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Abstract—A structure enjoys the Herbrand property if, when-
ever it satisfies an equality between some terms, these terms are
unifiable. On such structures the expressive power of equalities
becomes trivial, as their semantic satisfiability is reduced to a
purely syntactic check.

In this work, we introduce the notion of Herbrand property
and develop it in a finite model-theoretic perspective. We provide,
indeed, a canonical realization of the new concept by what we call
quasi-Herbrand models and observe that, in stark contrast with
the naive implementation of the property via standard Herbrand
models, their universe can be finite even in presence of functions
in the vocabulary. We exploit this feature to decide and collapse
the general and finite version of the satisfiability and entailment
problems for previously unsettled fragments of first-order logic.

We take advantage of the Herbrand property also to establish
novel and tight complexity results for the aforementioned decision
questions. In particular, we show that the finite containment
problem for quantified conjunctive queries is NPTIME-complete,
tightening along two dimensions the known 3EXPTIME upper
bound for the general version of the problem (Chen, Madelaine,
and Martin, LICS’08). We finally present an alternative view
on this result by generalizing to such queries the classic charac-
terization of conjunctive query containment via polynomial-time
verifiable homomorphisms (Chandra and Merlin, STOC’77).

I. INTRODUCTION

A fundamental theorem by Skolem [31] establishes that
every first-order sentence without equality is satisfiable if and
only if its functional (Skolem) normal form has a canonical
(Herbrand) model. In this context, the universe of discourse is
the set of ground terms over the vocabulary of the sentence and
the interpretation of the functions is defined in an algebraically
transparent way: each term denotes precisely itself.

A breakthrough technique by Büchi [10], further refined by
Aanderaa [1] and Börger [6], exploits the structure of Herbrand
models of relational first-order ∃∀∃∀-sentences to prove the
undecidability of the corresponding prefix class. Here, the
Herbrand universe encodes the set of natural numbers with
zero and successor. In that way, the data structure operated
by a two-register machine are implemented transparently. This
allows, therefore, an elementary reduction from the associated
halting problem, which bypasses entirely the cumbersome
axiomatization of the underlying register operations [7].

The transparency of classic Herbrand interpretations, which
underlies their success as a tool for undecidability proofs,
as well as numerous other applications in mathematical
logic and theoretical computer science (e.g., in completeness
theorems [16], semantic tableaux [21], alternative first-order
semantics [17], automated reasoning [11], logic program-
ming [23], and database theory [2]), comes at a price: their lack
of succinctness. Indeed, as soon as the vocabulary contains a
function symbol, the corresponding Herbrand universe becomes
infinite. This phenomenon severely limits the effectiveness of

Herbrand models in establishing the decidability of fragments of
first-order logic with functions, not to mention in obtaining tight
computational-complexity bounds or model-theoretic results
like the finite-model property.

Aiming at decidability, however, more useful appears a
property of Herbrand models implied by their transparency,
rather than the transparency itself: an equality between terms
is satisfiable on a Herbrand model if and only if its terms
are unifiable. Intuitively, the particular interpretation of terms
neutralizes the expressive power of equalities, by reducing their
satisfiability, at first glance a hard, even infinitary, question,
to a polynomial-time unifiability test. This observation has
been exploited by Kozen to show that the validity problem of
positive first-order logic is in NPTIME [22].

The present article is devoted to the study and application
of the Herbrand property, a novel model-theoretic notion
expressing the fact that the satisfiability of an equation boils
down to the unifiability of its terms. In this terminology, the
aforementioned observation by Kozen can be rephrased as
follows: every Herbrand model enjoys the Herbrand property.
Our work, though, tackles the concept per se, abstracting it
from the specific implementation via Herbrand models, and
investigates its consequences from both a finite model-theoretic
and a structural-complexity perspective. We obtain non-trivial
results on both levels.

A first part of the work (Section III and part of Section IV)
is devoted to the finite model-theoretic development of the
Herbrand property. The main result (Theorem 1) is a universal
and finitary version of this concept, summarized as follows.

A set of terms is equalizable over all finite structures if
and only if it is unifiable.

Here, a set of terms is said to be equalizable over a structure
if such a structure satisfies all pairwise equalities between
terms of the set. The universal and finitary aspect of our
characterization contrasts with the reduction observed by Kozen
from equalizability over Herbrand models to unifiability, as
we reduce equalizability on all finite structures to unifiability.

An easy corollary of the above result is the existence of
finite models enjoying the Herbrand property, which we call
finite quasi-Herbrand models (Definition 4 and Theorem 2).
This can be seen as an evidence of the fact that the intrinsic
infinitary nature of Herbrand models over vocabularies with
functions is inessential. In other words, the latter can be seen as
a naively verbose implementation of this fundamental concept.

The main consequence of our finitary version of the Herbrand
property is that satisfiable universal single-binding sentences
have finite quasi-Herbrand models (Theorem 5), i.e., more



abstractly, the fragment of universal single-binding logic enjoys
the finite (technically, small [32]) model property.

Universal single-binding logic is the language of positive
Boolean combinations of universally quantified binding forms,
where a binding form is, in turn, a Boolean combination of
relational atoms over the same tuple of terms. This logic is
syntactically contained in conjunctive-binding logic introduced
in [27], a fragment of first-order logic that allows positive
Boolean combinations of quantified conjunctions of binding
forms. Since the satisfiability problems for the two logics are
succinctly interreducible via skolemization, the following result
holds (Corollary 2).

Conjunctive-binding logic enjoys the finite model property.

In particular, its (finite) satisfiability problem is decidable,
answering an open question in the literature and completing
the decidability classification of binding fragments of first-
order logic [27]. The result can also be read as a non-trivial
generalization of the decidability proof for Herbrand logic [15],
the language of quantified conjunctions of literals, as it is
syntactically contained in the logic under analysis. On the
other hand, conjunctive-binding logic is orthogonal to all known
decidable fragments (prefix classes [7], two variable [19], [28],
guarded fragments [3], [18], guarded negation [5], et cetera,
see [27] for details) and its solution requires different ideas
and techniques.

The rest of the work (part of Section IV and Section V)
focuses on the consequences of the Herbrand property from
the structural complexity viewpoint with respect to various
satisfiability and entailment problems in conjunctive-binding
logic and fragments thereof (Theorem 9 and Theorem 10).

Our first result (Theorem 5) is a characterization of the
(finite) satisfiability problem for universal single-binding logic
in terms of (finite) quasi-Herbrand models, placing this problem
at the third level of the polynomial hierarchy (Corollary 3).
The aforementioned interreducibility allows then to prove the
following statement (Corollary 4).

The (finite) satisfiability problem for conjunctive-binding
logic is ΣP

3 -complete.

As opposed to satisfiability, the entailment problem for
conjunctive-binding logic is, unfortunately, undecidable (Theo-
rem 6). Interestingly enough, the prominent syntactic fragment
of quantified conjunctive queries (QCQ) has been shown
to have a decidable (general) entailment problem by Chen,
Madelaine, and Martin [13]. This problem is closely related to
QCQ containment in database theory. In this context, however,
the notion of interest is finite entailment, i.e., entailment on all
finite structures, as in most applications the database is finite.
The question whether entailment and finite entailment in QCQ
coincide, though, was left open in [13].

Our second result (Theorem 9) is a tight structural complexity
classification of general and finite entailment in positive
Herbrand logic (PH), the logic of quantified conjunctions
of atoms, which syntactically contains QCQ1.

1Due to a terminological clash with [7, Definition 2.1.14], we avoid calling
the fragment positive Horn first-order logic as in [13].

The (finite) entailment problem in positive Herbrand logic
is NPTIME-complete.

Our result has both a complexity-theoretic and a logical
value: on the one hand it closes the previously standing gap
between NPTIME-hardness and 3EXPTIME-membership for
QCQ containment [13]; on the other hand, by exploiting our
finitary Herbrand property, it actually pushes the finite version
of the problem in NPTIME, even for PH. In retrospect, and
not coincidentally, Chen, Madelaine, and Martin obtain their
3EXPTIME upper bound by reasoning on a finite substructure
of an infinite Herbrand model associated with the Skolem
normal form of the implicant sentence in the instance.

Our proof of Theorem 9, placing the problem in NPTIME,
relies on the observation that positive instances of PH entail-
ment have short resolution refutations. A careful inspection
reveals that such small witnesses encode certain mappings
from the consequent to the antecedent in the instance. In
particular, in the special case of conjunctive queries (CQ), it is
readily seen that these mappings are precisely homomorphisms.
We have thus recovered the classic theorem by Chandra and
Merlin [12], which places the (finite) containment question for
CQ in NPTIME.

Our third and final result (Theorem 10), stemmed from this
insight, consists in abstracting a lifted notion of homomorphism
from short refutations of positive QCQ entailment instances.
This notion characterizes the QCQ containment problem.

Given two QCQs φ and ψ, it holds that φ |= ψ if and
only if ψ admits a Skolem homomorphism to φ.

A Skolem homomorphism (Definition 8) is a substitution of the
variables in ψ by terms of the skolemization of φ, which is both
sensitive to the dependencies induced by the quantifier prefix
of ψ and faithful to the relational structure associated with φ.
Besides, such an alleged Skolem homomorphism is efficiently
checkable relative to φ and ψ, thus yielding an alternative
view on the NPTIME-membership of the QCQ containment
problem. Our result can be read, therefore, as an accurate
lifting of Chandra-Merlin theorem to the QCQ realm.

The hard direction of Theorem 10 consists in proving that
φ |= ψ implies the existence of a Skolem homomorphism
from ψ to φ (Lemma 9). A first step (Lemma 7) reduces an
instance of the QCQ containment problem to a satisfiability
check of a universal single-binding sentence. Next, this check
is converted into a unification problem between certain terms
s and t derived from the original instance (Claim 4), appealing
to the characterization of satisfiability in universal single-
binding logic. Here, the application of the Herbrand property
is reminiscent of analogous reductions in Kozen [22] and
Denenberg and Lewis [15]. A last step (Lemma 10) extracts the
desired Skolem homomorphism from the unifier of s and t.

The article is organized as follows. In Section III, we prove
the equivalence of finite equalizability and unifiability and
introduce the notion of quasi-Herbrand models. In Section IV,
we characterize satisfiability in universal single-binding logic,
obtaining the finite-model property and the complexity bounds
for conjunctive-binding logic. Finally, in Section V, we first
show that the (finite) entailment problem for PH is NPTIME-
complete and then lift the Chandra-Merlin theorem to QCQ.



II. PRELIMINARIES

Let N and N+ = N \ {0} be the sets of natural and positive
natural numbers and [0, n] = {0, . . . , n} and [n] = {1, . . . , n}
with [0] = ∅ their initial segments, where n ∈ N.

Given a set A, we let a = (a1, . . . , an) ∈ An denote a tuple
of dimension n ∈ N, where a is the empty tuple in case n = 0.
Moreover, ai = ai indicates its i-th projection with i ∈ [n].
We also view a 1-dimensional tuple a = (a) over A as a. The
length of an n-dimensional tuple a is denoted by |a| = n.
Finally, we freely identify a tuple a = (a1, . . . , an) with the
word a1 · · · an over the alphabet A, so that the empty word ε
is identified with the empty tuple.

In the sequel, X is a countable set of variables and Σ is
a first-order vocabulary split into its functional and relational
components Σf and Σr, respectively. A Σ-structure A is
defined by a universe A together with an interpretation of
Σ over A, i.e., every function symbol f ∈ Σf is interpreted by
a function fA : Aar(f) → A and every relation symbol r ∈ Σr

is interpreted by a relation rA ⊆ Aar(r), where ar : Σ → N
associates each symbol in the vocabulary with its arity. The
order of A is the cardinality |A| of its universe.

III. QUASI-HERBRAND STRUCTURES

A Herbrand structure H over a vocabulary Σ is a first-order
structure whose universe H is the set of all ground terms built
over the functional component Σf of Σ and where each function
symbol f ∈ Σf is interpreted as the function fH : Har(f)→
H applying that symbol to its argument, i.e., fH(h) = fh,
with h ∈ Har(f). Because of the algebraic transparency of its
interpretation, it is readily verified that all equalities trivialize
over H, in the sense that two terms t1 and t2 equalize over
H, i.e., H satisfies the equation t1 = t2, iff these terms are
unifiable. When the semantic notion of equalizability and the
syntactic notion of unifiability coincide on a structure, we say
that such a structure enjoys the Herbrand property. This novel
model-theoretic property is the focus of the current section. We
prove that, beside Herbrand structures, which are infinite over
vocabularies with functions, there are finite structures, which we
call quasi-Herbrand structures, enjoying the Herbrand property
(Theorem 2). The existence of this type of structures follows
from the main result of the section, a characterization of finite
equalizability via unifiability (Theorem 1).

A. Terms and Unification

Before proceeding in our study of the Herbrand property, we
introduce a generalization of the standard concept of term and,
accordingly, revise the notions of replacement, substitution, and
unification [4]. This generalization is based on a concatenations
of terms as a technical expedient yielding a substantial
simplification of the notation. Intuitively, a generalized term
is interpreted on a tuple of elements in a structure, with the
dimension of the tuple equal to the dimension of the term,
so that terms in the standard sense coincide with generalized
terms of dimension one. The formal definition follows.

Definition 1 (Term). The set of (generalized) terms TrΣX over
vocabulary Σ and variable set X is the smallest set of finite
words on X ∪Σf for which the following conditions hold.

• The empty word ε is a term ε ∈ TrΣX of dimension 0,
i.e., dim(ε) = 0, having neither occurring variables nor
occurring functions, i.e., var(ε) = fun(ε) = ∅.

• Every variable x ∈ X is a term x ∈ TrΣX of dimension
1, i.e., dim(x) = 1, having x as occurring variable, i.e.,
var(x)={x}, but no occurring functions, i.e., fun(x)=∅.

• For all functions f ∈ Σf and terms t ∈ TrΣX with ar(f) =
dim(t), the juxtaposition ft ∈ TrΣX is a term of dimension
dim(ft) = 1, having occurring variables var(ft) = var(t)
and occurring functions fun(ft) = {f} ∪ fun(t).

• For all terms t1, t2 ∈ TrΣX , the concatenation t1t2 ∈ TrΣX
is a term of dimension dim(t1t2) = dim(t1) + dim(t2),
having occurring variables var(t1t2) = var(t1) ∪ var(t2)
and occurring functions fun(t1t2) = fun(t1) ∪ fun(t2).

For a term t ∈ TrΣX , its length |t| and arity ar(t) are defined,
respectively, as the number of symbols and different variables
|var(t)| occurring in it. A set of terms T ⊆ TrΣX is rectangular
if var(t1) ∩ var(t2) = ∅, for all t1, t2 ∈ T with t1 6= t2.

All terms in this article are generalized terms so that we
freely avoid to qualify them as such. For instance, the word
xfxgyhxyzz, where x, y, and z are variables and f , g, and
h are unary, binary, and ternary functions, respectively, is a
term of length 10, dimension 4, and arity 3; we also write
x, f(x), g(y, h(x, y, z)), z for the sake of readability.

Let PsΣ = ({ε} ∪ N) · ({(f, i)∈Σf×N : i ∈ [ar(f)]}∗).
The set of positions pos(t) ⊆ PsΣ for a term t is
the set of finite words defined as follows: (i) pos(ε) =
pos(x) = {ε}; (ii) pos(ft) = {f} × [ar(f)] ∪ {(f, i) · (p)i
: i∈ [ar(f)], p∈pos(t)}; (iii) pos(t) = [dim(t)] ∪ {i · p :
i ∈ [dim(t)], p ∈ pos((t)i)} if t has dimension greater than
1. By t�p, with p ∈ pos(t), we denote the subterm of t in
position p. Notice that t�ε = t. For instance, t�2 = f(x) and
t�3(g,2)(h,1) =x, if t=x, f(x), g(y, h(x, y, z)), z.

A replacement of variables x1, . . . , xn ∈ X with 1-dimen-
sional terms t1, . . . , tn ∈ TrΣX in a term t ∈ TrΣX is the term
t[x1/t1, . . . , xn/tn] obtained by uniformly replacing every
occurrence of xi in t with ti. A substitution is a function
σ : X → TrΣX such that (i) it has a support sup(σ) = {x ∈ X
: σ(x) 6= x} of finite cardinality |sup(σ)| < ω, i.e., it is the
identity almost everywhere, and (ii) dim(σ(x)) = 1, for all
variables x ∈ X . By tσ = t[x/σ(x) : x ∈ sup(σ)], we denote
the application of the substitution σ to the term t, i.e., the
replacement of all variables x in the support of σ with the
corresponding terms σ(x). We also set Tσ = {tσ : t ∈ T},
for any set of terms T ⊆ TrΣX . In the following, we only
consider substitutions that are idempotent, i.e., (tσ)σ = tσ,
for every term t ∈ TrΣX . This means that σ(y) = y, for all
variables y ∈ var(σ(x)) occurring in a term σ(x) associated
via σ with an arbitrary variable x ∈ X . Under the above
condition, it holds that tσ = t[x1/σ(x1)] · · · [xn/σ(xn)], where
sup(σ) = {x1, . . . , xn}.

We now introduce the notion of unification for sets of terms,
naturally lifting the unification of two terms, which represents
the syntactic side of the Herbrand property.

Definition 2 (Unification). A set of terms T ⊆ TrΣX is unifiable
if it admits a unifier, i.e., a substitution µ : X → TrΣX such
that t1µ = t2

µ, for all t1, t2 ∈ T , i.e., |Tµ| = 1.



As an example, let T = {t1, t2, t3} be the rectangular set of
4-dimensional terms t1 = x1, y1, a(y1, x1), z1, t2 = x2, s(x2),
y2, a(z2, s(x2)), and t3 = 0, x3, y3, a(y3, z3). By direct inspec-
tion, the following substitution µ unifies T :

µ :

{
x1, x2 7→ 0;

x3, y1, z3 7→ s(0);

{
y2, y3, z2 7→ a(s(0), 0);

z1 7→ a(a(s(0), 0), s(0)).

Indeed, we have Tµ={0, s(0), a(s(0), 0), a(a(s(0), 0), s(0))}.
The notion of substitution induces a canonical preorder on

the set of terms defined as follows: for all t1, t2 ∈ TrΣX , we
say that t1 is at least as specific as t2, in symbols t1 4 t2,
if there is a substitution σ : X → TrΣX such that t1 = t2

σ. A
corresponding preorder can be defined between substitutions:
for all σ1, σ2 : X → TrΣX , we say that σ1 is at least as specific
as σ2, in symbols σ1 4 σ2, if tσ1 4 tσ2 , for all terms t ∈ TrΣX .

The most-general unifier (mgu, for short) for a unifiable set
of terms T ⊆ TrΣX is the substitution µ : X → TrΣX , unique
up to variable renaming, that is maximum w.r.t. 4 among the
unifiers for T . A classic result by Robinson [30] shows that,
if T only contains 1-dimensional terms, T has an mgu. This
fact lifts to the case where T contains arbitrary k-dimensional
terms using Martelli-Montanari rule-based unification algo-
rithm [24] on the set of term equations ET = {t1�i = t2�i :
t1, t2 ∈ T, i ∈ [k]}, for k ∈ N. By convention, a set of terms
of different dimensions is not unifiable. Notice that, due to
the definition, the functions employed in a term µ(x) of the
mgu µ for a set of terms T are only those occurring in T ,
i.e., fun(µ(x)) ⊆ fun(T ) =

⋃
{fun(t) : t ∈ T}, for all x ∈ X .

Moreover, w.l.o.g., we can also ensure that the above property
holds for variables too, i.e., var(µ(x)) ⊆ var(T ) =

⋃
{var(t) :

t ∈ T}, for all x ∈ X .
A partial unification for T is a set of terms Tσ , where σ is the

substitution obtained from the solution of some subset E of all
term equations derived from ET by applying the rewriting rules
prescribed by the Martelli-Montanari algorithm. For instance,
two partial unifications for the set of terms T = {t1, t2, t3} of
the previous example are induced by the substitutions σ1 =
{x2 7→ 0; x3, z3 7→ s(0); y2, y3 7→ z2} and σ2 = {x2 7→
x1; y1, z3 7→ s(x1); y3, z2 7→ y2}:

Tσ1 Tσ2

= ={
x1, y1, a(y1, x1), z1

0, s(0), z2, a(z2, s(0))

} x1, s(x1), a(s(x1), x1), z1

x1, s(x1), y2, a(y2, s(x1))
0, x3, y2, a(y2, s(x1))


Note that non-unifiable sets of terms might have partial
unifications. For instance, consider the set T = {t1, t2}
of 3-dimensional terms t1 = x1, y1, a(s(x1), y1) and t2 =
s(x2), 0, a(x2, s(y2)). A straightforward analysis of the unifi-
cation rules, shows that T does not unify. Indeed, a hypothetical
unifier should be a solution of both the syntactically unsolvable
equations 0 = s(y2) and x = s(s(x)), with either x1 or x2

in place of x, which are known in the literature as symbol
clash and occurs check failure [4], respectively. However, the
substitutions σ1 ={y1 7→ 0} and σ2 ={x2 7→ s(x1)}, solving
{y1 = 0} and {x2 = s(x1)} respectively, induce the partial
unifications Tσ1 = {t1σ1 , t2} and Tσ2 = {t1, t2σ2}, where
t1
σ1 =x1, 0, a(s(x1), 0)and t2σ2 =s(s(x1)), 0, a(s(x1), s(y2)).

The partial unifications Tσ1 and Tσ2 make explicit the
aforementioned reason why T does not unify. Indeed, consider
the subterms of Tσ1 at position p1 = 3(a, 2), i.e., t1σ1�p1 = 0
and t2�p1 = s(y2). A unifier must make them syntactically
identical, which is impossible because of the symbol clash
0 = s(y2). Similarly, a unifier must make syntactically identical
the subterms t1�p2 = x1 and t2

σ2�p2 = s(s(x1)) of Tσ2 at
position p2 = 1, which is impossible because of the occurs
check failure x1 = s(s(x1)). As we now formalize, these two
configurations are obstructions to the attempt of unifying T .

For two 1-dimensional terms f1t1, f2t2 ∈ TrΣX with f1, f2 ∈
Σf , we say that the pair (f1t1, f2t2) is a function obstruction,
if f1 6= f2. Given a variable x ∈ X and a 1-dimensional term
t ∈ TrΣX , we say that the pair (x, t) is a variable obstruction
of depth d ∈ N, if there is a position p ∈ pos(t) with |p| = d
such that t�p = x. A pair of terms (t1, t2) is an obstruction
if it is either a function obstruction or a variable obstruction.
Thus the pair (t1

σ1�p1 , t2�p1) obtained from the terms in the
previous example is a function obstruction, and (t1�p2 , t2

σ2�p2)
is a variable obstruction of depth 2.

The following proposition, summarizing our findings on the
unifiability of a set of terms, is proved by an inductive analysis
of the Martelli-Montanari unification algorithm.

Proposition 1. For any non-unifiable set of terms T ⊆ TrΣX ,
one of the following two conditions hold: (i) dim(t1) 6= dim(t2),
for two terms t1, t2 ∈ T ; (ii) there are a partial unification U
of T , two terms t1, t2 ∈ U , and a position p ∈ pos(t1)∩pos(t2)
for which (t1�p, t2�p) is an obstruction.

B. Equalization via Unification

We introduce the notion of equalization for a set of terms,
i.e., the semantic side of the Herbrand property. In preparation,
let A be a Σ-structure, χ : X → A an assignment, and t ∈ TrΣX
a term. By tA,χ ∈ Aar(t) we denote the interpretation of t in
A under χ defined inductively on the syntactic structure of the
term as follows: (i) εA,χ = ε; (ii) xA,χ = χ(x), where x ∈ X;
(iii) (ft)A,χ = fA(tA,χ), where f ∈ Σf ; (iv) (t1t2)A,χ =
t1
A,χt2

A,χ. We let TA,χ =
{
tA,χ : t ∈ T

}
for any T ⊆ TrΣX .

Definition 3 (Equalization). A set of terms T ⊆ TrΣX is
equalizable over a Σ-structure A if it admits an equalizer over
A, i.e., an assignment ξ : X → A such that t1A,ξ = t2

A,ξ , for
all t1, t2 ∈ T , i.e.,

∣∣TA,ξ∣∣=1. Moreover, T is equalizable (resp.,
finitely equalizable) if it is equalizable over all Σ-structures
(resp., finite Σ-structures).

As an example, consider again the set T = {t1, t2, t3}
of 4-dimensional terms introduced after Definition 2. Let
A be the standard model of Presburger arithmetic, i.e., the
structure over N interpreting 0 as the number zero, s as the
successor operation, and a as the addition operation. A direct
computation reveals that the assignment ξ : X → N sending
z1 to 2, both x1 and x2 to 0, and otherwise identically 1,
is an equalizer for T over A. Indeed, TA,ξ = {(0, 1, 1, 2)}.
This equalizability, however, is nothing specific to Presburger
arithmetic. It follows, instead, from the unifiability of T , which
implies its equalization over all structures interpreting its
vocabulary. Now consider the set T = {t1, t2} of 3-dimensional
terms from the example introduced before Proposition 1. A



bit of reflection shows that T does not equalize over A,
since an equalizer must solve, in particular, the equation
0 = s(y2), which is impossible in Presburger arithmetic. Notice,
however, that a finite structure would suffice to avoid the
equalizability of T : just interpret, on the universe {0, 1}, the
function s as the identically 1 function and the constant 0
as 0. Indeed, we exploit here the fact that T has a partial
unification whose terms encapsulate the function obstruction
(0, s(y2)). We also observed that T has a partial unification
whose terms encapsulate the variable obstruction (x1, s(s(x1))).
We can similarly exploit this fact to construct a different, but
still finite, structure A over which T does not equalize. Let
A = {0, 1, 2}, where a is the projection to the first argument,
i.e., aA(i, j) = i, the function s is the successor modulo 3, i.e.,
sA(i) = i+ 1 mod 3, and 0 is interpreted arbitrarily. Again an
equalizer must solve the equation x1 = s(s(x1)), derived from
the above variable obstruction, which is impossible because
x1 = x1 + 2 mod 3 has no solutions.

The connection between unification and equalization ob-
served in the previous examples is no coincidence; it is a
fundamental fact at the very core of our work.

Theorem 1 (Universal Herbrand Property). Let T ⊆ TrΣ
X be

a set of terms. The following statements are equivalent:
1) T is unifiable;
2) T is equalizable;
3) T is finitely equalizable.

Implication 1 ⇒ 2 is an easy step, which exploits a unifier
µ for T in order to construct an equalizer ξ for T . The idea
is to assign an arbitrary value to all variables occurring in the
terms µ(x) and then use the corresponding interpretation as
the value ξ(x) that the equalizer assigns to the variable x.

Lemma 1. Every unifiable set of terms is equalizable.

Proof. Let T ⊆ TrΣ
X be an unifiable set of terms having unifier

µ : X→TrΣX and A an arbitrary Σ-structure with χ : X→A as
one of its assignments. By definition, we known that t1µ = t2

µ,
for all terms t1, t2 ∈ T . Thus, we obviously have (t1

µ)A,χ =
(t2

µ)A,χ. Now, consider the assignment ξ : X → A defined by
ξ(x) = µ(x)A,χ, for all variables x ∈ X . Then, the following
claim can be stated.

Claim 1. For all terms t ∈ T , it holds that tA,ξ = (tµ)A,χ.

At this point, it is easy to see that ξ is an equalizer for T over
A, since t1A,ξ = (t1

µ)A,χ = (t2
µ)A,χ = t2

A,ξ.

Since Implication 2 ⇒ 3 is an immediate consequence of
the definition, we just need to focus on Implication 3 ⇒ 1.
Lemma 2. Every finitely equalizable set of terms is unifiable.

The proof of the above lemma, split among several more spe-
cific lemmas, proceeds by contraposition. We use Proposition 1
as a guidance to construct a structure over which non-unifiable
terms do not equalize either. An obstruction (t1, t2) to the
unifiability of a set of uniform-dimension terms T can be
nested deep inside two terms of some partial unification U
of T itself. The idea to construct a structure over which T
does not equalize is the following: (i) by means of Lemmas 3
and 4, build a structure over which t1 and t2 do not equalize;

(ii) use Lemma 5 to transform the previously obtained structure
into one over which U does not equalize; (iii) use Lemma 6
to extend the latter structure for U to the desired structure
for T . Notice that, since terms of different dimension have
interpretations of different dimensions, the case where T does
not have uniform dimension is trivial.

Fact 1 (Dimension Clash). Let t1, t2 ∈ TrΣ
X be two terms of

different dimension. There is no Σ-structure over which t1 and
t2 equalize.

As already observed, function obstructions (t1, t2) are easy
to deal with, by interpreting the outermost functions in t1 and
t2 to two different constant values.

Lemma 3 (Function Obstruction). Let (t1, t2) be a function
obstruction over Σ. There exists a Σ-structure of order 2 over
which t1 and t2 do not equalize.

Variable obstructions (x, t) are harder to deal with. In particu-
lar, the order of the structure depends on the type of nesting of x
into t. For instance, let t = f(t1, t2, g(h(t3, x), t4)). The occur-
rence of x into t has depth 3 in position p = (f, 3)(g, 1)(h, 2).
A structure A over which x and t do not equalize has universe
{0, 1}, where f projects to its third argument, g projects to
its first argument, and h swaps its second projection, i.e.,
hA(i, j) = 1 − j. By direct computation, (f(t1, t2, g(h(t3,
x), t4)))A,χ = (g(h(t3, x), t4))A,χ = (h(t3, x))A,χ = 1 − xA,χ
6= xA,χ, for all assignments χ. This construction easily lifts to
all terms t where x occurs in a position p that does not contain
repeated functions. However, a more careful treatment needs the
case where a function appears more than once in p. For instance,
let t = f(t1, f(x, t2)), so that x is in position p = (f, 2)(f, 1).
Here the interpretation of f cannot be as simple as a projection
or a swapping-projection, since it must depend on both its
arguments. The idea is then to define f so that it behaves
as a projection or a swapping-projection depending on the
nesting of the argument along the position p. We therefore
construct the structure A with universe A = {0, 1} × {0, 1},
where fA((i1, j1), (i1, j2)) = (j2, 1 − i1). Intuitively, f is
both a swapping-projection on the first coordinate of the
first argument and a projection on the second coordinate of
the second argument. Then x and t do not equalize over A,
since (f(t1, f(x, t2))A,χ)1 = (f(x, t2)A,χ)2 = 1− (xA,χ)1 6=
(xA,χ)1, for all assignments χ. This approach is described in
full generality in the proof of the following lemma.

Lemma 4 (Variable Obstruction). Let (x, t) be a variable
obstruction of depth d ∈ N+ over Σ. There exists a Σ-structure
of order 2d over which x and t do not equalize.

Proof. Since (x, t) is a variable obstruction of depth d ∈ N+,
there is a non-empty position p ∈ pos(t) with length d such
that t�p = x. Let P = {p<i : i ∈ [d]} be the set of non-empty
prefixes of p, where, for technical convenience, we assume that
p<0 = p<d = p. Moreover, let A be the Σ-structure having
universe A = {0, 1}P , where the interpretation of a function
f ∈Σf over a tuple a∈Aar(f) is defined as follows, with i∈ [d]:

fA(a)(p<i−1)=


1−(a)j(p<i), if (p)i = (f, j) and i = d;

(a)j(p<i), if (p)i = (f, j) and i < d;

a ∈ {0, 1}, otherwise.



Observe that |A| = 2d. At this point, the following claim
can be stated, whose proof may be obtained via a standard
induction on the depth of the variable obstruction.

Claim 2. For all indexes i ∈ [d], assignments χ : X → A, and
variable obstructions (x, s) over Σ having x at position p≥i
(suffix of p from i) in s, it holds that sA,χ(p<i−1) 6= xA,χ(p).

The required thesis immediately follows by setting s = t and
i = 1 in the above claim. Indeed, tA,χ(p) 6= xA,χ(p) implies
tA,χ 6= xA,χ, for all assignments χ : X → A. Hence, x and t
do not equalize over A.

We now focus on how to percolate the non-equalizability of
an obstruction to the original terms in T via a partial unification
U . The following construction serves the purpose.

Construction 1 (Structure Extension). The extension of a Σ-
structure A w.r.t. a position p ∈ PsΣ is the Σ-structure A∗
having universe A∗ = AP , where P = {p<i : i ∈ [0, |p|]} is
the set of prefixes of p including the empty one p<0 = ε and the
interpretation of a function f ∈ Σf over a tuple a∗ ∈ A∗ar(f)

is defined as follows:

fA
∗
(a∗)(p) = fA(a);

fA
∗
(a∗)(p<i−1) =

{
(a∗)j(p<i), if (p)i = (f, j);

arbitrary a ∈ A, otherwise;

where i ∈ [|p|] and a ∈ Aar(f) is the tuple of elements in A
such that (a)j = (a∗)j(p), for each coordinate j ∈ [ar(f)].

Intuitively, the extended structure A∗ can be seen as the
Cartesian product of the original structure A, whose values are
indexed in the universe A∗ by the position p, with a structure
in which the interpretation of the functions is a generalized
version of the projection operation, reminiscent of the approach
used in Lemma 4. In the following proposition, we collect the
properties of the construction needed in the next two lemmas:
Item 1 captures how the value of a subterm t�p in position
p percolates to the containing term t; Item 2 describes the
embedding of A into A∗.

Proposition 2. LetA∗ be the extension of a Σ-structureA w.r.t.
a position p ∈ PsΣ . For all terms t ∈ TrΣX and assignments
χ∗ : X → A∗, the following hold:

1) (t)A
∗,χ∗

j (j) = (t�p)
A∗,χ∗(p), if p = j ·q with j ∈ N, and

otherwise tA
∗,χ∗(ε) = (t�p)

A∗,χ∗(p), where p ∈ pos(t);
2) (t)A

∗,χ∗

i (p) = (t)A,χi , where i∈ [dim(t)] and χ : X → A
is such that χ(x) = χ∗(x)(p), for all x ∈ X .

If two terms do not equalize over a structure B, we can
apply Construction 1 to B w.r.t. an arbitrary position p to build
a new structure A over which no set of terms T , containing
the first two at position p, can equalize. Intuitively, by Items 1
and 2 of Proposition 2, the non-equal values of the two terms
in B flow in A from position p to the terms in T .

Lemma 5 (Non-Equalizability Preservation I). Let t1, t2 ∈
T ⊆ TrΣX be two terms and p ∈ pos(t1)∩ pos(t2) one of their
positions. If t1�p and t2�p do not equalize over a Σ-structure
of order n, there is a Σ-structure of order n|p|+1 over which
T does not equalize as well.

Proof of Lemma 5. Let B be a Σ-structure over which t1�p
and t2�p do not equalize and A the extension of B w.r.t. the
position p as defined in Construction 1. By the hypothesis on
B, it holds that (t1�p)

B,χB 6= (t2�p)
B,χB , for all assignments

χB : X → B in B. If t1 and t2 are 1-dimensional (the
multi-dimensional case is similar), by Items 1 and 2 of
Proposition 2, we have that t1A,χA(ε) = (t1�p)

A,χA(p) =
(t1�p)

B,χB 6= (t2�p)
B,χB = (t2�p)

A,χA(p) = t2
A,χA(ε), for

all the assignments χA : X → A in A and χB : X → B in B
such that χB(x) = χA(x)(p), for all variables x ∈ X . This
implies that t1A,χA 6= t2

A,χA . Consequently, t1 and t2 do not
equalize over A, from which we derive that T does not equalize
over A as well. We conclude noticing that, by construction, A
has order n|p|+1.

Consider now the case where a set T [x/t] is obtained from
the set of terms T by replacing a variable x with a term t,
where both x and t occur at a position p. If T [x/t] does not
equalize over a structure B, we can apply again Construction 1
to B w.r.t. p in order to build a structure A over which T
cannot equalize. The idea is that, if T admits an equalizer ξA
over A, then the values of x and t are equal under ξA. Thus,
by Items 1 and 2 of Proposition 2, it follows that ξA embeds
an equalizer for T [x/t] over B, which is impossible.

Lemma 6 (Non-Equalizability Preservation II). Let t1, t2 ∈
T ⊆ TrΣX be two terms and p ∈ pos(t1)∩ pos(t2) one of their
positions such that t1�p is a variable. If T [t1�p/t2�p] does not
equalize over a Σ-structure of order n, there is a Σ-structure
of order n|p|+1 over which T does not equalize as well.

We are now ready to prove the main technical lemma which,
in turn, settles the proof of the universal Herbrand property.

Proof of Lemma 2. The thesis is proved by contraposition. Let
T ⊆ TrΣX be a non-unifiable set of terms. By Proposition 1,
one of the following two points hold: (i) T contains two terms
of different dimension; (ii) there is a partial unification U of
T together with two terms t1, t2 ∈ U having an obstruction
(t1�p, t2�p) at some position p ∈ pos(t1)∩ pos(t2). In the first
case, as observed in Fact 1, there is no Σ-structure on which
T can equalize. Hence, an arbitrary finite Σ-structure suffices
to satisfy the thesis. In the second case, instead, by Lemmas 3
and 4, there is a finite Σ-structure over which t1�p and t2�p
do not equalize. Consequently, due to Lemma 5, there exists
another finite Σ-structure over which U does not equalize as
well. Now, since U is a partial unification of T , there is a
finite sequence of sets of terms T = T1, . . . , Tn = U , pairs
of terms t1i , t

2
i ∈ Ti, and positions pi ∈ pos

(
t1i
)
∩ pos

(
t2i
)
,

with i ∈ [n− 1], such that (i) t1i �pi is a variable and (ii)
Ti+1 = Ti[t

1
i �pi/t

2
i �pi ]. Now, by inductively applying Lemma 6

on every set Ti with i ∈ [n− 1], from i = n − 1 to i = 1,
we obtain the existence of a finite Σ-structure over which T
cannot equalize. Hence, T is not finitely equalizable.

C. Finite Quasi-Herbrand Structures
We now introduce the concept of quasi-Herbrand structures,

a somehow succinct implementations of the Herbrand property.

Definition 4 (Quasi-Herbrand Structures). A Σ-structure H
is quasi Herbrand w.r.t. a set of terms T ⊆ TrΣX if, for every



subset U ⊆ T , it holds that U is unifiable, whenever U is
equalizable over H.

Thanks to Implication 3⇒ 1 of Theorem 1, we can prove
the existence of a finite quasi-Herbrand structure w.r.t. every
finite set of terms T . The intuition is first (i) to exploit that
implication to construct, for all non-unifiable subsets S of T ,
a structure AS over which S does not equalize and then (ii) to
compute the direct product H =

∏
S AS for the desired result.

The following statement can be actually strengthened. Indeed,
an inspection of the proofs shows a double-exponential bound
on the order of the structure w.r.t.

∑
t∈T |t|.

Theorem 2 (Quasi-Herbrand Structures). For every set (resp.,
finite set) of terms T ⊆ TrΣX , there exists a Σ-structure (resp.,
finite Σ-structure) which is quasi Herbrand w.r.t. T .

Proof. Let N = {S1, . . . , Sn} ⊆ 2T be the family of subsets of
T that are non-unifiable. Due to Fact 1, we can focus on subsets
of uniform dimension only. By Lemma 2, for each i ∈ [n], there
is a finite Σ-structure Ai over which Si does not equalize.
Consider now the direct product H =

∏n
i=1Ai defined as

usual, i.e., (i) H =×n

i=1
Ai and (ii) (fH(a))i = fAi(bi), for

all indexes i ∈ [n], functions f ∈ Σf of arity k = ar(f), and
k-tuples a ∈ Hk and bi ∈ Ai

k such that (bi)j = ((a)j)i,
for each coordinate j ∈ [k]. We show that H is the desired
Σ-structure. First note that, if T is finite, H is finite as well.
Now, let S ⊆ T be a non-unifiable set of terms. We prove
that S cannot equalize over H. By definition of N , there is an
index i ∈ [n] such that S = Si. Suppose by contradiction that
S admits the equalizer ξ : X → H over H, i.e., t1H,ξ = t2

H,ξ ,
for all terms t1, t2 ∈ Si. Finally, consider the assignment
ξi : X → Ai defined by ξi(x) = (ξ(x))i, for all variables
x ∈ X . AsH is a direct product, we have that t1Ai,ξi = t2

Ai,ξi .
Thus, ξi is an equalizer for Si overAi, which is impossible.

We conclude the section providing an exponential lower
bound on the order of a quasi-Herbrand structure. The idea
is the following. Consider the set T1 containing the terms
t11 = f(x1, x1, x3), t12 = f(x1, x2, x2), and t13 = f(x3, x2, x3)
together with the set T2 containing the terms t21 = f(c1, x2, x3),
t22 = f(x1, c2, x3), and t23 = f(x1, x2, c3), where c1, c2, and c3
are constants. A bit of reflection reveals that, for each of the 7
nonempty subset I of {1, 2, 3}, the set of terms UI =

{
t1i ∈ T1

: i 6∈ I
}
∪
{
t2i ∈ T2 : i ∈ I

}
is a maximal unifiable subset of

T = T1 ∪ T2. Then every quasi-Herbrand structure for T has
order at least 7 since, otherwise, two subsets would assume the
same value although their union is a non-unifiable set. The idea
generalizes, even in a parsimonious vocabulary, as follows.

Theorem 3 (Minimal Quasi-Herbrand Structures). Let Σ be a
vocabulary with at least two constants and one binary function.
For every n ∈ N, there exists a set of 2n terms T ⊆ TrΣX of
dimension 1 and length O(n log n) such that every Σ-structure
that is quasi Herbrand w.r.t. T has order Ω(2n).

IV. SATISFIABILITY IN CONJUNCTIVE-BINDING LOGIC

Motivated by a deeper understanding of the decidability
of some powerful extensions of modal logic [25], [26], a
family of syntactic fragments of relational first-order logic,
called binding fragments, has been recently proposed in the

literature [27]. The novel idea is to classify first-order sentences
relative to the binding forms they admit, i.e., the Boolean
combinations of variable patterns they allow, which naturally
led to a diamond-shaped hierarchy of four syntactic classes
(Definition 5). Relative to this classification, the finite-model
property and the satisfiability problem for conjunctive-binding
logic remained open. In this section, we successfully address
both questions in the more general context where functions
can occur in the vocabulary (Corollary 2 and Corollary 4). The
key tool here is a syntactic characterization of satisfiability in
conjunctive-binding logic (Item 4 of Theorem 5), which paves
the way for the entailment results reported later in Section V.

A. Binding Forms in First-Order Logic

Let Σ = Σf ] Σr be a vocabulary. For a relation r ∈ Σr

and a term t ∈ TrΣf

X with ar(r) = dim(t), the juxtaposition
of symbols rt is called a t-atom. Let A be a Σ-structure and
χ : X → A an assignment. We say that A satisfies rt under χ,
in symbols A, χ |= rt, if tA,χ ∈ rA. Given this singularity, the
remaining first-order syntax and semantics are defined as usual.
A t-binding Σ-form γ is a Boolean combination of t-atoms.
We let BnΣX denote all t-binding Σ-forms with t ∈ TrΣf

X . A
quantifier prefix ℘ ∈ QnX over the set of variables X is a
finite sequence of the existential and universal quantifiers ∃
and ∀, each binding a different variable in X .

Definition 5 (Binding Fragments). Boolean binding logic (BB)
is the set of first-order Σ-formulas built accordingly to the
following context-free grammar, where℘ ∈ QnX and γ ∈ BnΣX :

1) ϕ := ⊥ | > | ℘ψ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ);
2) ψ := γ | (ψ ∧ ψ) | (ψ ∨ ψ).

Further binding fragments can be obtained by restricting the
the above grammar as follows.

(∧B) Conjunctive-binding logic is the set of all formulas
obtained by weakening Item 2 to ψ := γ | (ψ ∧ ψ).

(∨B) Disjunctive-binding logic is the set of all formulas
obtained by weakening Item 2 to ψ := γ | (ψ ∨ ψ).

(1B) Single-binding logic is the set of all formulas obtained
by weakening Item 2 to ψ := γ.

(∀1B) Universal single-binding logic is the set of all single-
binding formulas in which the prefix ℘ is universal.

There are interesting (graph) properties, expressible via ∀1B
sentences, that are impossible to express in other logics, e.g., in
the guarded negation fragment [5]. Among them, we have the
completeness and the k-edge-colorability of a graph: ∀x1∀x2rt
and ∀x1∀x2(¬rt∨

∨k
i=1 cit∧

∧k−1
i=1

∧k
j=i+1 ¬(cit∧cjt)), where

r denote the edge relation, ci the i-th coloring relation, and
t = x1, x2. The fact that every vertex in the graph is neither
a sink nor a source or the existence of a vertex that is a
predecessor of all vertices can be expressed in 1B: ∀x1∃x2rt∧
∀x2∃x1rt and ∃x1∀x2rt. The transitivity of the graph can be
easily formalized in ∨B: ∀x1∀x2∀x3(¬r(x1, x2) ∨ ¬r(x2, x3)
∨ r(x1, x3)). Finally, the existence of an isolated vertex or the
fact that every vertex has a successor that is the predecessor of
all the vertices can be expressed in ∧B: ∃x1∀x2(¬r(x1, x2)∧
¬r(x2, x1)) and ∀x1∃x2∀x3(r(x1, x2) ∧ r(x2, x3)).

Every first-order sentence has an equisatisfiable canonical
form, namely, its functional (Skolem) normal form [31]. The



two tame binding fragments 1B and ∧B enjoy an even nicer
canonization, which is represented by ∀1B. Indeed, the standard
skolemization procedure [20] applied to ∧B sentences yields,
in essence, ∀1B sentences. This fact explains the better model-
and complexity-theoretic behaviors of ∧B versus ∨B [27].

Theorem 4 (∧B Skolemization). Let ϕ be a ∧B Σ-sentence.
There is a ∀1B sentence ϕ∗ over an extended vocabulary Σ∗ ⊇
Σ, with length |ϕ∗| = O(|ϕ|), for which the following hold:

1) if A∗ |= ϕ∗ then A∗ |= ϕ, for all Σ∗-structures A∗;
2) for any Σ-structure A with A|=ϕ, there is a Σ∗-struc-

ture A∗ with A∗ |=ϕ∗ that is a Σ∗-extension of A.

B. The Complexity of the Satisfiability Problem

The skolemization result reported in Theorem 4 allows to
focus on ∀1B in order to study the model-theoretic properties
and solve the satisfiability problem for ∧B and its fragments.
The key idea here is a characterization yielding a finite quasi-
Herbrand model for every satisfiable ∀1B sentence.

We first need to introduce some notation. An implicant for
a positive Boolean formula β is a subset I ∈ Im(β) of the
propositions occurring in β such that I |= β. This notion
can be easily lifted to any BB sentence ϕ, by considering
it as positive Boolean formula over the set of sentences in
prenex form ℘ψ occurring in ϕ. For example, consider the BB
sentence ϕ = ℘1ψ1 ∨ (℘2ψ2 ∧ (℘3ψ3 ∨ ℘4ψ4)). We have that
Im(ϕ) = {{℘1ψ1}, {℘2ψ2, ℘3ψ3}, {℘2ψ2, ℘4ψ4}}. Given a
set of prenex sentences U = {℘1ψ1, . . . , ℘nψn}, by Tr(U) and
Bn(U) we denote, respectively, the set of terms and maximal
quantifier-free subformulas ψi occurring in these formulas.
For instance, Tr(U) = {t1, t2, t3} and Bn(U) = {ψ1, ψ2},
where ψ1 = r1t1 ∧ r2t1, ψ2 = r1t2 ∨ (r2t2 ∧ r3t3), and U =
{℘1ψ1, ℘2ψ2}. Finally, for an arbitrary Boolean formula over
t-atoms, with t ∈ TrΣf

X , we indicate by bool(γ) the Boolean
formula over the relations in Σr obtained from γ by erasing all
the occurrences of the terms, e.g., bool(ψ2) = r1 ∨ (r2 ∧ r3).

Theorem 5 (∀1B Satisfiability Characterization). Let ϕ be a
∀1B Σ-sentence. The following statements are equivalent:

1) ϕ is satisfiable;
2) ϕ is finitely satisfiable;
3) ϕ admits a finite quasi-Herbrand Σ-model;
4) there is an implicant I ∈ Im(ϕ) such that, for all subsets

U ⊆ I for which the set of terms Tr(U) is unifiable, the
Boolean formula

∧
γ∈Bn(U) bool(γ) is satisfiable.

This result relies on the universal Herbrand property
(Section III). Indeed, Implication 1 ⇒ 4 directly depends
on Implication 1 ⇒ 2 of Theorem 1. Implication 4 ⇒ 3
follows from the existence of a finite Herbrand structure, i.e.,
Theorem 2, which is in turn derived from Implication 3 ⇒ 1
of Theorem 1 again. The chain 3 ⇒ 2 ⇒ 1 holds by definition.

Proof. (1 ⇒ 4). Let A be a Σ-model of ϕ and I ∈ Im(ϕ) one
of its implicants such that A |= φ, for all φ ∈ I . Moreover,
consider a subset U ⊆ I for which the set of n-dimensional
terms T = Tr(U) is unifiable, for some n ∈ N. By Lemma 1,
T equalizes over A, say to the n-tuple a ∈ An via the equalizer
ξ : X → A, i.e., tA,ξ = a, for all terms t ∈ T . Observe that,
because of the particular choice of the implicant I , it holds

that A, ξ |=
∧
γ∈Bn(U) γ, where ϕ is a ∀1B sentence. Now, let

β : {r ∈ Σr : ar(r) = n} → {⊥,>} be the Boolean valuation
such that β(r) = >, if a ∈ rA, and β(r) = ⊥, otherwise.
Due to the above observation, it is easy to see that β |=∧
γ∈Bn(U) bool(γ). Hence,

∧
γ∈Bn(U) bool(γ) is satisfiable, as

required by the statement.
(4⇒ 3). Assume the vocabulary Σ=Σf]Σr as decomposed

into its functional Σf and relational Σr part and consider a
finite Σf -structure M which is quasi Herbrand w.r.t. the finite
rectangular set of terms T = Tr(I), where I ∈ Im(ϕ) is the
implicant of ϕ derived from the hypothesis. Remind that T
can be assumed to be rectangular, since ϕ is a ∀1B sentence.
Moreover, the existence of such a structure is ensured by
Theorem 2. We now show how to construct a Σ-extension
H of M such that H |= ϕ. For every n-tuple a ∈ An, with
n ∈ {ar(r) : r ∈ Σr}, let Ta =

{
t ∈ T : ∃χ ∈ AX . tH,χ = a

}
be the set of n-dimension terms assuming a as possible
value. Since T is rectangular, so is Ta. Thus, there exists
an equalizer ξ : X → A such that tH,ξ = a, for all terms
t ∈ Ta. Consequently, Ta equalizes over M and, so, it unifies
too, sinceM is quasi Herbrand w.r.t. T . Due to the hypothesis,
the Boolean formula

∧
γ∈Bn(Ua) bool(γ) is satisfiable, for all

sets Ua ⊆ I with Tr(Ua) = Ta. Therefore, there exists a
Boolean valuation βa : {r ∈ Σr : ar(r) = n} → {⊥,>} for
which it holds that βa |=

∧
γ∈Bn(Ua) bool(γ). For an arbitrarily

chosen such βa, the interpretation of each relation r ∈ Σr in
H is now defined as rH =

{
a ∈ Aar(r) : βa(r) = >

}
. At this

point, the following statement can be claimed.

Claim 3. For all sentences φ ∈ I , it holds that H |= φ.

Since (i)H is finite, being a Σ-extension ofM, and (ii)H |= ϕ,
as I is an implicant of ϕ, the thesis clearly follows.

The finite-model property for ∀1B is a consequence of
Equivalence 1 ⇔ 2 of the above result. It is, actually, a small-
model property, due to the double-exponential bound on the
order of a quasi-Herbrand structure observed before Theorem 2.

Corollary 1 (∀1B FMP). ∀1B enjoys the finite-model property.

Thanks to Theorem 4, the same property holds for ∧B.

Corollary 2 (∧B FMP). ∧B enjoys the finite-model property.

The decidability of the (finite) satisfiability problem for ∀1B
follows by observing that the property described in Item 4 of
the previous theorem can be checked by an ∃∀∃-alternating
Turing machine in polynomial time. For the lower bound we
appeal to a hardness result from [27].

Corollary 3 (∀1B SAT). The (finite) satisfiability problem for
∀1B is ΣP

3 -complete.

Again by Theorem 4, the satisfiability problem for ∀1B and
∧B are linear-time interreducible. Hence, the following holds.

Corollary 4 (∧B SAT). The (finite) satisfiability problem for
∧B is ΣP

3 -complete.

V. ENTAILMENT IN CONJUNCTIVE-BINDING LOGIC

As opposed to satisfiability, the entailment problem for ∧B
is undecidable, since it subsumes the validity problem for ∧B



and, so, the complement of the satisfiability problem for ∨B,
which has already been proved to be undecidable [27]. This is
because the negation of a ∨B sentence is a ∧B one. The same
observation holds for the finite version of the question.

Theorem 6 (∧B Entailment). The (finite) entailment problem
for ∧B is undecidable.

It is readily noticed, however, that certain entailment prob-
lems in the vicinity of ∧B are decidable as a direct consequence
of the decidability of its satisfiability. A first example of this
fact is obtained by focusing on 1B. Indeed, differently from
∧B, 1B is closed under negation, thus, the problem of interest
linearly reduces to the unsatisfiability problem for 1B.

Theorem 7 (1B Entailment). The (finite) entailment problem
for 1B is ΠP

3 -complete.

A second example is the entailment from a ∧B sentence ϕ to
a ∨B one θ, which is orthogonal to the same problem for ∧B.
By the above observation on the negation of ∨B sentences, the
verification of φ |= θ immediately reduces to the unsatisfiability
check for φ ∧ ¬θ.

Theorem 8 (∧B |=∨B Entailment). The (finite) entailment
problem from ∧B to ∨B is ΠP

3 -complete.

A fragment of ∧B where its decidable satisfiability still
helps, but not directly, is positive Herbrand logic (PH), i.e., ∧B
without negations and disjunctions [7]. It is especially intriguing
because its relational fragment coincides with the language of
quantified conjunctive queries (QCQ) in database theory [13].
The main results of this section are a complexity classification
of the (finite) entailment problem in PH (Theorem 9), whose
relevance in database theory is outlined in the introduction,
and a Chandra-Merlin-style theorem for QCQ (Theorem 10),
whose impact is mentioned in the discussions.

A. The Complexity of Finite Entailment in PH
We now prove that (i) general and finite entailment in PH

coincide and that (ii) the complexity of these two problems is
NPTIME-complete.

As a guidance throughout the technical development of the
section, we give a running example of an entailment in PH,
namely, the positive instance ϕ |= ϑ, where

ϕ = ∀x1∃y1∀z1 ψ1 ∧ ∀w1∀v1∃u1 ψ2,

ψ1 = r(x1, y1) ∧ p(y1, a(z1, y1), z1),

ψ2 = r(w1, u1) ∧ q(u1, v1),

ϑ = ∀x2∃y2∀z2∃w2∃v2 η,

η = r(x2, y2) ∧ r(y2, v2) ∧ q(v2, z2) ∧ p(y2, w2, z2).

As a first manipulation, reminiscent of a similar reduction
applied while studying the satisfiability of ∧B, we cast the PH
antecedent of an entailment instance to a universal PH (∀PH)
sentence by skolemization (Theorem 4), which allows to focus
on the quantifier prefix of the consequent only.

Corollary 5 (Skolemized Entailment). Let ϕ and ϑ be two
Σ-sentences, the first being PH. There exists a ∀PH sentence
ϕ∗ over an extended vocabulary Σ∗ ⊇ Σ, with length |ϕ∗| =
O(|ϕ|), such that ϕ |=(fin) ϑ iff ϕ∗ |=(fin) ϑ.

Continuing our running example, the action of Corollary 5 on
ϕ gives ϕ∗ = ϕ1∧ϕ2∧ϕ3∧ϕ4, where ϕ1 =∀x1 r(x1, f1(x1)),
ϕ2 = ∀x1∀z1 p(f1(x1), a(z1, f1(x1)), z1), ϕ3 =∀w1∀v1r(w1,
f2(w1, v1)), and ϕ4 =∀w1∀v1q(f2(w1, v1), v1). Obviously, we
obtain that ϕ∗ |= ϑ.

A second crucial manipulation, which we call binding
canonization, allows to reduce ∀PH-to-PH entailment instances
(ϕ, ϑ) to ∀1B ones. Roughly, a “canonized” term t is mined
from the consequent ϑ, by concatenating all terms in an
arbitrary ordering of the atoms, and correspondingly, a family
of “canonized” terms S respecting the same sequence of atoms
is mined from the antecedent ϕ (Definition 6). The canonized
terms are then posed in a fresh relation in such a way that
the entailment between the original conjunctions of atoms is
encoded (Lemma 7). The details follow.

We use a countable family of renaming substitutions σi,j :
X → X to render any set of terms rectangular. Formally, t1σi,j
and t2σi′,j′ are rectangular, for all terms t1, t2 ∈ TrΣX and pairs
of indexes (i, j), (i′, j′) ∈ N× N such that (i, j) 6= (i′, j′).

Definition 6 (Binding Canonization). Let Z1 ⊆ AtΣX and
Z2 = {r1t1,1, . . . , r1t1,m1 , . . . , rntn,1, . . . , rntn,mn} ⊆ AtΣX
be two finite sets of atoms. A binding canonization for Z1 w.r.t.
Z2 is a pair (t, S) of a term t ∈ TrΣX and a set of terms
S ⊆ TrΣX defined as follows:
• t =

∏n
i=1

∏mi
j=1 ti,j;

• S =
{∏n

i=1

∏mi
j=1 si,j

σi,j : risi,j ∈ Z1

}
.

The canonized term t in the above definition encodes
the information about all relations and their bindings in the
consequent, while the terms in S represent the canonized terms
in the antecedent which comply with the sequence of atoms
dictated by t.

A binding canonization of the atoms in Z1 of the skolemized
antecedent ϕ∗ w.r.t. the atoms in Z2 of the consequent ϑ for the
running example is given in Table I, where S = {s1, s2, s3, s4}.

Lemma 7 (Entailment Canonization). Let ϕ1 = ℘1ψ1 and
ϕ2 = ℘2ψ2 be two PH Σ-sentences, the first being universal.
Moreover, let (t, S) be the binding canonization of At(ϕ1)
w.r.t. At(ϕ2) and r 6∈ Σr a fresh relation with ar(r) = dim(t).
Then, ϕ1 |=(fin) ϕ2 iff

∧
s∈S ℘1rs |=(fin) ℘2rt.

We are now ready to settle the complexity of the general
and finite entailment problems for PH and, thus, for QCQ.

Theorem 9 (PH Entailment). The (finite) entailment problem
for PH is NPTIME-complete.

Proof. We first prove the complexity result and than show
that the finite and general version of the problem coincide.
The lower bound directly follows from the NPTIME-hardness
of the containment problem for classic (Boolean) conjunctive
queries [12]. The NPTIME-membership is derived by observing
that a PH-entailment instance of the form ℘1(α1∧· · ·∧αm) |=
℘2(β1 ∧ · · · ∧ βn) holds iff the sentence ℘1(α1 ∧ · · · ∧ αm) ∧
℘2(¬β1 ∨ · · · ∨ ¬βn) is unsatisfiable, which in its turn is
equivalent to the fact that the set of clauses {α1, . . . , αm,¬β′1∨
· · · ∨ ¬β′n} is refutable via first-order unit resolution [11],
where ℘1 is assumed to be universal, thanks to Corollary 5,
and β′j = βσ℘2

j are obtained via skolemization. In case of



r︷ ︸︸ ︷ r︷ ︸︸ ︷ q︷ ︸︸ ︷ p︷ ︸︸ ︷
t = x2, y2, y2, v2, v2, z2, y2, w2, z2
t∗= cx2 , y2, y2, v2, v2, fz2 (y2), y2, w2, fz2 (y2)

s1= x11, f1(x11), x12, f1(x12), f2(w21, v21), v21, f1(x31), a(z31, f1(x31)), z31
s2= x11, f1(x11), w12, f2(w12, v12), f2(w21, v21), v21, f1(x31), a(z31, f1(x31)), z31
s3= w11, f2(w11, v11), x12, f1(x12), f2(w21, v21), v21, f1(x31), a(z31, f1(x31)), z31
s4= w11, f2(w11, v11), w12, f2(w12, v12), f2(w21, v21), v21, f1(x31), a(z31, f1(x31)), z31
u = cx2 , f1(cx2 ), · · · , f2(f1(cx2 ), fz2 (f1(cx2 ))), · · · , fz2 (f1(cx2 )), · · · , a(fz2 (f1(cx2 )), f1(cx2 )), · · ·

Table I: Binding canonization for Z1 = {r(x1, f1(x1)), r(w1, f2(w1, v1)), q(f2(w1, v1), v1), p(f1(x1), a(z1, f1(x1))} w.r.t. Z2 =
{r(x2, y2), r(y2, v2), q(v2, z2), p(y2, w2, z2)}.

a positive instance, a refutation of length polynomial in the
size of the instance necessarily exists. Indeed, it consists of
a sequence of n applications of the resolution rule (actually,
modus ponens) deriving, say, (¬β′2∨· · ·∨¬β′n)µ1 , where µ1 is
an mgu of β′1 and some αi1 , then (¬β′3∨· · ·∨¬β′n)µ1µ2 , where
µ2 is an mgu of β′2

ρ1 and some (not necessarily different) αi2 ,
and so on until β′n

µ1···µn is resolved.
We now show that entailment and finite entailment in PH

coincide. For the nontrivial direction, let φ1 and φ2 be two PH
sentences such that φ1 6|= φ2. By Corollary 5, let φ∗1 be the
∀PH sentence such that φ1 |= φ2 iff φ∗1 |= φ2. Thus, φ∗1 6|= φ2.
By applying Lemma 7 with φ∗1 in place of ϕ1 and φ2 in
place of ϕ2, we obtain that

∧
s∈S ℘1rs 6|= ℘2rt. Therefore,∧

s∈S ℘1rs ∧ ℘2¬rt is satisfiable and indeed, by Corollary 2,
finitely satisfiable. Hence,

∧
s∈S ℘1rs 6|=fin ℘2rt. Again by

Lemma 7, we have φ∗1 6|=fin φ2, which implies φ1 6|=fin φ2, due
to Corollary 5.

B. A Chandra-Merlin Theorem for QCQ
We finally provide a homomorphism-based characterization

of entailment problem for QCQ in the style of the Chandra-
Merlin theorem for CQ [12].

We illustrate the idea via the running example. We first
compute an interpolant ϕ′ between ϕ and ϑ, which is obtained
from ϕ by choosing the variables y1 and z1, respectively,
as replacements for the universal variables w1 and v1 in
ψ2. In formulas, ϕ′ = ∀x1∃y1∀z1∃u1(r(x1, y1) ∧ r(y1, u1) ∧
q(u1, z1)∧p(y1, a(z1, y1), z1)). Next, we analyze the mappings
from the variables of ϑ to those of ϕ′, roughly aiming at
respecting both the quantifier prefixes and the relations. These
are generalizations of the standard notion of homomorphism
used to characterize containment of CQ’s [12]. In the case
under scrutiny, ϑ can be derived from ϕ′ via a variable
renaming (where indexes 1 become 2) and the introduction
of an existential variable w2 as a replacement for the term
a(z2, y2). Since a(z2, y2) depends on the universal variable z2

and the existential variable y2, the variable w2 is quantified
after both z2 and y2 in the quantifier prefix of ϑ.

We now start the technical development by introducing the
key notion of definable skolemization which, given a quantifier
prefix, returns a set of Skolem functions in a syntactically
explicit fashion. This is done by assigning each existential
variable to terms implementing their Skolem functions. Given a
quantifier prefix ℘ ∈ QnX , we denote by var(℘), var∀(℘), and
var∃(℘), respectively, the set of variables, universal variables,
and existential variables quantified in ℘. For a variable x ∈
var(℘), the notation ℘>x (resp., ℘<x) is the suffix (resp., prefix)
of ℘ containing the variables that occur at the right (resp., left)
of x in ℘.

Definition 7 (Definable Skolemization). A definable skolem-
ization for a quantifier prefix ℘ ∈ QnX is a substitution
τ : X → TrΣX satisfying the following conditions:

1) τ injectively maps universal variables of ℘ to variables
in X , i.e., τ(var∀(℘)) ⊆ X and τ�var∀(℘) is injective;

2) τ maps existential variables x∈var∃(℘) of ℘ to terms
whose occurring variables avoid τ(var∀(℘>x)), i.e.,
var(τ(x)) ∩ τ(var∀(℘>x)) = ∅.

A definable skolemization for the quantifier prefix ∀x2∃y2

∀z2∃w2∃v2 of ϑ in our running example is represented by
the substitution τ acting as x2 7→ x, y2 7→ f1(x), z2 7→ w,
w2 7→ a(w, f1(x)), v2 7→ f2(f1(x), w). Note that τ satisfies
Definition 7 even swapping the quantification on x2 to
existential. However, τ violates the second condition w.r.t.
∀x2∃y2∃w2∀z2∃v2, as the variable w, which is the image of
the universal variable z2 on the right of w2, occurs in the term
τ(w2) = a(w, f1(x)).

We are finally ready to introduce the notion of Skolem ho-
momorphism, a syntactic characterization of the ∀PH-to-QCQ
entailment relation (Theorem 10). Restricted to conjunctive
queries, it boils down to the standard notion of homomorphism.
By At(ϕ) we denote the set of atoms occurring in the PH
sentence ϕ.

Definition 8 (Skolem Homomorphism). Let ϕ1 and ϕ2 =℘2ψ2

be two PH Σ-sentences, the first being universal. A Skolem
homomorphism from ϕ2 to ϕ1 is a definable skolemization
τ : X → TrΣX for ℘2 such that, for each atom rt2 ∈ At(ϕ2) in
ϕ2, there is an atom rt1 ∈ At(ϕ1) in ϕ1 such that t2τ 4 t1.

Intuitively, Skolem homomorphisms map variables in the
consequent to terms in the antecedent in such a way that
the variable dependencies in the prefix are respected while,
simultaneously, the interpretation of the atoms in the con-
sequent get covered by that of the atoms in the antecedent.
Continuing our example, the definable skolemization τ above
is a Skolem homomorphism from ϑ to the skolemization ϕ∗
of the antecedent ϕ, as shown by the following table.

At(ϑ)τ︷ ︸︸ ︷ At(ϕ∗)︷ ︸︸ ︷
r

{
x, f1(x) 4 x1, f1(x1)

f1(x), f2(f1(x), w) 4 w1, f2(w1, v1)

q
{

f2(f1(x), w), w 4 f2(w1, v1), v1

p
{
f1(x), a(w, f1(x)), w 4 f1(x1), a(z1, f1(x1)), z1

Theorem 10 (∀PH |= QCQ Entailment Characterization). Let
ϕ1 be a ∀PH sentence and ϕ2 a QCQ one. Then, ϕ1 |= ϕ2

iff ϕ2 admits a Skolem homomorphism to ϕ1.



The easy (⇐) direction of Theorem 10 uses the Skolem
homomorphism to extend every model of the antecedent with
the interpretations of the Skolem functions for the existential
variables in the quantifier prefix of the consequent. The
extended structure, so, is a model of the skolemization of the
consequent. Therefore, by Theorem 4, the original structure
satisfies the consequent itself.

Lemma 8. Let ϕ1 and ϕ2 be two PH sentences, the first being
universal, such that ϕ2 admits a Skolem homomorphism to ϕ1.
Then, ϕ1 |= ϕ2.

The hard (⇒) direction of Theorem 10 starts by reducing a
positive instance of the ∀PH |= QCQ entailment problem to a
positive instance of the entailment problem for ∀1B (Defini-
tion 6 and Lemma 7). The characterization of satisfiability for
∀1B (Theorem 5) yields two unifiable critical terms s∗ and t∗
from the antecedent and the consequent, respectively, whose
mgu encodes, in essence, the required Skolem homomorphism
(Lemma 10).

Lemma 9. Letϕ1 be a ∀PH sentence andϕ2 a QCQ one, such
thatϕ1 |=ϕ2. Then, ϕ2 admits a Skolem homomorphism to ϕ1.

The Skolem substitution for a quantifier prefix ℘ ∈ QnX is
the substitution σ℘ : X → Tr

Σ∗\Σ
X , with Σ∗ ⊇ Σ, assigning

each existential variable x ∈ var∃(℘) in ℘ with a term σ℘(x) =
fx z1 · · · znx , where {z1, . . . , znx} = var∀(℘<x) is the set of
variables from which x depends in ℘.

If ϕ1 |= ϕ2, then by Lemma 7 the conjunction
∧
s∈S ℘1rs∧

℘2¬rt is unsatisfiable, where ℘2 is the quantification prefix
dual of ℘2. An appeal to the satisfiability characterization for
∀1B (Theorem 5) yields a term s∗ ∈ S that unifies with the
term t∗ = tσ℘2 , where σ℘2 is the Skolem substitution obtained
by the skolemization of ℘2. We report in Table I the term
t∗ for our running example. In this case s∗ is the term s2,
and the term u is the result of the unification of t∗ and s∗.
The following key lemma identifies the properties of the mgu
between t∗ and s∗, that allow to derive the required Skolem
homomorphism.

Lemma 10 (Quantified Unification). Let s ∈ TrΣX and t ∈ Tr∅X
be two rectangular terms and σ℘ :X→ Tr

Σ∗\Σ
X a Skolem

substitution for a quantifier prefix ℘ ∈ QnX with var(℘) =
var(t) and Σ∗ ⊇ Σ. If s and tσ℘ unify, then they have a mgu
µ : X → TrΣ

∗

X satisfying the following properties:
1) for every existential variable x ∈ var∃(℘) of ℘, there is

a variable y ∈ var(s) in s such that µ(y) = σ℘(x)µ;
2) for every universal variable x1 ∈ var∀(℘) and existential

variable x2 ∈ var∃(℘) of ℘ with x1 <℘ x2, it holds that
fun(µ(x1)) ∩ fun(σ℘(x2)) = ∅.

We can now prove the main technical lemma which, in turn,
settles the proof of the entailment characterization.

Proof of Lemma 9. Assume ϕ1 = ℘1ψ1 and ϕ2 = ℘2ψ2.
Since ϕ1 |= ϕ2, by Lemma 7, we have that

∧
s∈S ℘1rs |= ℘2rt,

where (t, S) is the binding canonization of At(ψ1) w.r.t.
At(ψ2) and r 6∈ Σr is a fresh relation of suitable arity.
Due to the canonic entailment, it is immediate to see that∧
s∈S ℘1rs ∧ ¬℘2rt is unsatisfiable. So, by elementary logic,

the single-binding sentence ϕ =
∧
s∈S ℘1rs ∧ ℘2¬rt is

unsatisfiable as well, where ℘2 is the quantifier prefix dual of
℘2. By applying Theorem 4 to ϕ via the Skolem substitution
σ℘2

: X → Tr
Σ∗\Σ
X for ℘2, we obtain the unsatisfiable

universal single-binding sentence ϕ∗ =
∧
s∈S ℘1rs ∧ ℘∗2¬rt∗,

where t∗ = tσ℘2 and ℘∗2 is the quantifier prefix derived
from ℘2 by removing its universal variables. Notice that the
skolemization procedure does not change the first part of the
sentence, since ℘1 is already universal. At this point, thanks
to the satisfiability characterization of universal single-binding
logic given in Theorem 5, we can prove the following claim.

Claim 4. There is a term s∗ ∈ S that unifies with t∗.

Let µ : X→TrΣ
∗

X be the mgu for s∗ and t∗ given by Lemma 10.
Moreover, consider the derived function ρ : var∀(℘2) → X
such that µ(ρ(x)) = σ℘2

(x)µ, for all x ∈ var∀(℘2). The
existence of such a function is ensured by Item 1 of the same
lemma, where s∗, t, σ℘2 , and ℘2 are in place of s, t, σ℘, and
℘, respectively. Intuitively, ρ implements the behavior of the
candidate Skolem homomorphism τ we are looking for relative
to the universal variables of the prefix ℘2. The following claim
can be proved by a direct inspection of the definition of ρ.

Claim 5. The function ρ is injective.

We can now focus on the definition of τ relative to the variables
x ∈ var∃(℘2) that are existential in the prefix ℘2. To do this,
we make use of the corresponding term µ(x) in the unifier µ.
However, because of the substitution σ℘2 , it may be the case
that t∗ contains Skolem symbols in Σ∗\Σ. Therefore, the unifier
might contain such spurious symbols as well, which we need
to replace by the corresponding variable. This replacing is put
in practice by means of the lifting function lift : TrΣ

∗

X → TrΣX
defined as follows: (i) lift(ε) = ε; (ii) lift(x) = x ∈ X; (iii)
lift(fu) = f lift(u), if f ∈Σ; (iv) lift(u1u2) = lift(u1)lift(u2);
(v) lift(σ℘2(x)µ)= lift(fxtx

µ)=ρ(x), for x∈var∀(℘2), where
fx∈Σ∗ \Σ. Intuitively, the function lift parses a term without
modifying it until an instance σ℘2(x)µ of a Skolem term σ℘2(x)
for an arbitrary universal variable x ∈ var∀(℘2) is found and
replaced by the corresponding variable ρ(x) occurring in the
term s∗. The function τ : X → TrΣX is then defined as follows:

τ(x) =


ρ(x), if x ∈ var∀(℘2);

lift(µ(x)), if x ∈ var∃(℘2);

x, otherwise.

Thanks to the definition of the function ρ, Claim 5, and Item 2
of Lemma 10, we can prove that τ satisfies the properties
required by Definition 7, as stated in the following claim.

Claim 6. The function τ is a definable skolemization for ℘2.

To conclude the proof, it only remains to show that, for all
atoms riti,j ∈ {r1t1,1, . . . , rntn,mn} = At(ψ2) in ϕ2, there is
an atom risi,j ∈ At(ψ1) in ϕ1 for which ti,j

τ 4 si,j holds.
The latter inequality requires the existence of a substitution
σ : X → TrΣX such that ti,jτ = si,j

σ . First notice that, due to
the binding canonization, we can choose si,j to be the subterm
of s∗ corresponding to the position of ti,j in t. By Claim 4, we
can also observe that si,j and ti,jσ℘2 unify via µ. Now, consider



the substitution σ defined as follows: σ(x) = lift(µ(x)), if
x ∈ var(s∗), and σ(x) = x, otherwise. Thanks to the above
observation, we can prove that σ is precisely the witness for
the required inequality ti,jτ 4 si,j , as stated in the following.

Claim 7. ti,jτ = si,j
σ , for all indexes i ∈ [n] and j ∈ [mi].

By summing up, it is immediate to see that the function τ
satisfies the property stated in Definition 8. Hence, ϕ2 admits
a Skolem homomorphism to ϕ1.

Note that the computation of a Skolem homomorphism, if
any, can be done in nondeterministic polynomial time. As
observed in the above proof, a Skolem homomorphism can be
extracted from the mgu of the two critical terms s∗ and t∗ via
a polynomial-time transformation. The term t∗ is linear-time
computable from the set of atoms of the consequent. Finally,
s∗ is a term to guess in the set S whose length, being equal
to the one of t∗, is linear in the length of the consequent.

VI. DISCUSSION

Placing the (finite) entailment problem for PH within
NPTIME not just closes the wide complexity-theoretic gap
between the NPTIME-hardness of CQ containment [12] and
the 3EXPTIME-membership of QCQ containment [13], it
actually pushes the problem in the range of practically feasible
computation, e.g., via SAT solvers. Interestingly, resolution-
based first-order provers, once executed on QCQ-containment
instances, implement in essence the behavior dictated by the
proposed extension of the Chandra-Merlin theorem.

On the theoretical side, we conjecture that Skolem homo-
morphisms actually characterize entailment in PH. In fact,
we already know that such homomorphisms are sufficient for
entailment in PH (Lemma 8) and necessary for entailment
from PH to QCQ (Lemma 9). A careful inspection of our
argument reveals that a generalization of Lemma 10 would
suffice to turn the conjecture into a theorem. To the best of our
knowledge, the decidability of the more general entailment in
full Herbrand logic is unsettled. Its complexity ranges between
the ΠP

2 -hardness of the containment problem for CQ with
negation [29] and the undecidability of the entailment in ∧B.

We believe that the ideas in this work have the potential for
nontrivial developments. An intriguing problem is the rewriting
of QCQs in order to minimize the number of distinct variables
used in the query, which is the known algorithmic bottleneck
for query evaluation. The issue, fully understood on CQs [8],
[9], [14], is wide open on QCQs. Indeed, the problem is not
even known to be decidable. Perhaps, the notion of Skolem
homomorphism might eventually offer a viable approach.
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