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We construct two complex-conjugated rigid minimal surfaces with pg = q = 2 and K2 = 8

whose universal cover is not biholomorphic to the bidisk H×H. We show that these are

the unique surfaces with these invariants and Albanese map of degree 2, apart from the

family of product-quotient surfaces given in [33]. This completes the classification of

surfaces with pg = q = 2, K2 = 8, and Albanese map of degree 2.

1 Introduction

Despite the work of many authors, minimal surfaces S of general type with the lowest

possible value of the holomorphic Euler characteristic, namely such that χ(OS) = 1,

are far from being classified, see for example the survey papers [4], [5], and [29] for a

detailed bibliography on the subject. These surfaces satisfy the Bogomolov–Miyaoka–

Yau inequality K2 ≤ 9.

The ones with K2 = 9 are rigid, their universal cover is the unit ball in C2 and

pg = q ≤ 2. The fake planes, that is, surfaces with pg = q = 0, have been classified in
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3454 F. Polizzi et al.

[39] and [10], the two Cartwright–Steger surfaces [10] satisfy q = 1, whereas no example

is known for pg = q = 2.

The next case is K2 = 8. In this situation, Debarre’s inequality for irregular

surfaces [16] implies

0 ≤ pg = q ≤ 4.

The cases pg = q = 3 and pg = q = 4 are nowadays classified ([21], [36], [16, Beauville’s

appendix]), whereas for pg = q ≤ 2 some families are known ([43], [3], [37], [38], [9], [33])

but there is no complete description yet.

All examples of minimal surfaces with χ = 1 and K2 = 8 known so far are

uniformized by the bidisk H×H, where H = {z ∈ C | Im z > 0} is the Poincaré upper half

plane; so the following question naturally arises:

Is there a smooth minimal surface of general type with invariants χ = 1 and

K2 = 8 and whose universal cover is not biholomorphic to H × H?

For general facts about surfaces uniformized by the bidisk, we refer the reader

to [14]. One of the aims of this paper is to give an affirmative answer to the question

above. In fact we construct two rigid, minimal surfaces with pg = q = 2 and K2 = 8

whose universal cover is not the bidisk. Moreover, we show that these surfaces are

complex conjugated and that they are the unique minimal surfaces with these invariants

and having Albanese map of degree 2, apart from the family of product-quotient

surfaces constructed in [33]. This completes the classification of minimal surfaces

with pg = q = 2, K2 = 8, and Albanese map of degree 2.

Our results can be summarized as follows: see Proposition 2.3, Theorems 3.5,

5.8, and 5.13, and Proposition 5.16.

Main Theorem. Let S be a smooth, minimal surface of general type with pg = q = 2,

K2 = 8, and such that its Albanese map α : S −→ A := Alb(S) is a generically finite

double cover. Writing DA for the branch locus of α, there are exactly two possibilities,

both of which occur:

(I ) D2
A = 32 and DA is an irreducible curve with one ordinary point of

multiplicity 6 and no other singularities. These are the product-quotient

surfaces constructed in [33];

(II ) D2
A = 24 and DA has two ordinary points p1, p2 of multiplicity 4 and no other

singularities. More precisely, in this case we can write

DA = E1 + E2 + E3 + E4,
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A Pair of Rigid Surfaces 3455

where Ei are elliptic curves intersecting pairwise transversally at p1, p2 and

not elsewhere. Moreover, A is an étale double cover of the abelian surface

A′ := E′ × E′, where E′ denotes the equianharmonic elliptic curve.

Up to isomorphism, there are exactly two such surfaces, which are complex

conjugate. Finally, the universal cover of these surfaces is not biholomorphic

to the bidisk H × H.

According to the dichotomy in the Main Theorem, we will use the terminology

surfaces of type I and surfaces of type II. Besides answering the question above about

the universal cover, the Main Theorem is also significant because

• it contains a new geometric construction of rigid surfaces, which is usually

something hard to do;

• it provides a substantially new piece in the fine classification of minimal

surfaces of general type with pg = q = 2;

• it shows that surfaces of type II present the so-called Diff�Def

phenomenon, meaning that their diffeomorphism type does not determine

their deformation class, see Remark 5.19.

Actually, the fact that there is exactly one surface of type II up to complex conjugation

is a remarkable feature. The well-known Cartwright–Steger surfaces [10] share the same

property, however our construction is of a different nature, more geometric and explicit.

The paper is organized as follows.

In Section 2 we provide a general result for minimal surfaces S with pg = q = 2,

K2 = 8, and Albanese map α : S −→ A of degree 2, and we classify all the possible branch

loci DA for α (Proposition 2.3).

In Section 3 we consider surfaces of type I, showing that they coincide with the

family of product-quotient surfaces constructed in [33] (Theorem 3.5).

In Section 4 we start the investigation of surfaces of type II. The technical core

of this part is Proposition 4.8, showing that, in this situation, the pair (A, DA) can be

realized as an étale double cover of the pair (A′, D′
A), where DA′ is a configuration of

four elliptic curves in A′ = E′ × E′ intersecting pairwise and transversally only at

the origin o′ ∈ A′ (as far as we know, the existence of such a configuration was first

remarked in [22]). The most difficult part is to prove that we can choose the double cover

A −→ A′ in such a way that the curve DA becomes 2-divisible in the Picard group of A
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3456 F. Polizzi et al.

(Proposition 4.8). The rigidity of S then follows from a characterization of A′ proven in

[24] (cf. also [1]).

In Section 5 we show that there are precisely two surfaces of type II up to

isomorphism, and that they are complex conjugated (Theorem 5.13). In order to do this,

we have to study the groups of automorphisms and anti-biholomorphisms of A that

preserve the branch locus DA and their permutation action on the set of the sixteen

square roots of OA(DA) in the Picard group of A (Proposition 5.15).

Finally, we show that the universal cover of the surfaces of type II is not

biholomorphic to H × H (Proposition 5.16 and Remark 5.20), we note that they can be

given the structure of an open ball quotient in at least two different ways (Remark 5.18)

and we sketch an alternative geometric construction for their Albanese variety A

(Remark 5.21).

Notation and conventions. We work over the field of complex numbers. All varieties

are assumed to be projective. For a smooth surface S, KS denotes the canonical class,

pg(S) = h0(S, KS) is the geometric genus, q(S) = h1(S, KS) is the irregularity, and

χ(OS) = 1 − q(S) + pg(S) is the Euler–Poincaré characteristic.

Linear equivalence of divisors is denoted by �. If D1 is an effective divisor on S1

and D2 is an effective divisor on S2, we say that the pair (S1, D1) is an étale double cover

of the pair (S2, D2) if there exists an étale double cover f : S1 −→ S2 such that D1 = f ∗D2.

If A is an abelian surface, we denote by (−1)A : A −→ A the involution x → − x.

If a ∈ A, we write ta : A −→ A for the translation by a, namely ta(x) = x + a. We say

that a divisor D ⊂ A (respectively, a line bundle L on A) is symmetric if (−1)∗AD = D

(respectively, if (−1)∗AL � L).

2 The Structure of the Albanese Map

Let us denote by S a minimal surface of general type with pg = q = 2 and maximal

Albanese dimension and by

α : S −→ A = Alb(S)

its Albanese map. It follows from [13, Section 5] that deg α is equal to the index of the

image of ∧4H1(S, Z) inside H4(S, Z) = Z[S], hence it is a topological invariant of S. So,

one can try to classify these surfaces by looking at the pair of invariants
(
K2

S , deg α
)
.

Lemma 2.1. Let S be as above and assume that there is a generically finite double cover

α̃ : S −→ Ã, where Ã is an abelian surface. Then Ã can be identified with A = Alb(S) and

there exists an automorphism ψ : A −→ A such that α̃ = ψ ◦ α.
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A Pair of Rigid Surfaces 3457

Proof. The universal property of the Albanese map ([6, Chapter V]) implies that the

morphism α̃ : S −→ Ã factors through a morphism ψ : A −→ Ã. But α̃ and α are both

generically of degree 2, so ψ must be a birational map between abelian varieties, hence

an isomorphism. Thus, we can identify Ã with A and with this identification ψ is an

automorphism of A. �

Throughout the paper, we will assume deg α = 2, namely that α : S −→ A is a

generically finite double cover. Let us denote by DA ⊂ A the branch locus of α and let

be its Stein factorization. The map αX : X −→ A is a finite double cover and the fact that

S is smooth implies that X is normal, see [2, Chapter I, Theorem 8.2]. In particular X has

at most isolated singularities, hence DA is reduced. Moreover, DA is 2-divisible in Pic(A),

in other words there exists a divisor LA on A such that DA � 2LA.

We have a canonical resolution diagram

(2)

see [2, Chapter III, Section 7], [34, Section 2], and [40]. Here β : S̄ −→ B is a finite

double cover; S̄ is smooth, but not necessarily minimal; S is the minimal model of S̄;

and ϕ : B −→ A is composed of a series of blow-ups. Let x1, x2, . . . , xr be the centers of

these blow-ups and E1, . . . ,Er the reduced strict transforms in B of the corresponding

exceptional divisors. Then the scheme-theoretic inverse image Ej of xj in B is a linear

combination with nonnegative, integer coefficients of the curves in the set {Ei}, and

we have

EiEj = −δij, KB = ϕ∗KA +
r∑

i=1

Ei.
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3458 F. Polizzi et al.

Moreover, the branch locus DB of β : S̄ −→ B is smooth and can be written as

DB = ϕ∗DA −
r∑

i=1

diEi, (3)

where di are even positive integers, say di = 2mi. Motivated by [45, pp. 724–725] we

introduce the following definitions:

• a negligible singularity of DA is a point xj such that dj = 2, and di ≤ 2 for

any point xi infinitely near to xj;

• a [2d + 1, 2d + 1]-singularity of DA is a pair (xi, xj) such that xi belongs to

the first infinitesimal neighborhood of xj and di = 2d + 2, dj = 2d;

• a [2d, 2d]-singularity of DA is a pair (xi, xj) such that xi belongs to the first

infinitesimal neighborhood of xj and di = dj = 2d;

• a minimal singularity of DA is a point xj such that its inverse image in S̄ via

the canonical resolution contains no (−1)-curves.

Let us give some examples:

• an ordinary double point and an ordinary triple point are both minimal,

negligible singularities. More generally, an ordinary d-ple point is always

a minimal singularity, and it is non-negligible for d ≥ 4;

• a [3, 3]-point (triple point xj with a triple point xi in its first infinitesimal

neighborhood) is neither minimal nor negligible. Indeed, in this case we have

DB = ϕ∗DA − 2Ej − 6Ei = ϕ∗DA − 2Ej − 4Ei,

with Ej = Ej + Ei and Ei = Ei. The divisor Ej is a (−2)-curve contained in the

branch locus of β : S̄ −→ B, so its pullback in S̄ is a (−1)-curve;

• a [4, 4]-point (quadruple point xj with a quadruple point xi in its first

infinitesimal neighborhood) is minimal and non-negligible. Indeed, in this

case we have

DB = ϕ∗DA − 4Ej − 8Ei = ϕ∗DA − 4Ej − 4Ei,

with Ej = Ej + Ei and Ei = Ei. The divisor Ej is a (−2)-curve that does not

intersect the branch locus of β : S̄ −→ B, so its pullback in S̄ consists of the

disjoint union of two (−2)-curves that are the unique rational curves coming

from the canonical resolution of the singularity.

Let us come back now to our original problem.
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Lemma 2.2. In our situation, the following hold:

(a) we have S = S̄ in (2) if and only if all singularities of DA are minimal;

(b ) if S contains no rational curves, then DA contains no negligible singularities.

Proof.

(a) If DA contains a non-minimal singularity then, by definition, S̄ is not a

minimal surface, hence S̄ �= S. Conversely, if all singularities of DA are

minimal then there are no (−1)-curves on S̄ coming from the resolution of the

singularities of DA. Since the abelian surface A contains no rational curves,

this implies that S̄ contains no (−1)-curves at all, so S̄ = S.

(b ) Any negligible singularity of DA is minimal and gives rise to some rational

double point in X, and hence to some (−2)-curve in S̄ that cannot be

contracted by the blow-down morphism S̄ −→ S (since A contains no

rational curves, it follows as before that all (−1)-curves in S̄ come from

the resolution of singularities of DA). This is impossible because we are

assuming that S contains no rational curves. �

By using the formulae in [2, p. 237], we obtain

2 = 2χ
(
OS̄

) = L2
A −

∑
mi(mi − 1), K2

S̄
= 2L2

A − 2
∑

(mi − 1)2. (4)

Notice that the sums only involve the non-negligible singularities of DA � 2LA. The two

equalities in (4) together imply

K2
S ≥ K2

S̄
= 4 + 2

∑
(mi − 1). (5)

We are now ready to analyze in detail the case K2
S = 8.

Proposition 2.3. Let S be a minimal surface with pg = q = 2 and K2
S = 8. Then S

contains no rational curves, in particular KS is ample. Using the previous notation, if

the Albanese map α : S −→ A is a generically finite double cover then we are in one of

the following cases:

(I ) D2
A = 32 and DA has one ordinary singular point of multiplicity 6 and no

other singularities;

(II ) D2
A = 24 and DA has two ordinary singular points of multiplicity 4 and no

other singularities.
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Proof. The nonexistence of rational curves on S is a consequence of a general bound

for the number of rational curves on a surface of general type, see [30, Proposition 2.1.1].

Since K2
S = 8, inequality (5) becomes

∑
(mi − 1) ≤ 2. (6)

By Lemma 2.2 there are no negligible singularities in DA, so (6) implies that we have

three possibilities:

• DA contains precisely one singularity (which is necessarily ordinary) and

m1 = 3, that is d1 = 6; this is case (I ).

• DA contains precisely two singularities and m1 = m2 = 2, that is d1 = d2 = 4.

We claim that these two quadruple points cannot be infinitely near. In fact,

the canonical resolution of a [4, 4]-point implies that S̄ contains (two) rational

curves and, since a [4, 4]-point is a minimal singularity, this would imply

the existence of rational curves on S = S̄, a contradiction. So we have two

ordinary points of multiplicity 4, and we obtain case (II ).

• DA contains precisely one singularity (which is necessarily ordinary) and

m1 = 2, that is d1 = 4. An ordinary singularity is minimal, hence we get

equality in (5), obtaining K2
S = 6 (this situation is considered in [34]), which

is a contradiction. �

Remark 2.4. Lemma 2.2 and Proposition 2.3 imply that for every surface S with pg =
q = 2, K2

S = 8, and Albanese map of degree 2, we have S̄ = S. Furthermore, referring to

diagram (1), the following hold:

• in case (I ), the birational morphism c: S→X contracts precisely one smooth

curve Z, such that g(Z) = 2 and Z2 = −2. This means that the singular locus of

X consists of one isolated singularity x, whose geometric genus is pg(X, x) =
dimC R1c∗OS = 2;

• in case (II ), the birational morphism c: S→X contracts precisely two disjoint

elliptic curves Z1, Z2 such that (Z1)2 = (Z2)2 = −2. This means that the

singular locus of X consists of two isolated elliptic singularities x1, x2 of

type Ẽ7, see [23, Theorem 7.6.4].

Definition 2.5. According to the dichotomy in Proposition 2.3, we will use the termi-

nology surfaces of type I and surfaces of type II.
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Proposition 2.6. Let us denote as above by DA the branch locus of the Albanese map

α : S −→ A. Then

• if S is of type I, the curve DA is irreducible;

• if S is of type II, the curve DA is of the form DA = E1 + E2 + E3 + E4, where the

Ei are elliptic curves meeting pairwise transversally at two points p1, p2 and

not elsewhere. In particular, we have EiEj = 2 for i �= j.

Proof. Suppose first that S is of type I and consider the blow-up ϕ : B −→ A at

the singular point p ∈ DA. Let C1, . . . , Cr be the irreducible components of the strict

transform of DA and E ⊂ B the exceptional divisor. The curve DA only contains the

ordinary singularity p, so the Ci are pairwise disjoint; moreover, the fact that

r∑
i=1

Ci = ϕ∗DA − 6E

is 2-divisible in Pic(B) implies that C2
i = Ci

(∑r
i=1 Ci

)
is an even integer. Let us recall now

that the abelian surface A contains no rational curves, so g(Ci)> 0 for all i ∈ {1, . . . , r}.
On the other hand, if g(Ci) = 1 then its image Di := ϕ(Ci) is a smooth elliptic curve,

because it is a curve of geometric genus 1 on the abelian surface A. Thus, D2
i = 0 and,

since p ∈ Di, it follows C2
i = −1, a contradiction because − 1 is an odd integer. So we

infer g(Ci) ≥ 2 for all i ∈ {1, . . . , r} and we can write

6 − 4 = E(ϕ∗DA − 6E) + (ϕ∗DA − 6E)2

= KB

(
r∑

i=1

Ci

)
+

(
r∑

i=1

Ci

)2

=
r∑

i=1

(2g(Ci) − 2) ≥ 2r

that is r = 1 and DA is irreducible.

Assume now that S is of type II and write DA = E1 + · · · + Er, where each Ei

is an irreducible curve. Denote by mi and ni the multiplicities of Ei at the two ordinary

singular points p1 and p2 of DA, and let pa(Ei) and gi be the arithmetic and the geometric

genus of Ei, respectively. We have
∑r

i=1 mi = ∑r
i=1 ni = 4 and

E2
i = 2pa(Ei) − 2 = 2gi − 2 + mi(mi − 1) + ni(ni − 1).
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Using this, we can write

24 = D2
A =

r∑
i=1

E2
i + 2

∑
j<k

EjEk

= 2
r∑

i=1

gi − 2r +
r∑

i=1

mi(mi − 1) +
r∑

i=1

ni(ni − 1) + 2
∑
j<k

(
mjmk + njnk

)

= 2
r∑

i=1

gi − 2r +
(

r∑
i=1

mi

)2

+
(

r∑
i=1

ni

)2

−
r∑

i=1

mi −
r∑

i=1

ni

= 2
r∑

i=1

gi − 2r + 24

that is
∑r

i=1 gi = r. Since A contains no rational curves we have gi ≥ 1, and we conclude

that

g1 = · · · = gr = 1. (7)

But every curve of geometric genus 1 on A is smooth, so (7) implies that DA is the sum

of r elliptic curves Ei passing through the singular points p1 and p2. Therefore, r = 4,

because these points have multiplicity 4 in the branch locus DA. �

3 Surfaces of Type I

3.1 The product-quotient examples

The following family of examples, whose construction can be found in [33], shows that

surfaces of type I do actually exist. Let C′ be a curve of genus g(C′) ≥ 2 and let G be a

finite group that acts freely on C′ × C′. We assume moreover that the action is mixed,

namely that there exists an element in G exchanging the two factors; this means that

G ⊂ Aut(C′ × C′) � Aut(C′)2 � Z/2Z

is not contained in Aut(C′)2. Then the quotient S := (C′ × C′)/G is a smooth surface with

χ(OS) = (g − 1)2/|G|, K2
S = 8χ(OS). (8)

The intersection G0 := G ∩ Aut(C′)2 is an index 2 subgroup of G (whose action on

C′ is independent on the factor). From [18, Theorems 3.6 and 3.7 and Lemma 3.9], the
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exact sequence

1 −→ G0 −→ G −→ Z/2Z −→ 1

is non-split and the genus of the curve C := C′/G0 equals q(S).

We have a commutative diagram

where t : C′ × C′ −→ C × C is a (G0 × G0)-cover, u : C × C −→ Sym2(C) is the natural

projection on to the second symmetric product, and β : S −→ Sym2(C) is a finite cover of

degree |G0|.
Assume now that C′ has genus 3 and that G0 � Z/2Z (hence, G � Z/4Z). Since

G acts freely on C′ × C′, then G0 acts freely on C′ and thus C has genus 2. Denoting

by � ⊂ C × C the diagonal and by 	 ⊂ C × C the graph of the hyperelliptic involution

ι : C −→ C, we see that � and 	 are smooth curves isomorphic to C and satisfying

�	 = 6, �2 = 	2 = −2.

The ramification divisor of u is precisely �, so u(�)2 = −4, whereas u(	) is a (−1)-curve.

The corresponding blow-down morphism ϕ : Sym2(C) −→ A is the Abel–Jacobi map, and

A is an abelian surface isomorphic to the Jacobian variety J(C). The composed map

α = ϕ ◦ β : S −→ A

is a generically finite double cover that, by the universal property, coincides up to

automorphisms of A with the Albanese morphism of S. Such a morphism is branched

over DA := (ϕ◦u)(�), which is a curve with D2
A = 32 and containing an ordinary sextuple

point and no other singularities: in fact, the curves u(�) and u(	) intersect transversally

at precisely six points, corresponding to the six Weierstrass points of C.

From this and (8), it follows that S is a surface with pg = q = 2, K2
S = 8, and of

type I. Note that, with the notation of Section 2, we have B = Sym2(C) and DB = u(�).

Remark 3.1. Here is a different construction of the singular curve DA considered in

the previous example. Let A := J(C) be the Jacobian of a smooth genus 2 curve and let
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us consider a symmetric theta divisor � ⊂ A. Then the Weierstrass points of � are six

2-torsion points of A, say p0, . . . , p5, and DA arises as the image of � via the multiplica-

tion map 2A : A−→A given by x �→ 2x. Note that DA is numerically equivalent to 4�.

Remark 3.2. Recently, R. Pignatelli and the first author studied some surfaces with

pg = q = 2 and K2
S = 7, originally constructed in [8] and arising as triple covers S → A

branched over DA, where (A, DA) is as in the previous example. We refer the reader to

[35] for more details.

3.2 The classification

The aim of this subsection is to show that every surface of type I is a product-quotient

surface of the type described in Section 3.1.

Lemma 3.3. Let D be an irreducible curve contained in an abelian surface A, with D2 =
32 and having an ordinary point p of multiplicity 6 and no other singularities. Then, up

to translations, we can suppose p = 0 and D symmetric, namely (−1)∗AD = D.

Proof. Up to a translation, we may assume p = 0. Using the results of Section 4.1 and

[7, Corollary 2.3.7], it follows that (−1)∗A acts trivially on NS(A), hence D and D′ := (−1)∗AD

are two algebraically equivalent, irreducible divisors, both having a sextuple point at

0. If D and D′ were distinct, we would have DD′ ≥ 36, a contradiction because D2 = 32;

thus, D = D′. �

Proposition 3.4. If D ⊂ A is as in Lemma 3.3, then there exists a smooth genus 2 curve

C such that A = J(C). Furthermore, up to translations, the curve D can be obtained

as in Remark 3.1, namely as the image of a symmetric theta divisor � ⊂ A via the

multiplication map 2A : A −→ A.

Proof. By Lemma 3.3, we can assume that D is a symmetric divisor and that its

sextuple point is the origin 0 ∈ A. The geometric genus of D is 2, hence its normalization

C → D is a smooth genus 2 curve. By the universal property of the Jacobian, the

composed map C → D ↪→ A factors through an isogeny

η : J(C) −→ A,

where we can assume, up to translations, that the image � of the embedding C ↪→ J(C) is

a theta divisor containing the origin 0 ∈ J(C). Thus, the abelian surface A is isomorphic
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to J(C)/T, where T := ker η is a torsion subgroup whose order |T| equals the degree d of

η. The group T contains the group generated by the six points

0 = p0, p1, . . . , p5

corresponding to the six distinct points of C over 0 ∈ D. The restriction of η to C is

birational, so we have

η∗D = �0 + · · · + �d−1,

where �0 = � and �j are translates of �0 by the elements of T. Since D2 = 32, we

obtain (η∗D)2 = 32d. On the other hand, all curves �j are algebraically equivalent, hence

�i�j = 2 for all pairs (i, j) and we infer (η∗D)2 = (�0 + · · · + �d−1)2 = 2d2. So 32d = 2d2

that is d = 16.

This shows that the reducible curve η∗D has sixteen sextuple points p0, . . . , p15,

such that every curve �j contains six of them; conversely, since these curves are smooth,

through each pk pass exactly six of the curves �j. We express these facts by saying that

the sixteen curves �j and the sixteen points pk form a symmetric (166)-configuration.

The involution (−1)A acts on D, so the involution (−1)J(C) acts on �, that is, � is a

symmetric divisor on J(C). Furthermore, the action of (−1)A induces the multiplication

by − 1 on the tangent space TA,0, hence it preserves the six tangent directions of D at

0; this means that p0, . . . , p5 are fixed points for the restriction of (−1)J(C) to �. But a

nontrivial involution with six fixed points on a smooth curve of genus 2 must be the

hyperelliptic involution, so p0, . . . , p5 are the Weierstrass points of �. By [31, Chapter

3.2, pp. 28–39], these six points generate the (order 16) subgroup J(C)[2] of points of

order 2 in J(C), thus T = J(C)[2].

Summing up, our symmetric (166)-configuration coincides with the so-called

Kummer configuration, see [7, Chapter 10]; moreover, A is isomorphic to J(C) and the

map η coincides with the multiplication map 2A : A −→ A. �

Theorem 3.5. Surfaces of type I are precisely the product-quotient surfaces described

in Section 3.1, in particular they form a family of dimension 3. More precisely, denoting

by MI their Gieseker moduli space and by M2 the moduli space of curves of genus 2,

there exists a surjective, quasi-finite morphism MI −→ M2 of degree 15.

Proof. Given any surface S of type I, by Proposition 3.4 there exists a smooth curve C

of genus 2 such that S is the canonical desingularization of the double cover α : X −→ A,

where A = J(C), branched over the singular curve DA described in the example of
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3466 F. Polizzi et al.

Section 3.1 and in Remark 3.1. Equivalently, S arises as a double cover β : S −→ B, where

B = Sym2(C), branched over the smooth diagonal divisor DB. There are sixteen distinct

covers, corresponding to the sixteen square roots of DB in Pic(B). One of them is the

double cover u: C × C → B, whereas the others are fifteen surfaces S with pg(S) = q(S) = 2

and Albanese variety isomorphic to J(C). We claim that, for a general choice of C, such

surfaces are pairwise non-isomorphic. In fact, let us consider two of them, say Si and Sj;

then, if Si
�−→ Sj is an isomorphism, by the universal property of the Albanese map there

exists an automorphism of abelian varieties J(C)
�−→ J(C) that makes the following

diagram commutative:

If C is general, the only automorphism of C is the hyperelliptic involution, so the only

automorphism of J(C) is the multiplication by (−1), which acts trivially on the 2-torsion

divisors of J(C). Consequently, the induced involution on B acts trivially on the sixteen

square roots of DB, that is Si = Sj, as claimed.

On the other hand, once fixed a curve C of genus 2, the product-quotient

construction uniquely depends on the choice of the étale double cover C′ −→ C, that

is on the choice of a nontrivial 2-torsion element of J(C). There are precisely fifteen such

elements that necessarily correspond to the fifteen surfaces with pg(S) = q(S) = 2 and

Alb(S) � J(C) found above.

Therefore, every surface of type I is a product-quotient example, and the map

MI −→ M2 defined by [S] �→ [C] is a quasi-finite morphism of degree 15. �

Remark 3.6. The moduli space of genus 2 curves C with a nontrivial 2-torsion point in

J(C) is rational (see [17]). According to the description of MI in the proof of Theorem 3.5,

we see that MI is rational.

Theorem 3.5 in particular implies that the universal cover of S coincides with

the universal cover of C′ × C′, so we obtain the following:

Corollary 3.7. Let S be a surface of type I and S̃ −→ S its universal cover. Then S̃ is

biholomorphic to the bidisk H × H, where H = {z ∈ C | Im z > 0} is the Poincaré upper

half plane.
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4 Surfaces of Type II : Construction

4.1 Line bundles on abelian varieties and the Appell–Humbert theorem

In this subsection we shortly collect some results on abelian varieties that will be used

in the sequel, referring the reader to [7, Chapters 1–4] for more details. Let A = V/� be

an abelian variety, where V is a finite-dimensional C-vector space, and � ⊂ V a lattice.

Then the Appell–Humbert Theorem, see [7, Theorem 2.2.3], implies that

• the Néron–Severi group NS(A) can be identified with the group of Hermitian

forms h : V × V −→ C whose imaginary part Im h takes integral values on �;

• the Picard group Pic(A) can be identified with the group of pairs (h, χ), where

h ∈ NS(A) and χ is a semicharacter, namely a map

χ : � −→ U(1), where U(1) = {z ∈ C | |z| = 1},

such that

χ(λ + μ) = χ(λ)χ(μ)eπ i Im h(λ, μ) for all λ, μ ∈ �. (9)

• with these identifications, the first Chern class map c1 : Pic(A) −→ NS(A) is

nothing but the projection to the first component, that is, (h, χ) �→ h.

We will write L = L(h, χ), so that we have L(h, χ) ⊗ L(h′, χ ′) = L(h + h′, χχ ′). The

line bundle L(h, χ) is symmetric if and only if the semicharacter χ has values in

{±1}, see [7, Corollary 2.3.7]. Furthermore, for any v̄ ∈ A with representative v ∈ V,

we have

t∗̄
vL

(
h, χ

) = L
(
h, χ e2π i Im h(v, ·)) , (10)

see [7, Lemma 2.3.2].

Remark 4.1. Assume that the class of L = L(h, χ) is 2-divisible in NS(A), that

is h = 2h′. Then Im h(�, �) ⊆ 2Z and moreover, formula (9) implies that χ : � −→ U(1) is

a character, namely χ(λ + μ) = χ(λ)χ(μ). In particular, L belongs to Pic0(A) if and only

if there exists a character χ such that L = L(0, χ).

Proposition 4.2. ([7], Lemma 2.3.4) Let A1 = V1/�1 and A2 = V2/�2 be two abelian

varieties, and let f : A2 −→ A1 be a homomorphism with analytic representation
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3468 F. Polizzi et al.

F : V2 −→ V1 and rational representation F� : �2 −→ �1. Then for any L(h, χ) ∈ Pic(A1)

we have

f ∗L
(
h, χ

) = L
(
F∗h, F∗

�χ
)
. (11)

Given a point x ∈ A and a divisor D ⊂ A, let us denote by m(D, x) the multiplicity

of D at x.

Lemma 4.3. ([7, Proposition 4.7.2]) Let L = L(h, χ) be a symmetric line bundle on

A and D a symmetric effective divisor such that L = OA(D). For every 2-torsion

point x ∈ A[2] with representative 1
2λ, where λ ∈ �, we have

χ(λ) = (−1)m(D, 0)+m(D, x).

4.2 The equianharmonic product

Let ζ := e2π i/6 = 1
2 +

√
3

2 i, so that ζ 2 −ζ +1 = 0, and consider the equianharmonic elliptic

curve

E′ := C/	ζ , 	ζ := Zζ ⊕ Z. (12)

Setting V := C2, we can define

A′ := E′ × E′ = V/�A′ , �A′ := 	ζ × 	ζ .

Then A′ is a principally polarized abelian surface that we will call the equianharmonic

product. Denoting by (z1, z2) the coordinates of V and by e1 = (1, 0), e2 = (0, 1) its

standard basis, the four vectors

λ1 := ζe1, λ2 := ζe2, e1, e2 (13)

form a basis for the lattice �A′ .

We now consider the four one-dimensional complex subspaces of V defined as

V1 := span(e1) = {z2 = 0}, V2 := span(e2) = {z1 = 0},
V3 := span(e1 + e2) = {z1 − z2 = 0}, V4 := span(e1 + ζe2) = {ζz1 − z2 = 0}. (14)
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For each k ∈ {1, 2, 3, 4}, the subspace Vk contains a rank 2 sublattice �k ⊂ �A′ isomorphic

to 	ζ , where

�1 := Zλ1 ⊕ Ze1, �2 := Zλ2 ⊕ Ze2,

�3 := Z(λ1 + λ2) ⊕ Z(e1 + e2), �4 := Z(λ1 + λ2 − e2) ⊕ Z(λ2 + e1).
(15)

Consequently, in A′ there are four elliptic curves isomorphic to E′, namely

E′
k := Vk/�k, k ∈ {1, 2, 3, 4}. (16)

Proposition 4.4. ([22, Section 1]) The four curves E′
k only intersect (pairwise transver-

sally) at the origin o′ ∈ A′. Consequently, the reducible divisor

DA′ := E′
1 + E′

2 + E′
3 + E′

4

has an ordinary quadruple point at o′ and no other singularities.

By the Appell–Humbert Theorem, the Néron–Severi group NS(A′) of A′ can be

identified with the group of Hermitian forms h on V whose imaginary part takes integral

values on �A′ . We will use the symbol H for the 2 × 2 Hermitian matrix associated to h

with respect to the standard basis of V so that, thinking of v, w ∈ V as column vectors,

we can write h(v, w) = tvHw̄. We want now to identify those Hermitian matrices

H1, . . . , H4 that correspond to the classes of the curves E′
1, . . . , E′

4, respectively.

Proposition 4.5. We have

H1 = 2√
3

(
0 0

0 1

)
, H2 = 2√

3

(
1 0

0 0

)
,

H3 = 2√
3

(
1 −1

−1 1

)
, H4 = 2√

3

(
1 −ζ

−ζ̄ 1

)
,

so that the Hermitian matrix representing in NS(A′) the class of the divisor DA′ is

H := H1 + H2 + H3 + H4 = 2√
3

(
3 −1 − ζ

−1 − ζ̄ 3

)
.
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3470 F. Polizzi et al.

Moreover, setting λ = (a1 + ζa2, a3 + ζa4) ∈ �A′ , the semicharacter χDA′ corresponding

to the line bundle OA′(DA′) can be written as

χDA′ (λ) = (−1)a1+a2+a3+a4+a1(a2+a3+a4)+(a2+a3)a4 .

Proof. The Hermitian form h̃ on C given by h̃(z1, z2) = 2√
3
z1z̄2 is positive definite

and its imaginary part is integer-valued on 	ζ , so it defines a positive class in NS(E′).
Moreover, in the ordered basis {ζ , 1} of 	ζ , the alternating form Im h̃ is represented

by the skew-symmetric matrix
(

0 1−1 0

)
, whose Pfaffian equals 1, so h̃ corresponds to

the ample generator of the Néron–Severi group of E′, see [7, Corollary 3.2.8]. In other

words, h̃ is the Chern class of OE′(0), where 0 is the origin of E′. Write OE′(0) = L(h̃, ν)

for a suitable semicharacter ν : 	ζ −→ C; since OE′(0) is a symmetric line bundle, the

values of ν at the generators of 	ζ can be computed by using Lemma 4.3, obtaining

ν(1) = −1, ν(ζ ) = −1. Consequently, for all a, b ∈ Z we get

ν(a + bζ ) = ν(a)ν(bζ )eπ i Im h̃(a, bζ ) = (−1)a(−1)b(−1)ab = (−1)a+b+ab. (17)

For any k ∈ {1, . . . , 4} let us define a group homomorphism Fk : A′ −→ E′ as follows:

F1(z1, z2) = z2, F2(z1, z2) = z1, F3(z1, z2) = z1 − z2, F4(z1, z2) = ζz1 − z2.

By (14) we have E′
k = F∗

k(0) and so, setting OA′(E′
k) = L(hk, χ ′

k), by (11) we deduce

hk = F∗
kh̃, χ ′

k = F∗
kν. (18)

This gives immediately the four matrices H1, . . . , H4. Moreover, by using (17) and (18), we

can write down the semicharacters χ ′
1, . . . , χ ′

4; in fact, for any λ = (a1 + ζa2, a3 + ζa4) ∈
�A′ , we obtain

χ ′
1(λ) = (−1)a3+a4+a3a4

χ ′
2(λ) = (−1)a1+a2+a1a2

χ ′
3(λ) = (−1)a1+a2+a3+a4+(a1+a3)(a2+a4)

χ ′
4(λ) = (−1)a1+a2+a3+a4+(a1+a4)(a2+a3)+a2a3 .

The semicharacter χDA′ can be now computed by using the formula χDA′ = χ ′
1χ ′

2χ ′
3χ ′

4. �
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Remark 4.6. The Hermitian matrix

H1 + H2 = 2√
3

(
1 0

0 1

)

represents in NS(A′) the class of the principal polarization of product type

� := E′ × {0} + {0} × E′.

Remark 4.7. The free abelian group NS(A′) is generated by the classes of the elliptic

curves E′
1, E′

2, E′
3, E′

4. In fact, since A′ = E′ × E′ and E′ has complex multiplication, it is

well known that NS(A′) has rank 4, see [7, Exercise 5.6 (10) p. 142], hence we only need

to show that the classes of the curves E′
k generate a primitive sublattice of maximal

rank in the Néron–Severi group. By Proposition 4.4, the corresponding Gram matrix has

determinant

det
(
E′

i · E′
j

)
= det

(
1 − δij

)
= −3

so the claim follows because − 3 is a nonzero, square-free integer.

4.3 Double covers of the equianharmonic product

In order to construct a surface of type II, we must find an abelian surface A and a divisor

DA on it such that

• DA is 2-divisible in Pic(A);

• D2
A = 24 and DA has precisely two ordinary quadruple points as singularities.

We will construct the pair (A, DA) as an étale double cover of the pair (A′, DA′), where

A′ = V/�A′ is the equianharmonic product and DA′ = E′
1 + E′

2 + E′
3 + E′

4 is the sum of four

elliptic curves considered in Proposition 4.4.

By the Appell–Humbert theorem, the sixteen 2-torsion divisors on A′, that is, the

elements of order 2 in Pic0(A′), correspond to the sixteen characters

χ : �A′ −→ {±1}. (19)

Any such character is specified by its values at the elements of the ordered basis

{λ1, λ2, e1, e2} of �A′ given in (13), so it can be denoted by

χ = (χ(λ1), χ(λ2), χ(e1), χ(e2)).
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3472 F. Polizzi et al.

For instance, χ0 := (1, 1, 1, 1) is the trivial character, corresponding to the trivial divisor

OA′ . We will write

χ1 := (−1, −1, 1, −1), χ2 := (1, −1, −1, 1), χ3 := (−1, 1, −1, −1),

χ4 := (1, 1, −1, 1), χ5 := (−1, 1, 1, 1), χ6 := (−1, 1, −1, 1),

χ7 := (1, 1, 1, −1), χ8 := (1, −1, 1, −1), χ9 := (−1, 1, 1, −1),

χ10 := (1, 1, −1, −1), χ11 := (−1, −1, −1, 1), χ12 := (1, −1, 1, 1),

χ13 := (1, −1, −1, −1), χ14 := (−1, −1, 1, 1), χ15 := (−1, −1, −1, −1)

(20)

for the fifteen nontrivial characters. To any nontrivial 2-torsion divisor on A′, and so to

any nontrivial character χ as in (19), it corresponds a degree 2 isogeny fχ : Aχ −→ A′; in

fact, ker χ ⊂ �A′ is a sublattice of index 2 and Aχ is the abelian surface

Aχ = V/ ker χ . (21)

Let us set

Ei := f ∗
χ

(
E′

i

)
, DAχ

:= f ∗
χ (DA′) = E1 + E2 + E3 + E4

and write Σ for the subgroup of Pic0(A′) generated by χ1 and χ2, namely

Σ := {χ0, χ1, χ2, χ3}. (22)

We are now ready to prove the key result of this subsection.

Proposition 4.8. The following are equivalent:

(a) the divisor DAχ
is 2-divisible in Pic(Aχ );

(a′) the divisor DAχ
is 2-divisible in NS(Aχ );

(b ) every Ei is an irreducible elliptic curve in Aχ ;

(c) the character χ is a nontrivial element of Σ .

Proof. We first observe that NS(Aχ ) = Pic(Aχ )/Pic0(Aχ ) and Pic0(Aχ ) is a divisible

group, so (a) is equivalent to (a′).

Next, the curve Ei ⊂ Aχ is irreducible if and only if the 2-torsion divisor

corresponding to the character χ : �A′ −→ {±1} restricts non-trivially to E′
i. This in

turn means that χ restricts non-trivially to the sublattice �i, and so (b) occurs if and

only if χ restricts non-trivially to all �1, �2, �3, �4. By using the generators given in
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(15), a long but elementary computation (or a quick computer calculation) shows that

this happens if and only if (c) holds.

It remains to prove that (a′) and (c) are equivalent. The isogeny fχ : Aχ −→ A lifts

to the identity 1V : V −→ V so, if h : V × V −→ C is the Hermitian form that represents

the class of DA′ in NS(A′), then the same form also represents the class of DAχ
in NS(Aχ ).

By the Appell–Humbert theorem the group NS(Aχ ) can be identified with the group of

Hermitian forms on V whose imaginary part takes integral values on the lattice ker χ ,

so (21) implies that condition (a′ ) is equivalent to

Im h
(

ker χ , ker χ
) ⊆ 2Z. (23)

The nonzero values assumed by the alternating form Im h on the generators λ1, λ2, e1, e2

of �A′ can be computed by using the Hermitian matrix H given in Proposition 4.5,

obtaining Table 1 below:

Table 1 Nonzero values of Im h at the generators of �A′

(·, ·) (λ1, λ2) (λ1, e1) (λ1, e2) (λ2, e1) (λ2, e2) (e1, e2)

Im h(·, ·) − 1 3 − 2 − 1 3 − 1

Now we show that (23) holds if and only if χ is a nontrivial element of Σ . In fact

we have seen that, if χ /∈ {χ1, χ2, χ3}, then one of the effective divisors Ei = f ∗
χ (E′

i) is a

disjoint union of two elliptic curves, say Ei = Ei1 + Ei2. But then, using the projection

formula, we find

DAχ
· Ei1 = f ∗

χ (DA′) · Ei1 = DA′ · fχ ∗(Ei1) = DA′ · E′
i = 3

which is not an even integer, so DAχ
is not 2-divisible in this situation.

Let us consider now the case χ ∈ {χ1, χ2, χ3}. We can easily see that integral

bases of ker χ1, ker χ2, ker χ3 are given by

B1 := {e1, λ1 + e2, λ2 + e2, 2e2},
B2 := {λ2 + e1, λ1, e2, 2e1}, (24)

B3 := {λ1 + e2, λ2, 2e2, e1 + e2},
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3474 F. Polizzi et al.

respectively. Then, by using Table 1, it is straightforward to check that Im h(b1, b2) ∈ 2Z

for all b1, b2 ∈ B1; for instance, we have

Im h(λ1 + e2, λ2 + e2) = Im h(λ1, λ2) + Im h(λ1, e2) + Im h(e2, λ2) + Im h(e2, e2)

= −1 − 2 − 3 + 0 = −6 ∈ 2Z.

This shows that the inclusion (23) holds for χ1. The proof that it also holds for χ2 and

χ3 is analogous. �

Remark 4.9. Writing the details in the proof of Proposition 4.8, one sees that every

nontrivial character χ in (20) restricts trivially to at most one curve E′
i. Identifying A′

with Pic0(A′) via the principal polarization � described in Remark 4.6, this corresponds

to the fact that every nonzero 2-torsion point of A′ is contained in at most one of the

E′
i. More precisely, every E′

i contains exactly three nonzero 2-torsion points of A′, so it

remains 16 − (4 × 3 + 1) = 3 of them that are not contained in any of the E′
i. Via the

identification above, they clearly correspond to three 2-torsion divisors restricting non-

trivially to all E′
i, namely to the three nontrivial characters in the group Σ .

Summing up, we have the following existence result for surfaces of type II.

Proposition 4.10. Let χ be any nontrivial element in the group Σ and write f : A −→ A′

instead of fχ : Aχ −→ A′. Then there exists a double cover αX : X −→ A branched

precisely over the 2-divisible effective divisor DA ⊂ A. The minimal resolution S of X

is a smooth surface with pg = q = 2, K2 = 8, and Albanese map of degree 2, belonging

to type II.

Proof. It only remains to compute the invariants of S. From the double cover formulas

(see [2, Chapter V.22]) we see that, if we impose an ordinary quadruple point to the

branch locus, then χ decreases by 1 and K2 decreases by 2, hence we get

χ(OS) = 1

8
D2

A − 2 = 1 and K2
S = 1

2
D2

A − 4 = 8.

Since q(S) ≥ q(A) = 2, we have pg(S) = q(S) ≥ 2. Assume that pg(S) = q(S) ≥ 3. By [21],

[36], and [16, Beauville appendix], we have two possibilities:

• pg(S) = q(S) = 4 and S is the product of two curves of genus 2;

• pg(S) = q(S) = 3 and S = (C2 × C3)/Z2, where C2 is a smooth curve of genus

2 with an elliptic involution τ2, C3 is a smooth curve of genus 3 with a free

involution τ3, and the cyclic group Z2 acts freely on the product C2 × C3 via

the involution τ2 × τ3.
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In both cases above, S contains no elliptic curves. On the other hand, all our surfaces of

type II contain four elliptic curves, coming from the strict transform of DA. Therefore,

the only possibility is pg(S) = q(S) = 2. �

5 Surfaces of Type II : Classification

5.1 Holomorphic and anti-holomorphic diffeomorphisms of cyclic covers

In this section we discuss about lifts on cyclic covers of automorphisms or anti-

automorphisms. We use methods and results of Pardini, see [32].

Let n ≥ 2 be an integer and let D be an effective divisor on a smooth projective

variety Y, such that

OY(D) � L⊗n
1 � L⊗n

2

for some line bundles L1, L2 ∈ Pic(Y). Canonically associated to such data, there exist

two simple n-cyclic covers

π1 : X1 −→ Y and π2 : X2 −→ Y,

both branched over D. We want to provide conditions ensuring that the two compact

complex manifolds underlying X1 and X2 are biholomorphic or anti-biholomorphic.

Following [25, Section 3], let us denote by Kl(Y) the group of holomorphic and

anti-holomorphic diffeomorphisms of Y. There is a short exact sequence

1 −→ Aut(Y) −→ Kl(Y) −→ H −→ 1,

where H = Z/2Z or H = 0. To any anti-holomorphic element σ ∈ Kl(Y) we can associate

a C-antilinear map

σ ∗ : C(Y) −→ C(Y)

on the function field C(Y) by defining

(
σ ∗f

)
(x) := f (σ (x))

for all f ∈ C(Y). That action extends the usual action of Aut(Y ) on C(Y) in a natural way

(note that in [25] the notation σ ∗ is used only for holomorphic maps, whereas for anti-

holomorphic maps the corresponding notation is σ !). We have σ−1(div (f )) = div (σ ∗f ),

hence the action σ ∗ : Div(Y) −→ Div(Y) induces an action σ ∗ : Pic(Y) −→ Pic(Y), such

that σ ∗KY = KY , in the usual way. Namely, if the line bundle L ∈ Pic(Y) is defined by the
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transition functions {gij} with respect to the open cover {Ui}, then σ ∗L is determined by

the transition functions {σ ∗gij} with respect to the cover {σ−1(Ui)}; furthermore, given

an open set U ⊆ Y and a holomorphic r-form ω = ∑
gi1...ir dxi1 ∧ . . . ∧ dxir ∈ 	(U, KY),

its pullback via σ is the holomorphic r-form σ ∗ω = ∑
σ ∗gi1...ir d(σ ∗xi1) ∧ . . . ∧ d(σ ∗xir ) ∈

	(σ−1(U), KY). Moreover, the intersection numbers are also preserved by the action of

any σ ∈ Kl(Y).

Example 5.1. Let A1 = V1/�1 and A2 = V2/�2 be two abelian varieties, and let

σ : A2 −→ A1 be an anti-holomorphic homomorphism with analytic representation

S : V2 −→ V1 and rational representation S� : �2 −→ �1 (note that S is a C-antilinear

map). Then, for any L(h, χ) ∈ Pic(A1), we have the following analog of (11):

σ ∗L
(
h, χ

) = L
(
S∗h, S∗

�χ
)
. (25)

In fact, looking at the transition function of the anti-holomorphic line bundle

L(S∗h, S∗
�χ) we see that, in order to obtain a holomorphic one, we must take the

conjugated Hermitian form S∗h and the conjugated semicharacter S∗
�χ .

Let us now denote by Kl(Y, D) and Aut(Y, D) the subgroups of Kl(Y) and Aut(Y)

given by diffeomorphisms such that σ ∗D = D. Again, Aut(Y, D) is a normal subgroup of

Kl(Y, D) of index 1 or 2.

Proposition 5.2.

(i ) Let σ ∈ Kl(Y, D) be such that σ ∗L2 � L1. Then there exists a diffeomorphism

σ̃ : X1 −→ X2 such that σ ◦ π1 = π2 ◦ σ̃ . Moreover, σ̃ is holomorphic

(respectively, anti-holomorphic) if and only if σ is so.

(ii ) Let be σ ∈ Kl(Y, D). If σ ∗Li � Li, then σ lifts to Xi and there are n different

such lifts.

(iii ) Let be σ̃ ∈ Kl(Xi) such that σ̃ ◦ πi = πi. Then s̃ induces an automorphism

σ ∈ Kl(Y, D). Moreover, if either D > 0 or n = 2, one has σ ∗Li � Li.

Proof. Let us prove (i ). Let L1, L2 be the total spaces of L1, L2 and let p1 : L1 −→ Y,

p2 : L2 −→ Y be the corresponding projections. Let s ∈ H0(Y, OY(D)) be a section van-

ishing exactly along D (if D = 0, we take for s the constant function 1). If ti ∈ H0(Li, p∗
i Li)
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denotes the tautological section, by [2, I.17] it follows that global equations for X1 and

X2, as analytic subvarieties of L1 and L2, are provided by

tn
1 − p∗

1s = 0 and tn
2 − p∗

2s = 0,

the covering maps π1 and π2 being induced by the restrictions of p1 and p2, respectively.

Since σ ∈ Kl(Y, D), we have σ ∗s = λs with λ ∈ C∗. Moreover, σ ∗L2 � L1 implies that there

exists a diffeomorphism σ̃ : L1 −→ L2 such that p2 ◦ σ̃ = σ ◦ p1, hence,

σ̃ ∗(p∗
2s

) = p∗
1

(
σ ∗s

) = λ p∗
1s.

Moreover, we have σ̃ ∗t2 = μt1, with μ ∈ C∗. Up to rescaling t2 by a constant factor we

can assume μ = n
√

λ, so that

σ̃ ∗(tn
2 − p∗

2s
) = λ

(
tn
1 − p∗

1s
)
.

This means that σ̃ : L1 −→ L2 restricts to a diffeomorphism σ̃ : X1 −→ X2, which is com-

patible with the two covering maps π1 and π2. By construction, such a diffeomorphism

is holomorphic (respectively, anti-holomorphic) if and only if σ is so.

Part (ii ) follows from part (i ), setting L1 = L2, so that X1 = X2. Any two lifts differ by

an automorphism of the cover that induces the identity on Y, thus there are n different

lifts of σ .

Let us prove part (iii ). Since σ̃ preserves πi, the induced automorphism σ of Y must

preserve D. Let g be a generator of the Galois group G of πi. There exists an integer

a prime with n such that σ̃ satisfies σ̃ (gx) = ga(σ̃x) for all x ∈ Xi. Thus, the induced

automorphism σ ∗ of πi∗OXi
permutes the summands of the decomposition under the

action of G. Since the cyclic cover is simple, if D > 0 by looking at the Chern classes of

the summands, one can see that we must have σ ∗(Li) = Li. In the case of a double cover,

the statement is true also in the étale case, since there is only one nontrivial summand

in the decomposition of πi∗. �

In the case of double covers induced by the Albanese map, we have the following

converse of Proposition 5.2, (i ).

Proposition 5.3. Set n = 2, let Y = A be an abelian variety, and assume that the double

cover πi : Xi −→ A is the Albanese map of Xi, for i = 1, 2. If there is a holomorphic

(respectively, anti-holomorphic) diffeomorphism σ̃ : X1 −→ X2, then there exists a
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holomorphic (respectively, anti-holomorphic) diffeomorphism σ ∈ Kl(A, D) such that

σ ∗L2 � L1.

Proof. We first assume that σ̃ is holomorphic. By the universal property of the

Albanese map the morphism π2 ◦ σ̃ : X1 −→ A factors through π1, in other words there

exists σ : A −→ A such that σ ◦ π1 = π2 ◦ σ̃ . The map σ is an isomorphism because σ̃

is an isomorphism, then it sends the branch locus of π1 to the branch locus of π2, or

equivalently σ ∗D = D. Finally, looking at the direct image of the structural sheaf OX1

we get

(σ ◦ π1)∗OX1
= (π2 ◦ σ̃ )∗OX1

that is

σ∗
(
OA ⊕ L−1

1

) = π2∗
(
σ̃∗OX1

)
that is

OA ⊕ (
σ∗L−1

1

) = OA ⊕ L−1
2 .

The decomposition is preserved because the map X1 −→ X2 is compatible with the

involutions induced by the Albanese map, so we obtain σ∗L−1
1 � L−1

2 as desired.

If σ̃ is anti-holomorphic, it suffices to apply the same proof to the holomorphic

diffeomorphism which is complex conjugated to it. �

Summing up, Propositions 5.2 and 5.3 imply the following:

Corollary 5.4. With the same assumption as in Proposition 5.3, there exists a holomor-

phic (respectively, anti-holomorphic) diffeomorphism σ̃ : X1 −→ X2 if and only if there

exists a holomorphic (respectively, anti-holomorphic) element σ ∈ Kl(A, D) such that

σ ∗L2 � L1.

5.2 The uniqueness of the abelian surface A

We follow the notation of Section 4.3. If χi is any nontrivial element of the group Σ =
{χ0, χ1, χ2, χ3} for the sake of brevity we will write Ai, DAi

and fi : Ai −→ A′ instead

of Aχi
, DAχi

and fχi
: Aχi

−→ A′, respectively. We will also denote by Li ∈ Pic0(A′) the

2-torsion line bundle corresponding to χi, so that fi∗OAi
= OA′ ⊕ L−1

i .

Proposition 5.5. The abelian surfaces A1, A2, A3 are pairwise isomorphic. More

precisely, for all i, j ∈ {1, 2, 3} there exists an isomorphism γ̃ij : Aj −→ Ai such that

γ̃ ∗
ijDAi

= DAj
.
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Proof. By Proposition 5.2 it suffices to prove that there exists an automorphism γij ∈
Aut(A′, DA′) such that γ ∗

ij Li = Lj. Consider the linear automorphism γ : V −→ V whose

action on the standard basis is γ (e1) = −ζe1, γ (e2) = e1 + e2. It preserves the lattice

�A′ , in fact we have

γ (λ1) = e1 − λ1, γ (λ2) = λ1 + λ2, γ (e1) = −λ1, γ (e2) = e1 + e2, (26)

so it descends to an automorphism of A′ that we still denote by γ : A′ −→ A′. An

easy calculation shows that γ is an element of order 3 in Aut(A′, DA′), so it induces

by pullback an action of 〈γ 〉 � Z/3Z on NS(A′). Such an action is obtained by composing

a character χ : �A′ −→ {±1} with (26), and it is straightforward to check that it restricts

to an action on the subgroup Σ (defined in (22)), namely the one generated by the

cyclic permutation (χ1 χ3 χ2). This shows that 〈γ 〉 acts transitively on the nontrivial

characters of Σ . Since the action of γ on the characters χi corresponds to the pullback

action on the corresponding 2-torsion divisors Li, by setting γ13 = γ21 = γ32 = γ and

γ31 = γ12 = γ23 = γ 2 we obtain γ ∗
ij Li = Lj, as desired. �

5.3 A rigidity result for surfaces of type II

Let us first recall the notions of deformation equivalence and global rigidity, see [13,

Section 1].

Definition 5.6.

• Two complex surfaces S1, S2 are said to be direct deformation equivalent if

there is a proper holomorphic submersion with connected fibers f : Y −→ D,

where Y is a complex manifold and D ⊂ C is the unit disk, and moreover

there are two fibers of f biholomorphic to S1 and S2, respectively;

• two complex surfaces S1, S2 are said to be deformation equivalent if they

belong to the same deformation equivalence class, where by deformation

equivalence we mean the equivalence relation generated by direct deforma-

tion equivalence;

• a complex surface S is called globally rigid if its deformation equivalence

class consists of S only, that is, if every surface which is deformation

equivalent to S is actually isomorphic to S.

The following result is a characterization of the equianharmonic product, which

can be found in [24, Proposition 5].
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Proposition 5.7. Let A′ be an abelian surface containing four elliptic curves that

intersect pairwise at the origin o′ and not elsewhere. Then A′ is isomorphic to the

equianharmonic product E′× E′ and, up to the action of Aut(A′), the four curves are

E′
1, E′

2, E′
3, E′

4.

A more conceptual proof of Proposition 5.7, exploiting some results of Shioda

and Mitani on abelian surfaces with maximal Picard number, can be found in [1]. Using

Proposition 5.7 we obtain the following:

Theorem 5.8. Let S be a surface with pg(S) = q(S) = 2, K2
S = 8, and Albanese map

α : S −→ A of degree 2. If S belongs to type II, then the pair (A, DA) is isomorphic to

an étale double cover of the pair (A′, DA′), where A′ is the equianharmonic product and

DA′ = E′
1 + E′

2 + E′
3 + E′

4. In particular, all surfaces of type II arise as in Proposition 4.10.

Finally, all surfaces of type II are globally rigid.

Proof. Let us consider the Stein factorization αX : X −→ A of the Albanese map

α : S −→ A; then αX is a finite double cover branched over DA.

By Proposition 2.6 we have DA = E1 + E2 + E3 + E4, where Ei are four elliptic

curves intersecting pairwise transversally at two points p1, p2 and not elsewhere. Up to

a translation, we may assume that p1 coincides with the origin of o ∈ A. Then p2 = a,

where a is a nonzero, 2-torsion point of A (in fact the Ei are subgroups of A, so the same

is true for their intersection {o, a}).
If we consider the abelian surface A′ := A/〈a〉, then the projection f : A −→ A′

is an isogeny of degree 2. Moreover, setting E′
i := f (Ei), we see that E′

i, . . . , E′
4 are

four elliptic curves intersecting pairwise transversally at the origin o′ ∈ A′ and not

elsewhere. Then the claim about A′ and DA′ follows from Proposition 5.7.

Let us finally provide our rigidity argument. First of all, we observe that surfaces

of type II cannot be specialization of surfaces of type I, for instance because every flat

deformation of the Albanese map must preserve the arithmetic genus of the branch

divisor, and so must preserve D2
A (in fact, we can state the stronger result that every

flat limit of surfaces of type I is still a surface of type I, because being isogenous to a

higher product is a topological condition by [11, Theorem 3.4]). From this, since there

are finitely many possibilities for both double covers f : A −→ A′ and aX : X −→ A, it

follows that S, being the minimal desingularization of X, belongs to only finitely many

isomorphism classes. Therefore, S is globally rigid, because by [20] the moduli space of

surfaces of general type is separated. �
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5.4 The groups Aut(A, DA) and Kl(A, DA)

In the sequel we will write A := V/�A in order to denote any of the pairwise isomorphic

abelian surfaces A1, A2, A3, see Proposition 5.5. We choose for instance �A = ker χ1. By

(24) we have

�A = Ze1 ⊕ Ze2 ⊕ Ze3 ⊕ Ze4, (27)

where

e1 := e1, e2 := λ1 + e2, e3 := λ2 + e2, e4 := 2e2. (28)

Note that e1 = (1, 0) and e2 = (ζ , 1) form a basis for V.

Remark 5.9. It is straightforward to check that the class of the point ζe1 = (ζ , 0) in A1

is contained in all curves E1, . . . , E4, so we obtain a = ζe1 + �A, where a is the 2-torsion

point defined in the proof of Theorem 5.8.

Let 	ζ and E′ be as in (12) and set

E′′ := C/	2ζ , 	2ζ := Z[2ζ ].

The next result implies that A is actually isomorphic to the product E′′ × E′.

Lemma 5.10. We have �A = 	2ζ e1 ⊕ 	ζ e2.

Proof. We check that the base-change matrix between the Q-bases e1, e2, e3, e4 and

e1, e2, 2ζe1, ζe2 of H1(A,Q) is in GL(4,Z). �

We will use Lemma 5.10 in order to describe the groups Aut(A, DA) and

Kl(A, DA). In what follows, we will identify an automorphism A → A with the matrix of

its analytic representation V → V with respect to the standard basis {e1, e2}. Moreover,

we will write τ = τa : A −→ A for the translation by the 2-torsion point a = ζe1 + �A.

Proposition 5.11. The following hold.

(a) We have

Aut(A, DA) = Aut0(A, DA) × Z/2Z, (29)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/11/3453/5033431 by U
niversita' degli Studi Salerno user on 03 N

ovem
ber 2022



3482 F. Polizzi et al.

where Z/2Z is generated by the translation τ , whereas Aut0(A, DA) is the

subgroup of group automorphisms of A generated by the elements

g2 =
(

ζ −1

ζ −ζ

)
, g3 =

(
0 ζ − 1

1 − ζ ζ − 1

)
. (30)

As an abstract group, Aut0(A, DA) is isomorphic to SL(2, F3); in particular,

its order is 24.

(b ) The group Kl(A, DA) is generated by Aut(A, DA) together with the anti-

holomorphic involution σ : A −→ A induced by the C-antilinear involution

of V given by

(z1, z2) �→ ((ζ − 1)z̄2, (ζ − 1)z̄1). (31)

Furthermore, the two involutions τ and σ commute, so that we can write

Kl(A, DA) = Kl0(A, DA) × Z/2Z, (32)

where Kl0(A, DA) contains Aut0(A, DA) as a subgroup of index 2.

Proof.

(a) Let us work using the basis {e1, e2} of V defined in (28). With respect to this

basis, using (14) we see that the four elliptic curves E1, . . . , E4 have tangent

spaces

V1 = span(e1), V2 = span(−ζe1 + e2),

V3 = span((1 − ζ )e1 + e2), V4 = span((1 − 2ζ )e1 + e2).

Then, up to the translation τ , we are looking at the subgroup Aut0(A, DA) of

the group automorphisms of A whose elements have matrix representation

preserving the set of four points P = {P1, P2, P3, P4} ⊂ P1, where

P1 = [1 : 0], P2 = [−ζ : 1], P3 = [1 − ζ : 1], P4 = [1 − 2ζ : 1].

The cross ratio (P1, P2, P3, P4) equals ζ−1, hence P is an equianharmonic

quadruple and so the group PGL(2, C) acts on it as the alternating group A4,

see [26, p. 817]. Such a group can be presented as

A4 = 〈
α, β | α2 = β3 = (αβ)3 = 1

〉
, (33)
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where α = (13)(24) and β = (123), so we need to find matrices g̃2, g̃3 ∈
GL(2, C), acting as an isomorphism on the lattice �A and inducing the per-

mutations (P1 P3)(P2 P4) and (P1 P2 P3) on P, respectively. Using Lemma 5.10,

we see that g̃ ∈ GL(2, C) preserves �A if and only if it has the form

g̃ =
(

a11 a12

a21 a22

)
, with a11 ∈ 	2ζ , a12 ∈ 2	ζ , a21, a22 ∈ 	ζ ,

and its determinant belongs to the group of units of 	ζ , namely

{±1, ±ζ , ±ζ 2}.
Now an elementary computation yields the matrices ±g̃2, ±g̃3, where

g̃2 =
(

1 2ζ − 2

ζ −1

)
, g̃3 =

(
−1 0

1 − ζ ζ

)
,

and from this we can obtain the matrix representations g2, g3 of our

automorphisms in the basis {e1, e2} of V by taking

gi = Ng̃iN
−1, with N =

(
1 ζ

0 1

)
.

This gives (30). Setting h = −I2 and lifting the presentation (33) we get the

presentation

Aut0(A, DA) = 〈
g2, g3, h | h2 = 1, g2

2 = g3
3 = (g2g3)3 = h

〉
, (34)

showing the isomorphism Aut0(A, DA) � SL(2, F3).

Finally, a standard computation shows that τ commutes with both g2

and g3. Since Aut(A) is the semidirect product of the translation group of A

by the group automorphisms, it follows that Aut(A, DA) is the direct product

of 〈τ 〉 � Z/2Z by Aut0(A, DA), hence we obtain (29).

(b ) Let us consider the C-antilinear map V → V

(z1, z2) �→ (z̄1, (ζ − 1)z̄1 + ζ z̄2),

expressed with respect to the basis {e1, e2}. It preserves the lattice �A

and so it defines an anti-holomorphic involution σ : A −→ A, inducing the

transposition (P1 P2) on the set P = {P1, P2, P3, P4}. Since Aut(A, D) has index

at most 2 in Kl(A, DA), it follows that Aut(A, DA) and σ generate Kl(A, DA).

Moreover, a change of coordinates allows us to come back to the basis {e1, e2}
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and to obtain the expression of σ given in (31). The subgroup Kl0(A, DA),

generated by g2, g3 and the involution σ , contains Aut0(A, DA) as a subgroup

of index 2; a straightforward computation now shows that [τ , σ ] = 0, so (32)

follows from (29) and the proof is complete. �

Remark 5.12. The proof of Proposition 5.11 also shows that there are central

extensions

1 −→ 〈−I2〉 −→ Aut0(A, DA) −→ A4 −→ 0,

1 −→ 〈−I2〉 −→ Kl0(A, DA) −→ S4 −→ 0

such that −I2 = [g2, g3]2, where the commutator is defined as [x, y] := xyx−1y−1.

In fact, KL0(A, DA) is isomorphic as an abstract group to GL(2, F3), see the proof of

Theorem 5.13.

5.5 The action of Kl(A, DA) on the square roots of OA(DA)

The main result of this subsection is the following:

Theorem 5.13. Up to isomorphism, there exist exactly two surfaces of type II. These

surfaces S1, S2 have conjugated complex structures, in other words there exists an anti-

holomorphic diffeomorphism S1 −→ S2.

In order to prove this result, we must study the action of the groups Aut(A, DA)

and Kl(A, DA) on the sixteen square roots L1, . . . ,L16 of the line bundle OA(DA) ∈ Pic(A).

The Appell–Humbert data of such square roots are described in the following:

Proposition 5.14. For k ∈ {1, . . . , 16}, we have Lk = L
(1

2 hA, ψk

)
where

• hA : V × V −→ C is the Hermitian form on V whose associated alternating

form Im hA assumes the following values at the generators e1, . . . , e4 of �A:

Table 2 The values of Im hA at the generators of �A

(·, ·) (e1, e2) (e1, e3) (e1, e4) (e2, e3) (e2, e4) (e3, e4)

Im hA(·, ·) − 4 0 − 2 − 6 − 4 6
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• Using the notation ψk := (ψk(e1), ψk(e2), ψk(e3), ψk(e4)), the semicharacters

ψk : �A −→ C∗ are as follows:

ψ1 := (i, 1, i, 1),

ψ2 := (−i, −1, i, −1), ψ3 := (i, −1, −i, 1), ψ4 := (−i, 1, −i, −1),

ψ5 := (i, 1, −i, 1), ψ6 := (−i, 1, i, 1), ψ7 := (−i, 1, −i, 1),

ψ8 := (i, 1, i, −1), ψ9 := (i, −1, i, −1), ψ10 := (−i, 1, i, −1),

ψ11 := (i, 1, −i, −1), ψ12 := (−i, −1, −i, 1), ψ13 := (i, −1, i, 1),

ψ14 := (i, −1, −i, −1), ψ15 := (−i, −1, i, 1), ψ16 := (−i, −1, −i, −1).
(35)

Proof. Let us consider the double cover f : A → A′. If the Hermitian form h : V×V −→ C

and the semicharacter χDA′ : �A′ −→ {±1} are as in Proposition 4.5 and Table 1, then we

have OA(DA) = L(hA, χDA
), where hA = f ∗h, χDA

= f ∗χDA′ . From this, using (28) we

can compute the values of the alternating form Im hA and of the semicharacter χDA
at

e1, . . . , e4, obtaining Table 2 and

χDA
= (

χDA
(e1), χDA

(e2), χDA
(e3), χDA

(e4)
) = (−1, 1, −1, 1).

Then, setting Lk = L(hk, ψk), the equality L⊗2
k = OA(DA) implies

2hk = hA, ψ2
k = χDA

,

hence hk = 1
2hA for all k. Moreover, we can set ψ1 = (i, 1, i, 1), whereas the remaining

fifteen semicharacters ψk are obtained by multiplying ψ1 by the fifteen nontrivial

characters �A −→ {±1}. �

The Hermitian form hA is Kl(A, DA)-invariant (accordingly with the fact that the

divisor DA is so), hence the action of Kl(A, DA) on the set {L1, . . . ,L16} is completely

determined by its permutation action on the set {ψ1, . . . , ψ16}, namely by

� : Kl(A, DA) −→ Perm(ψ1, . . . , ψ16), �(g)(ψk) := g∗ψk.

Let us now identify the group Perm(ψ1, . . . , ψ16) with the symmetric group S16 on the

symbols {1, . . . , 16}, where we multiply permutations from left to right, for instance

(1 2)(1 3) = (1 2 3). Then we get the following:
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Proposition 5.15. With the notation of Proposition 5.11, we have

�(g2) = (1 13 7 12)(2 9 14 16)(3 5 15 6)(4 11 8 10),

�(g3) = (1 13 5 7 12 6)(2 4 11 14 8 10)(3 15)(9 16),

�(−I2) = �
(
g2

2

) = �
(
g3

3

) = �(τ) = (1 7)(2 14)(3 15)(4 8)(5 6)(9 16)(10 11)(12 13),

�(σ) = (1 14)(2 7)(3 16)(4 5)(6 8)(9 15)(10 12)(11 13).

Proof. Using the explicit expressions given in Proposition 5.11, by a standard

computation we can check that g2, g3, τ , and σ send the ordered basis {e1, e2, e3, e4}
of �A to the bases

{e2 + e3 − e4, −2e1 + e2 − e4, −e1 − e2 − 2e3 + 2e4, −2e1 − 2e3 + e4},
{−e3 + e4, −e1 + e2 + e3 − e4, −2e1 + e2 + e3 − 2e4, −2e1 + 2e2 + 2e3 − 3e4},
{−e3 − e2, −e3, −e4}, (36)

{e3 − e4, −e1 + e2 + e3 − e4, −e1 + 2e2 − e4, −2e1 + 2e2 − e4},

respectively. For any g ∈ Aut(A, DA), calling G� : �A −→ �A the corresponding rational

representation we have �(g)(ψk) = ψk ◦ G�, whereas �(σ)(ψk) = ψk ◦ S� (see (25)). Then

another long but straightforward calculation using (35) and (36) concludes the proof. �

We are now ready to give the following:

Proof of Theorem 5.13. Since any surface S of type II is the minimal desingularization

of a double cover f : S → A, branched over DA, by Proposition 5.3 it follows that the

number of surfaces of type II up to isomorphisms (respectively, up to holomorphic and

anti-holomorphic diffeomorphisms) equals the number of orbits for the permutation

action of Aut(A, DA) (respectively, of Kl(A, DA)) on the set {L1, . . . ,L16} of the sixteen

square roots of OA(DA). We have seen that such an action is determined by the

permutation action on the set of sixteen semicharacters {ψ1, . . . , ψ16}, so we only have to

compute the number of orbits for the subgroup of S16 whose generators are described

in Proposition 5.15. This can be done by hand, but it is easier to write a short script
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using the Computer Algebra System GAP4 ([19]):

g2:=(1, 13, 7, 12)(2, 9, 14, 16)(3, 5, 15, 6)(4, 11, 8, 10); ;

g3:=(1, 13, 5, 7, 12, 6)(2, 4, 11, 14, 8, 10)(3, 15)(9, 16); ;

sigma:=(1, 14)(2, 7)(3, 16)(4, 5)(6, 8)(9, 15)(10, 12)(11, 13); ;

Aut:=Group(g2, g3); ;

Kl:=Group(g2, g3, sigma); ;

StructureDescription(Aut);

"SL(2,3)"

OrbitsPerms(Aut, [ 1 .. 16 ]);

[ [ 1, 7, 12, 13, 3, 15, 5, 6 ], [ 2, 14, 16, 9, 10, 11, 4, 8 ] ]

StructureDescription(Kl);

"GL(2,3)"

OrbitsPerms(Kl, [1..16]);

[ [ 1, 7, 12, 13, 15, 3, 6, 5, 14, 2, 10, 11, 9, 16, 8, 4 ] ]

The first two output lines (in red) show that � induces an embedding of Aut0(A, DA)

in S16 (note that ρ is a group homomorphism because of our convention on the multi-

plication on S16), and that the corresponding permutation subgroup has precisely two

orbits. Therefore, there are exactly two surfaces S1, S2 of type II, up to isomorphisms.

Analogously, the last two output lines show that � induces an embedding of Kl0(A, DA)

in S16, and the corresponding permutation subgroup has only one orbit. This means

that there exists an anti-holomorphic diffeomorphism S1 −→ S2, hence these surfaces

are not isomorphic, but they have conjugated complex structures. �

Let us finally show that surfaces of type II are not uniformized by the bidisk

(unlike surfaces of type I, see Corollary 3.7).

Proposition 5.16. Let S be a surface of type II and S̃ −→ S its universal cover. Then S̃ is

not biholomorphic to H × H.

Proof. Looking at diagram (2) in Section 2, we see that, in case II, the map ϕ : B −→ A

is the blow-up of A at the two quadruple points p1, p2 of the curve DA and that S̄ = S.
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Moreover, considering β : S −→ B we have

β∗DB = C1 + C2 + C3 + C4,

where the Ci are (pairwise disjoint) elliptic curves with C2
i = −1. The embedding

Ci −→ S, composed with the universal cover C −→ Ci, gives a nonconstant holomorphic

map C −→ S, which in turn lifts to a nonconstant holomorphic map C −→ S̃. If S̃

were isomorphic to H × H, projecting on to one of the two factors we would obtain a

nonconstant holomorphic map C −→ H, whose existence would contradict Liouville’s

theorem because H is biholomorphic to the bounded domain D = {z ∈ C : |z| < 1}. �

5.6 Concluding remarks

Remark 5.17. In the argument in the proof of Proposition 5.16, we could have used one

of the elliptic curves Z1, Z2 instead of the curve Ci (see Remark 2.4).

Remark 5.18. Denoting by χtop the topological Euler number, we have

(
KS +

4∑
i=1

Ci

)2

= 12 = 3 χtop

(
S −

4∑
i=1

Ci

)

and (
KS +

2∑
i=1

Zi

)2

= 12 = 3 χtop

(
S −

2∑
i=1

Zi

)
.

This implies that the open surfaces S − ∑4
i=1 Ci and S − ∑2

i=1 Zi both have the structure

of a complex ball quotient, see [42] for references and further details.

Remark 5.19. The two non-isomorphic surfaces of type II exhibit a new occurrence

of the so-called Diff�Def phenomenon, meaning that their diffeomorphism type

does not determine their deformation class. In fact, they are (anti-holomorphically)

diffeomorphic, but not deformation equivalent since they are rigid. See [27], [25], [12],

and [15] for further examples of this situation.

Remark 5.20. We can also give the following different proof of Proposition 5.16,

based on the same argument used in [41, Proof of Proposition 10]. We are indebted

to F. Catanese for several comments and suggestions on this topic. If a surface S is

uniformized by H × H, then it is the quotient of H × H by a cocompact subgroup 	 of
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Aut(H×H) = Aut(H)� (Z/2Z) acting freely. If 	 is reducible in the sense of [44, Theorem

1] it follows that S is isogenous to a product; in particular, if pg = q = 2, K2
S = 8 then

S is of type I by the classification given in [33]. Thus, if S is of type II then 	 must be

irreducible and so, by using [28, Theorem 7.2], we infer

q(S) = 1

2
b1(S) = 1

2
b1

(
P1 × P1) = 0,

a contradiction.

Remark 5.21. It is possible to give a different geometric construction of the abelian

surfaces A′, A and of the divisor DA as follows. Unfortunately, at present we do not

know how to recover the 2-divisibility of the curve DA in Pic(A) by using this alternative

approach.

Let F1, F2, F3 and G1, G2, G3 be general fibers of the two rulings f , g : P1 ×P1 −→
P1, respectively; then the two reducible divisors F1 + F2 + F3 and G1 + G2 + G3 meet at

nine distinct points. Consider three of these points, say p1, p2, p3, with the property

that each Fi and each Gi contain exactly one of them. Then there exists precisely one

(smooth) curve C1 of bidegree (1, 1) passing through p1, p2, p3. Similarly, if we choose

three other points q1, q2, q3 /∈ {p1, p2, p3} with the same property, there exists a unique

curve C2 of bidegree (1, 1) passing through q1, q2, q3. The curves C1 and C2 meet at two

points, say r1, r2, different from the points pi and qi.

Let us call F4 and G4 the fibers of f and g passing through one of these two

points, say r1. Then the reducible curve B of bidegree (4, 4) defined as

B = F1 + · · · + F4 + G1 + · · · + G4

has sixteen ordinary double points as only singularities, and the double cover φ : Q′ −→
P1 × P1 branched over B gives a singular Kummer surface Q′; let us write A′ for the

associate abelian surface. We can easily show that

φ∗C1 = C11 + C12, φ∗C2 = C21 + C22,

where all Cij are smooth and irreducible. Moreover, we see that C11 and C22 intersect at

exactly one point, which is a node of Q′. Writing

φ∗F4 = 2F̂4, φ∗G4 = 2Ĝ4,
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we see that the rational curves C11, C22, F̂4, Ĝ4 meet at one node of Q′ and that each

of them contains precisely four nodes of Q′. Hence, the pullback of these curves via

the double cover A′ −→ Q′ yields four elliptic curves in A′ intersecting pairwise and

transversally at a single point.

Let us choose now i, j, h, k ∈ {1, 2, 3, 4}, with i �= j and h �= k, and consider the

eight nodes of B lying in the smooth locus of the curve H = Fi + Fj + Gh + Gk. The 2-

divisibility of H in Pic(P1 ×P1) implies that the corresponding set � of eight nodes in the

Kummer surface Q′ is 2-divisible, so we can consider the double cover Q −→ Q′ branched

over �. The surface Q is again a singular Kummer surface and, calling A the abelian

surface associate with Q, we obtain a degree 2 isogeny A −→ A′. We can choose (in

three different ways) i, j, h, k so that each of the four curves C11, C22, F̂4, and Ĝ4 contains

exactly two points of �. Therefore, the pullbacks of these curves to Q are rational curves,

all passing through two of the nodes of Q and containing four nodes each. This in turn

gives four elliptic curves in A meeting at two common points and not elsewhere, and the

union of these curves is the desired divisor DA.
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