-located within the
Traffic Monitoring Center (TMC). Upon the establishment
of regional split ratios by the MPC, it is assumed that this
information is readily available within the actuation system,
which is responsible for effectively coordinating each VMS
panel to transfer routing suggestions to the network users.
VMS are programmable traffic control devices that convey
real-time information on network traffic conditions to drivers
encountering them through the usage of LED panels installed
on the roads. It is recognized that the VMS panels aim
to influence driver routing decisions to enhance network
performance. In this regard, they have a potential role in
managing demand to match the capacity available, not only to
alleviate acute problems caused by roadworks and accidents,
but also to contribute to satisfactory performance of networks
operating close to capacity over extended periods of high, but
variable, demand [68].
In the context of our experiment, we define as SWPs the
VMS-equipped roads. VMSs hold a strategic position in the
network because at these points vehicles can switch their path
to an alternative one on the basis of the routing suggestion.
Each SWP provides information concerning a specific target
region, enabling vehicles to efficiently reach their intended
destinations through an optimal sequence of crossing regions.
Technically, SWPs display on their VMS panels the road
(namely the Via road) selected as a reference for constraining
the vehicle path through a specific crossing region. Indeed,
in our experiment, the Via road represents a specific road
located on the borders between two adjacent regions where
vehicles can execute a regional crossing.
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It is worth mentioning that the primary computational chal-
lenge for the low-level controller lies in selecting, for each
of the SWPs, the most suitable Via road to be suggested.
Clearly, the optimal Via roads are also chosen consistently
with the optimal regional split ratio determined by the MPC.
Specifically, the selection of the optimal Via road is guided
by three conditions:

1 Identify less congested Via roads, considering their con-
gestion index, such as the travel rate [69];

2 From the less congested Via roads associated with the
SWP, choose the one closer to the current position of
the SWP;

3 Display the selected Via on the VMS panel so that
vehicles travelling through the destination can modify
their route accordingly.

Once the information is displayed on the VMS panel, the
vehicle can navigate toward its destination by entering the
established crossing region. In doing so, the vehicle computes
the optimal path for its final destination passing through the
suggested Via road (the standard routing algorithm embedded
in SUMO is used for this task). It is worth noting that leaving
to each vehicle the effort of computing its actual path on the
basis of the routing constraints reduces strongly to compu-
tational burden associated with the low-level controller. Fur-
thermore, it is crucial to underscore that the setup of the VMS
panels relies on the assumption of drivers’ compliance when
presented with route suggestions displayed on these panels.
Notably, our primary focus in this study does not delve into
the implications of driver compliance on the effectiveness of
the dissemination of control actions among users.
Fig. 6 provides an example concerning the split of the traffic
flow Qij destined for zone j from i into two distinct portions:

• Qh
ij , representing the traffic flow that will traverse zone

h en route to j.
• Qj

ij , representing the traffic flow that will directly reach
j without traversing h.

Aligned with the optimal splitting determined by the MPC,
the actuation system advises individual users to navigate the
neighboring crossing regions, denoted as h or j. This guid-
ance is communicated through the display panel, indicating
the appropriate Via roads. Crucially, the system ensures that
the sum of Qh

ij and Qj
ij equals Qij .

III. NUMERICAL ANALYSIS
A. CASE STUDY
To test the proposed framework on a relevant and realistic
case study, the whole city of Luxembourg has been chosen
as a reference. The used scenario has been validated on real
data [66], and is freely available in the microscopic traffic
simulator SUMO3. Specifically, the simulation parameters
utilized in [66] have been integrated into the traffic simulator
to facilitate the case study. To achieve realistic traffic patterns
in [66] the authors used the data published by the govern-

3https://github.com/lcodeca/LuSTScenario

FIGURE 6: Illustration of the possible splits between differ-
ent zones

TABLE 1: Scenario Topology information, [66].

Area 155.95km2 Intersections 4473
Total roads 930.11km Traffic lights 203
Highways only 88.79km Inductive loops 3157
Bus stops 561 Car Parks 175
Bus lines 38 Buildings 13553

ment, which is available on the Internet site of the Luxem-
bourg National Institute of Statistics and Economic Studies
(STATEC4) (e.g. population, age distribution) to generate the
activity demand for the ACTIVITYGEN5. The used traffic
demand is characterized by 300000 vehicles per day and it
includes both transit and local traffic. A local vehicle has
an origin, a destination, or both within the city. A vehicle in
transit, on the other hand, has both its origin and its destina-
tion outside the city. The mobility model also includes public
transport. The scenario covers a very extended area of almost
156km2 with 931km of road, to the authors’ knowledge,
the highest ever used to test this kind of application. Some
information is summarized in Table 1, while Fig. 7 shows
the network topology. Information has been retrieved from
OpenStreetMap (OSM) and STATEC.

B. SIMULATION ENVIRONMENT
The simulation environment is generated by coupling various
tools such as SUMO [70], Matrix Laboratory (MATLAB),
and Optimization toolbox (OPTI)6. SUMO is a microscopic
traffic simulator and it emulates ground truth more real-
istically. It supports online interaction with the MATLAB
environment through the Traffic Control Interface (TraCI)
regarded as TraCI4MATLAB [71]. The TraCI4MATLAB
offers a high level of flexibility since it allows clients to insert
and modify the objects inside the simulated environment as
it operates in client-to-server scenarios.

Furthermore, SUMO guarantees the modeling of inter-
modal traffic systems such as the contemporary simulation
of private vehicles, public transportation systems, and pedes-
trians. It features support tools that are integrated to manage

4https://www.statistiques.public.lu
5http://sumo.dlr.de/wiki/ACTIVITYGEN
6https://github.com/jonathancurrie/OPTI
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FIGURE 7: Luxembourg network Topology, [66].

tasks such as route search, network import, display, and
calculation of pollutant emissions. SUMO incorporates a set
of tools to create and execute microscopic road traffic simu-
lation scenarios, these tools are grouped into three categories:

• Mapping tools, to create the "map" (network).
• Traffic demand modeling tools.
• Simulation tools.
Moreover, the control strategy to be implemented in the

proposed control framework is the MPC, which is based
on the cyclic resolution of an optimization problem. In this
regard, OPTI is used for the formalization of the optimization
problem and its real-time resolution. OPTI is an open-source
tool for the realization and resolution of linear, non-linear,
continuous, and discrete optimization problems and can be
easily integrated into the MATLAB simulation environment.

C. PRELIMINARY OPERATIONS
In order to apply the proposed routing scheme in Luxem-
bourg some preliminary operations have been carried out.
The first step has been zoning. Specifically, the city has
been divided into different 9 regions as depicted in Fig. 8.
Secondly, each region has been characterized by its own
MFD and e-MFD curve. The MFD curves have been cali-
brated by following the fitting procedure proposed in [72]
in which the authors create a confinement region through the
intersection of linear lines (cuts) representing an upper bound
of traffic states (uMFD). The MFD curve that emerges serves
as a refined approximation of the minimum operator, that is
called soft − min. An application example of this method
is represented in Fig. 9 in which the fitted MFD of zone 4 is
reported. It is worth noting that the weighted average flow of
zone I, qwI , is calculated, consistently with [19], as:

qwI =

∑
i∈I qili∑
i∈I li

(14)

in which li denotes the length of a road lane segment i
belonging to the set of the lane of the zone I and qi repre-
sents the flow measured by the corresponding detectors in a

particular time slice.
The e-MFD curves were calibrated using the same fitting
procedure outlined in [72], resulting in smooth approxima-
tions of the upper bound of emission levels (ue-MFD). It
is noteworthy that the calibration of both MFD and e-MFD
curves involved applying different perturbations to the orig-
inal traffic demand provided by the application case study.
This approach aimed to augment the quantity of data uti-
lized during calibration, thereby enhancing its significance.
Moreover, the same methodology was employed to estimate
the quantities J1M and J2M in the cost function (8), which
served to normalize the production and emission values esti-
mated by the MFD and e-MFD curves.
However, the e-MFDs are non-linear curves, and make the
optimization problem non-linear when used in the cost func-
tion (8) to estimate the CO2 levels of the city centre. To
overcome this issue, we decided to linearize them with piece-
wise linear functions (PWLFs), as depicted in Fig. 10, with
reference to zone 1, in which the saturation branch of the e-
MFD curve has been explored. The CO2 emission levels of
the region I are computed as:

CO2I(k) =
∑
i∈I

co2i(k), (15)

where co2i(k) represents the CO2 emission value of the
road segment i, belonging to the zone I, at time instant k.
The emissions relative to each road segment have been com-
puted by using the model Handbook Emission Factors for
Road Transport (HBEFA) v2.17 embedded in SUMO, which
provides the data for each lane equipped with a detector.
HBEFA is a standard data source for emission calculations in
numerous studies8 and other applications such as EcoTransIT
World, IMMIS, TREMOD Transport Emission Model, and
COPERT. It is the product of a common effort by funding
agencies and development partners in six countries (i.e. Ger-
many, Switzerland, Austria, Sweden, Norway, and France).
The CO2 levels estimated by using both the PWLF and the
non-linear e-MFD have been compared with the data mea-
sured in SUMO. Fig. 11 shows, for zone 4, the comparison
between the estimated CO2 levels, and the values measured
in SUMO. The RMSE values, expressed in percentage, of
each zone of the city centre have been reported In Table 2.
Based on this analysis, it has been determined that employing
PWLFs for estimating emission levels yields results compa-
rable to those obtained using the nonlinear e-MFDs.
As already anticipated, the MPC control system is applied
only in the city centre, i.e. the first 4 regions of Fig. 8,
since these are the ones that usually get congested. However,
in order to optimize the mobility performances of the city
centre, the control acts on all the vehicles crossing the city
centre, regardless of their origin and destination. It is worth
noting that the modelling of a wider scenario with respect to
the controlled part, allows us to evaluate the impact of the

7https://elib.dlr.de/89398/1/2ndGenEmissions.pdf
8https://www.hbefa.net/en/use-cases
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FIGURE 8: Luxembourg zoning
TABLE 2: RMSE% CO2 estimated values.

Fitting Curve ZONE 1 ZONE 2 ZONE 3 ZONE 4
Non-linear e-MFD 3.9 1.6 2 2.2
PWLF e-MFD 1.7 1.8 2 1.2

proposed methodology both outside the area of main interest
(e.g. the whole city), and in the controlled part (e.g. the city
centre); even in this case, to the authors’ knowledge this kind
of evaluation has been never carried out in literature in this
kind of experiments.
The ultimate preliminary step, which involves the SWPs
utilized to enact the control decisions of the MPC, has been
completed. These points have been strategically positioned
within each of the four controlled regions by carefully se-
lecting roads that serve as bifurcations between two or more
adjacent areas.

D. DESIGN OF EXPERIMENTS
In order to test the proposed methodology, different scenarios
were prepared. In each scenario, the mobility and emission
conditions of the network have been monitored for one day
(24 hours) and data were aggregated for 300 second intervals;
consistently the operating period of the MPC controller has
been set to 5 min (Tp = 300sec). The first scenario (S0) is
used for benchmarking and it does not include control (open-
loop). It is used to evaluate the performances of the network
without any control action, for successive comparison with
the other scenarios. In other words, in S0 the original demand
provided in the application case study has been launched
without the performed routing control scheme.
The first set of experiments is dedicated to the controller

TABLE 3: Performed Scenarios.

Np thd = 0.6 thd = 0.7 thd = 0.8
3 S1 S2 S3

4 S4 S5 S6

5 S7 S8 S9

6 S10 S11 S12

7 S13 S14 S15

settings. In particular a set of simulations described in Table
3 has been prepared in order to find the best values for Np

and thd. In Table 3, 5 different scenarios correspond to a
fixed value of thd, while the prediction horizon Np varies
between 3 and 7. These scenarios are used also to evaluate
the computational burden of the MPC, quantified by means
of the MPC feedback time FTMPC , e.g. the execution time
required to the MPC in one control time step to compute the
optimal control sequence. The controller adopts, in all these
cases, the multiobjective function introduced in the previous
chapter. Once the best operating setting is established, a
second set of experiments, corresponding to the simulation
of scenarios Sλ1, Sλ2, and Sλ3, has been performed, to
evaluate the benefits of changing lambda each time step.
Specifically, in Sλ1, the weight λ inside the cost function (8)
has been set to 0.8 in order to prioritize the minimization of
the CO2 levels. Conversely, in Sλ2 the weight has been set
to 0.2 and finally in Sλ3 the two terms of the cost function
(8) have been weighted with the same value by choosing
λ = 0.5. Finally, the scenarios SSUMO, SCO2, and SPR,
have been performed, with the objective of evaluating the
advantages of the proposed approach with respect to sim-
pler ones and demonstrate its robustness. Specifically, in the
SSUMO scenario, the routing suggestions at SWPs are based
on the default (Dijkstra) re-routing algorithm implemented
in SUMO [73], then the system is not performing any net-
work optimization, but the suggestion only minimizes each
user travel time. Scenarios SCO2 and SPR implement the
reference controlling framework but with the single objective
of minimizing emissions, and maximizing traffic throughput
respectively. These three additional scenarios have been com-
pared with the best-performing scenario of the tuning activity
that has been used as a benchmark in the comparison. In
total, 21 different scenarios have been developed, and each of
them has been run using 3 different computer machines and
3 different seed values of the traffic simulator SUMO [65].
Therefore, 189 simulations have been run globally, 9 for each
scenario, in order to increase the significance of the results.
In all simulations in which the controller is activated (closed-
loop), in any form, its action starts when the congestion in
the city centre occurs (MPC activation condition) and it is
disabled when congestion ends so that the MPC action is
event-based (conditional MPC). This means that the vehicles
in the simulation stick to the path they were previously
assigned by the controller when the activation condition of
the MPC is not satisfied, while the new vehicle inserted in
the simulation follows the original path assignment provided
by default by the original traffic demand of the application
case study.

E. KEY PERFORMANCE INDEXES
Two Key Performance Indexes (KPIs) are defined in order
to quantify the congestion level of each zone, si% and ∆i.
The indicator si% quantifies the level of congestion in a
zone in terms of the difference between the zone i maximum
accumulation value and the zone i critical value, expressed
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FIGURE 9: Zone 4 MFD calibration

FIGURE 10: Zone 1 e-MFD calibration

in percentage. While ∆i simply represents the time window
in which the accumulation in the zone i exceeds the critical
value. In Fig. 12 from the zone i accumulation trend in time,
it is possible to mark the si% and ∆i values. The KPI si%
expression is the following:

si% =
npeak,i − ncr,i

ncr,i
· 100, (16)

where npeak,i represents the zone i peak accumulation value
and ncr,i the critical value of the zone. The KPI ∆i, by
looking the Fig. 12, is simply calculated as:

∆i = t2 − t1, (17)

where t1 represents the time instant in which the congestion
occurs in zone i and t2 is the time instant in which the
congestion ends. The aggregation of the peak accumulation
value and the associated ∆ value of each zone provides a
third metric, here defined as congestion severity CS [veh ·h]
of the city centre, that it is represented as follows:

CS =
∑
i∈Nc

npeak,i ·∆i, (18)

where the ∆i value of each zone i is expressed in hours and
Nc = [1, 2, 3, 4] represents the city center zones set.
Apart from these quantitative KPIs, the time evolutions of
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FIGURE 11: Zone 4 estimated CO2 levels

FIGURE 12: Quantitative KPIs representation

each zone CO2 emission level and travel Production, and
the empirical MFDs, are used to give a qualitative evaluation
of the controller effects. In particular, the network CO2

emission level and travel Production values have been further
taken into account in order to qualitatively analyze the global
impact of the proposed control framework on the whole
network. These quantities have been calculated by extending
the Eqs (14) and (15) from zone to network level, including
in the formulas each link of the network.

IV. RESULTS AND DISCUSSION
In this section, three different categories of results are pre-
sented. Firstly, activities carried out for tuning the thd value
used in the multiobjective cost function weight assignment
criterion are introduced. The second results category con-
cerns the comparison of the proposed control framework,
where the optimal thd tuning is set on the basis of the
previous, with other control strategies. Finally, the analysis of
the effects of the multiobjective MPC on the whole network,
namely the global effects of the multiobjective MPC, are
introduced and discussed.

A. TUNING ACTIVITY RESULTS

A preliminary step for any tuning activity is the definition
of a reference and of some KPIs. To do that, in this case,
the congestion and CO2 emission levels of the city centre in
the open-loop scenario S0 have been measured. The conges-
tion levels of the city centre are detected for each zone by
monitoring accumulation trends in time. Fig. 13 reports the
values for the whole day for zones 1-4, and also looking at it
qualitatively it is clear that zone 3 is the only one zone where
the accumulation never exceeds the critical value. For this
reason, the KPIs chosen for evaluating congestion levels, s%
and ∆, have been not reported in Table 4 for zone 3. Fig. 14
presents the time series of the CO2 emission values of the
zones 1-4. Consistently, the CO2 emission levels related to
the zone 3 are significantly lower w.r.t. the other zones of the
city centre. On the basis of the previous, zone 3 has been
excluded from the analysis both in S0 and in any further
scenario.

To evaluate the improvement introduced by the M-MPC
activation, the scenarios of Table 3 have been performed.
Results of the KPIs associated with these scenarios are re-
ported in Fig. 15 where each curve has a fixed value of the
parameter thd, used in the real-time cost function (8) weight
computation, and the values of the congestion severity CS
vary on the basis of the different prediction horizons Np used
in the MPC framework. It is worth noting that each curve has
a decreasing trend with the increase of Np since a greater
value of the prediction horizon allows the MPC to have
a wider optimization time window. Furthermore, the curve
with the value of thd fixed to 0.6 leads to better mitigation
of the congestion volume of the city centre. We remind that
in this case, the MPC tries to set the cost function weight in
order to guarantee in the city centre of Luxembourg, at the
same time, CO2 emission levels not greater than the 60%
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FIGURE 13: Congestion levels of S0 Scenario

FIGURE 14: CO2 levels of S0 Scenario

of the maximum value and Travel Production values at least
equal to the 60% of the maximum value. On the basis of
that, in the thd calibration activity values of thd lower than
0.6 have been investigated, but they do not guarantee any
significant improvement in terms of city centre CS. For this
reason, 0.6 has been finally chosen as the optimal operating
value. For the sake of clarity, the values of s% and ∆, related
to each zone in each performed scenario have been reported
in Table 4. It is clear that the optimal setting of the controller
parameters relies on the Scenario S13, at which the lowest
value of CS is reached. However, each closed loop scenario
leads to an improvement in terms of s% and ∆ w.r.t. the open
loop scenario S0. This aspect demonstrates the robustness of

the controller towards parameter changes.
In Table 4 each scenario is also characterized by the average
value of the MPC Feedback time during the whole MPC
operation time window ̂FTMPC [ms]. It is worth noting
that also in the heaviest cases, where the Np is set to the
greatest value (i.e. 7 control time steps of prediction) and
the optimization problem is made up of 294 variables, 183
constraints and 224 bounds, the Feedback time of the MPC
remains lower than 1sec, and its average value still remains
in the order of the milliseconds. Of course, the performance
of the tool could be further improved by means of specific
hardware/software solutions, however on the basis of this
result we conclude that this control scheme is able to work
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FIGURE 15: City Center Congestion Severity with different
values of the controller parameters.

in a real-time application.
There are some important aspects associated with the optimal
setting of the prediction horizon Np. On one hand, the pre-
diction horizon should be comparable to the time needed to
travel through a region network. In this regard, a much shorter
horizon may lead to "myopic" control actions [74]. On the
other hand, theoretically speaking, the usage of a smaller
prediction horizon could lead to a more accurate estimation
of the region accumulation state variables in the forecasting
procedure. But this latter aspect is strongly sharpened by
the operating frequency of the MPC since the impact of
the model inaccuracies on the quality of the traffic variables
prediction is strongly reduced. Indeed the real-time feedback
allows for frequent updates on the control strategy decisions
on the basis of the current measurement of network traffic
states. In summary, the optimal operating value of the pre-
diction horizon (Np = 7) seems to be a good compromise
between performance sensitivity with respect to inaccuracies
of the traffic parameters and myopic control actions.

B. COMPARISON OF THE PROPOSED CONTROL
FRAMEWORK WITH OTHER CONTROL STRATEGIES
The reference optimal performing scenario (S13) has been
benchmarked with Sλ1, Sλ2, and Sλ3. In this regard in Table
5 the values of s% and ∆ have been reported in order to
quantify the congestion levels of these scenarios. In Fig.

TABLE 4: Local KPIs of the Scenarios in the Tuning Activity

Scenarios ̂FTMPC [ms] Zone 1 Zone 2 Zone 4
s% ∆[min] s% ∆[min] s% ∆[min]

S0 - 51 35 193 180 23 40
S2 52.34 19.16 5 151.09 170 26.03 35
S3 44.17 29.27 5 162.10 170 16.05 5
S4 98.26 24.40 10 123.65 155 6.33 5
S5 97.12 25.18 10 127.04 175 20.14 20
S6 95.89 32.45 20 146.66 170 20.15 15
S7 129.78 -4.24 0 109.37 155 9.06 5
S8 132.43 -3.65 0 116.77 180 9.04 25
S9 130.49 1.23 5 115.38 190 9.03 15
S10 179.36 -1.76 0 97.90 135 7.75 5
S11 182.19 -10.51 0 129.78 150 7.75 10
S12 185.73 -10.51 0 134.78 150 7.75 10
S13 217.25 -1.76 0 89.30 135 7.75 5
S14 220.37 -0.15 0 107.78 160 7.75 5
S15 215.43 -0.15 0 114.90 160 7.75 5

16 the CO2 levels of S13 have been compared with the
CO2 levels of Sλ1, Sλ2, and Sλ3. The data presented in
Table 5 clearly shows that scenarios Sλ2, and Sλ3 offer
superior congestion mitigation compared to Sλ1 in which the
value of the weight λ has been set in order to prioritize the
minimization of the city centre CO2 levels. Despite this, the
scenario S13 still outperforms others in terms of congestion
mitigation. Conversely, in Fig. 16 the CO2 values registered
in Sλ1 are lower than those in Sλ2 and Sλ3. Notably, the CO2

levels observed in Sλ1 align with those in S13. These findings
highlight the advantages of dynamically adjusting the weight
λ in real-time, as opposed to using a constant value.
Finally, the benchmarking scenario S13 has been compared
with 3 alternative (and simpler) control strategies represented
by the scenarios SSUMO, SCO2 and SPR; as a reference, also
the open-loop scenario S0 is considered in the comparison.
Consistently with others, the Dijkstra re-routing algorithm
of the scenario SSUMO is enabled from 6 pm to 8 pm
representing the critical time window in which the congestion
occurs in the scenario. Also the characterizations of scenarios
SCO2 and SPR are totally consistent with those presented
in the previous section. The only difference concerns the
objective function (8), where the value of the weight λ is
fixed to 1 and 0, respectively in the scenarios SCO2 and SPR,
in order to isolate the effect of minimizing CO2 emissions or
maximizing Production for the whole MPC operating time.

Accumulation values of zones 1, 2 and 4 observed in each
scenario are depicted in Figure 17; the values are reported
with a focus on the time window in which the control scheme
operates. It could be noted that all the routing strategies
allow congestion mitigation of the city centre zones wrt S0

scenario. The developed control scheme in S13 reaches better
performances in terms of congestion mitigation, especially in
Zone 1. The SPR shows a performance totally consistent with
S13, while the routing systems of SSUMO and SCO2 are not
able to completely delete the congestion. Also, the values of
s% and ∆ associated with these scenarios, reported in Table
5, confirm the qualitative analysis of Figure 17.
Subsequently, CO2 levels in zones 1,2, and 4 are compared
in Figure 18. This time, emission levels of the city centre
regions w.r.t. the open-loop scenario are not significantly
reduced in the scenarios SSUMO and SPR. This was totally
expected since the Dijkstra routing algorithm of SUMO does
not take explicitly into account the CO2 emission levels of
the city, and similarly happens for the objective functions of

TABLE 5: Local KPIs of the Scenarios in the Comparison
Activity

Scenarios Zone 1 Zone 2 Zone 4
s% ∆[min] s% ∆[min] s% ∆[min]

S0 51 35 193 180 23 40
Sλ1 12.76 15 110.32 170 13.95 10
Sλ2 0.01 0 92.96 140 9.54 5
Sλ3 2.23 5 94.42 145 11.75 5

SSUMO 25.96 30 127.56 160 9.41 30
SCO2 26.35 20 112.41 170 15.00 15
SPR 3.49 5 93.80 165 9.94 10
S13 -1.76 0 89.30 135 7.75 5
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FIGURE 16: Zones 1 and 2 CO2 values.

FIGURE 17: City Center Zones Accumulation values.

FIGURE 18: City Center Zones CO2 values.

the MPC developed in SPR. Conversely, the controller shows
its best performances in SCO2 where the CO2 emissions are

reduced wrt S0 on average of 14%, 12% and 4% in zone 1, 2
and 4 respectively. It is worth noting that the performances
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FIGURE 19: Global results of scenarios S0 and S13: Average
network flow.

of the controller in the scenario S13 are consistent with those
in SCO2. Considering all together, it can be affirmed that the
proposed M-MPC is able to deal with both congestion and
emission levels in the city centre of Luxembourg and allows
finding a good compromise between the two conflicting
aspects.

C. GLOBAL EFFECTS OF THE PROPOSED
CONTROLLER
The evaluation of the effects of the proposed control scheme
on the whole city of Luxembourg has been carried out by
considering both congestion and CO2 emissions. Of course,
the two aspects are here evaluated by defining a unique
measure for the whole network. In this regard, in Figures
19, 20 and 21, the Empirical Network Fundamental Diagram,
the time series of the Average Network Flow, and the time
series of the Network CO2 emissions of the scenarios S0

and S13 have been compared respectively. The analysis of
the figures confirms that even if the MPC controls only
the vehicles that have to cross the city centre, it alters the
mobility and emission performances of the whole network.
In particular, the best-performing controller in the scenario
S13 allows an increment of the 17.7% of the average network
flow while reducing network level CO2 emission by 8%. The
empirical network fundamental diagram related to scenario
S13 confirms that the network, differently from scenario S0,
does not operate in the congested regime, but in the saturation
one in which the Average Network Flow is maximized and
the behaviour of the network is optimized.

V. CONCLUSION AND FUTURE DEVELOPMENTS
In this work, a Multiobjective Model Predictive Control has
been developed in order to mitigate both congestion and
CO2 emission levels in an urban network. The proposed
approach has been tested on the realistic and challenging
scenario represented by the whole network of the city of
Luxembourg. The paradigm of MFD has been used for traffic
dynamics modelling efficiently, while the e-MFDs curves
have been used to compute the CO2 aggregated emission
levels of the urban network. A tuning activity of the controller
parameters Np and thd has been carried out, in order to

FIGURE 20: Global results of scenarios S0 and S13: CO2

network levels.

FIGURE 21: Global results of scenarios S0 and S13: Empir-
ical Network Fundamental Diagrams.

test the robustness of the MPC towards different values
of the operating parameters and select the best-performing
parameter settings. The results of the tuning activity show
that the proposed framework is generally able to improve the
network performances (with each parameter setting).
The best-performing controller has been compared with a
naive approach based on the activation of the routing algo-
rithm embedded in SUMO. Apart from that, the multiob-
jective approach has been compared with 2 simpler single-
objective versions of the controller. The congestion is related
to the emissions so it is expected that by reducing the conges-
tion levels of a network a decrease of CO2 emission levels
consequently appears. Unfortunately, this is not so obvious.
Indeed, the routing algorithm implemented in the scenario
SSUMO is able to reduce the congestion levels, but it does not
guarantee a significant decrease in the CO2 emission levels.
The usage of a multiobjective cost function in the MPC
framework allows us to find a good compromise between
congestion and emission mitigation. By means of scenarios
SPR and SCO2 we demonstrated that this is not guaranteed
by modelling separately the 2 aspects in the cost function.
More interestingly, the multiobjective controller reduces si-
multaneously congestion and emissions levels in the city
center, but it also impacts strongly on the global network by
allowing an increment of the 17.7% of the average network
flow and reducing network CO2 emissions by 8%.
As a future development, other pollutant emission levels
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could be taken into account inside the multiobjective cost
function in the MPC framework. Moreover, there is a need
for further investigation into the economic costs and po-
tential social challenges related to the adoption of the pro-
posed M-MPC strategy, as well as strategies for effective
communication and implementation with the public. This
involves analyzing financial implications, including setup
and maintenance costs and potential savings. Addressing
social challenges requires engaging stakeholders to mitigate
community impacts and equity concerns. Effective commu-
nication strategies are crucial, requiring clear materials and
engagement across channels. A well-defined implementation
plan is vital, delineating milestones for seamless coordina-
tion among stakeholders in deploying the proposed M-MPC
strategy.
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