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Abstract. In this work we derive by Γ-convergence techniques a model for brittle
fracture linearly elastic plates. Precisely, we start from a brittle linearly elastic thin
film with positive thickness ρ and study the limit as ρ tends to 0. The analysis is
performed with no a priori restrictions on the admissible displacements and on the
geometry of the fracture set. The limit model is characterized by a Kirchhoff-Love
type of structure.

1. Introduction

This paper is devoted to the rigorous derivation of a brittle fracture model for elastic
plates by means of dimension reduction techniques. The target (n − 1)-dimensional
plate is represented by an open bounded subset ω of Rn−1 with Lipschitz boundary ∂ω.
As it is typical in dimension reduction problems, the plate is first endowed with a
fictitious thickness ρ > 0, so that, in an n-dimensional setting, the initial reference
configuration is given by the set Ωρ := ω× (−ρ

2 ,
ρ
2). The starting point of our analysis

is the by now classical variational model of brittle fracture in linearly elastic bodies [9]

Fρ(u) :=
1

2

∫
Ωρ

Ce(u) · e(u) dx+Hn−1(Ju) , (1.1)

where the displacement u : Ωρ → Rn belongs to the space GSBD2(Ωρ) of generalized
special functions of bounded deformation [16], e(u) is the approximate symmetric
gradient of u, Ju stands for the jump set of u, Hn−1 indicates the (n− 1)-dimensional
Hausdorff measure in Rn, and C is the linear elasticity tensor. We further refer to
Sections 2 and 3 for the notation and the precise assumptions.

The aim of our work is to study the limit, in terms of Γ-convergence, of the func-
tional (1.1) as the thickness parameter ρ tends to 0. The literature related to di-
mension reduction problems in Continuum Mechanics is very rich. In a purely elastic
regime, we mention [6, 15] for the derivation of reduced models of linearly elastic plates,
and [1, 23, 24, 25, 26, 33, 34] for a number of nonlinear models for plates and shells ob-
tained as limit of 3-dimensional nonlinear elasticity. Further applications to the theory
of elastic plates and shells can be found in [28, 29, 38, 39], where the interplay be-
tween dimension reduction and homogenization is studied. In an elastoplastic setting,
in [17, 18, 19, 35] the authors obtained models for thin elastoplastic plates, starting
from either linearized or finite plasticity, and also proved the convergence of the cor-
responding quasistatic evolutions, in the spirit of evolutionary Γ-convergence [36, 37].

In the context of fracture mechanics, the study of the Γ-limit of free discontinuity
functionals of the form (1.1) has been considered, for instance, in [2, 7, 8, 10, 21, 32]. In
particular, [7, 10] are concerned with the nonlinearly elastic case, in which the stored
elastic energy density obeys a p-growth condition of the form W (F ) ≥ C(|F |p − 1)
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which is incompatible with linear elasticity. The papers [2, 32] consider the antiplanar
case, where the energy is in the form (1.1) but the displacement u is supposed to be
orthogonal to the middle surface ω, so that the dimension reduction problem becomes
scalar and is described in terms of GSBV -functions (see, e.g., [5, Section 4.5]). In [21]
the authors considered the convergence of quasistatic evolutions in the vectorial case,
under the assumption that the crack path is known a priori, is transversal to the
middle surface ω, and cuts the whole of Ωρ. In the static setting, the geometrical
restriction on the fracture set was then removed in [8], where the Γ-limit of Fρ in (1.1)
has been studied under the restriction u ∈ SBD(Ωρ), the space of special functions of
bounded deformation [4]. In order to ensure that sequences equi-bounded in energy
are sequentially relatively compact, the authors had however to assume an a priori
bound on the L∞-norm of the displacement u, which is in general not guaranteed by
the boundedness of functional Fρ.

The aim and main novelty of our work is to study the limit of Fρ in a GSBD-setting,
removing the unphysical a priori bound on the norm of the displacement. As in [8],
we prove in Theorem 3.5 that the Γ-limit writes

1

2

∫
Ω1

C0e(u) · e(u) dx+Hn−1(Ju)

for u ∈ GSBD2(Ω1) such that ei,n(u) = 0 for i = 1, . . . , n and (νu)n = 0 on Ju.
Here, νu is the approximate unit normal to Ju and C0 is the reduced elasticity tensor
of the Kirchhoff-Love theory of elastic plates [15] (we refer to (3.14) for the precise
formulation). The most technical part of our result, which in particular influences the
construction of a recovery sequence in the proof of Theorem 3.5, is the characterization
of the admissible displacement u in the limit model. Indeed, in Theorem 3.2 we show
that u has a Kirchhoff-Love type of structure: the out-of-plane component un does not
depend on the vertical variable xn, while the in-plane components u1, . . . , un−1 satisfy

uα(x′, xn) = uα(x′)− xn∂αun(x′) (1.2)

for x = (x′, xn) ∈ Ω1 and α = 1, . . . , n − 1, where uα(x′) :=
∫ 1/2
−1/2 uα(x′, xn) dxn. In

contrast to [8], due to the lack of integrability of u we cannot conclude un ∈ GSBV (ω)
while we can ensure that at a.e. x′ ∈ ω un is approximate differentiable. Moreover, the
L∞-assumption used in [8] makes it possible to work in the BD-context, so that (1.2)
is proven by convolution techniques combined with the study of the distributional
symmetric gradient Eu of u (see [8, Proposition 5.2]). In our setting, instead, such an
approach is not feasible as Eu is not a bounded Radon measure for u ∈ GSBD2(Ω1).

To overcome this obstacle, we obtain (1.2) through an approximation result similar
to [12, Theorem 1] and [30, Theorem 5], which therefore allows us to work with func-
tions that are W 1,∞ out of the closure of their jump set. The crucial point in such an
approximation is that we need to

(1) guarantee that on large part of the domain Ω1 the n-th component of the
approximating function uk is still independent of xn;

(2) control the Hn−1-measure of the projection πn(Juk) of the closure of the jump
set of the approximating sequence uk on ω by means of Hn−1(πn(Ju)).

The two properties above, together with the fact that actually Hn−1(πn(Ju)) = 0,
allow us to apply the Fundamental Theorem of Calculus in the direction xn to the
sequence uk, obtain a first version of (1.2) for uk, and then conclude by passing to the
limit in k and by further exploiting that the jump set Ju is transversal to the middle
surface ω. This argument is made rigorous in Propositions 4.4, 4.7, and 4.8.
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In a similar way to [8], we show that the jump set Ju takes the form

Ju = (Ju ∪ Jun ∪ J∇un)×
(
− 1

2
,
1

2

)
,

where u := (u1, . . . , un−1), concluding the description of the admissible displacements.
Here we point out that in Theorem 3.2 we show (1.2) for all the functions u : Ω1 → Rn

belonging to

KL(Ω1) := {u ∈ GSBD(Ω1) : ei,n(u) = 0 in Ω1, Hn−1(Ju) <∞, (νu)n = 0 on Ju} ,
where we do not consider any higher integrability of the approximate symmetric gradi-
ent e(u). Hence, our method highlights the fact that the nature of the Kirchhoff-Love
structure does not depend on a p-integrability (p > 1) of the approximate symmetric
gradient.

Finally, we extend the Γ-convergence result of Theorem 3.5 to the case of non-
homogeneous Dirichlet boundary conditions in Corollary 4.10 and further discuss the
convergence of minima and minimizers in Theorem 4.12 and Corollary 4.13. With
respect to [8], we notice that in the proof of convergence of minima and minimizers
we can not rely on the (higher) integrability of the displacement. Hence, we apply
the recent compactness result in GSBDp, p > 1, obtained in [14] (see also [3] for an
alternative proof and for the case p = 1).

2. Preliminaries and notation

We briefly recall here the notation used throughout the paper. For n, k ∈ N, we
denote by Ln the Lebesgue measure in Rn and by Hk the k-dimensional Hausdorff
measure in Rn. The symbol Mn stands for the space of square matrices of order n
with real coefficients, while Mn

s indicates the subspace of Mn of squared symmetric
matrices of order n. For every r > 0 and every x ∈ Rn, we denote by Br(x) the open
ball in Rn of radius r and center x. We will indicate with {e1, . . . , en} the canonical
basis of Rn and with 1E the characteristic function of a set E ⊆ Rn. For every
ξ ∈ Sn−1, πξ stands for the projection over the subspace ξ⊥ orthogonal to ξ. If ξ = ei
for i = 1, . . . , n, we use the symbol πi.

For every U ⊆ Rn open, we denote byMb(U) andM+
b (U) the set of bounded Radon

measures and of positive bounded Radon measures in U , respectively. Let m ∈ N with
m ≥ 1. For every Ln-measurable function v : U → Rm and every x ∈ U such that

lim sup
r↘0

Ln(U ∩Br(x))

rn
> 0 ,

we say that a ∈ Rm is the approximate limit of v at x if

lim
r↘0

Ln(U ∩Br(x) ∩ {|v − a| > ε})
rn

= 0 for every ε > 0 .

In this case, we write

ap- lim
y→x

v(y) = a .

We say that x ∈ U is an approximate jump point of v, and we write x ∈ Jv, if there
exist a, b ∈ Rm with a 6= b and ν ∈ Sn−1 such that

ap- lim
y→x

(y−x)·ν>0

v(x) = a and ap- lim
y→x

(y−x)·ν<0

v(x) = b .

In particular, for every x ∈ Jv the triple (a, b, ν) is uniquely determined up to a change
of sign of ν and a permutation of a and b. We indicate such triple by (v+(x), v−(x), νv(x)).
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The jump of v at x ∈ Jv is defined as [v](x) := v+(x)− v−(x). We denote by (νv)i the
components of νv, for i = 1, . . . , n.

The space BV (U ;Rn) of functions of bounded variation is the set of u ∈ L1(U ;Rn)
whose distributional gradient Du is a bounded Radon measure on U with values in Mn.
Given u ∈ BV (U ;Rn), we can write Du = Dau + Dsu, where Dau is absolutely con-
tinuous and Dsu is singular w.r.t. Ln. The set Ju is countably (Hn−1, n−1)-rectifiable
and has approximate unit normal vector νu, while the density ∇u ∈ L1(U ;Mn) of Dau
w.r.t. Ln coincides a.e. in U with the approximate gradient of u, that is, for a.e. x ∈ U
it holds

ap- lim
y→x

u(y)− u(x)−∇u(x) · (y − x)

|x− y|
= 0 .

The space SBV (U ;Rn) of special functions of bounded variation is defined as
the set of all u ∈ BV (U ;Rn) such that |Dsu|(U \ Ju) = 0. Moreover, we denote
by SBVloc(U ;Rn) the space of functions belonging to SBV (V ;Rn) for every V b U .
For p ∈ [1,+∞), SBV p(U ;Rn) stands for the set of functions u ∈ SBV (U ;Rn) with
approximate gradient ∇u ∈ Lp(U ;Mn) and Hn−1(Ju) < +∞.

We say that u ∈ GSBV (U ;Rn) if ϕ(u) ∈ SBVloc(U ;Rn) for every ϕ ∈ C1(Rn;Rn)
whose gradient has compact support. Also for u ∈ GSBV (U ;Rn) the approximate
gradient ∇u exists Ln-a.e. in U and the jump set Ju is countably (Hn−1, n − 1)-
rectifiable, with approximate unit normal vector νu. For p ∈ [1,+∞), we define
GSBV p(U ;Rn) as the set of functions u ∈ GSBV (U ;Rn) such that ∇u ∈ Lp(U ;Mn)
and Hn−1(Ju) < +∞. We refer to [5, Sections 3.6, 3.9, and 4.5] for more details on
the above spaces.

In a similar fashion, the space BD(U) of functions of bounded deformation is defined
as the set of functions u ∈ L1(U ;Rn) whose distributional symmetric gradient Eu is
a bounded Radon measure on U with values in Mn

s . In particular, we can split Eu as
Eu = Eau + Esu, where Eau is absolutely continuous and Esu is singular w.r.t. Ln.
Furthermore, the density e(u) ∈ L1(U ;Mn

s ) of Eau is the approximate symmetric
gradient of u, meaning that for a.e. x ∈ U it holds

ap- lim
y→x

(
u(y)− u(x)− e(u)(x)(y − x)

)
· (y − x)

|x− y|2
= 0 . (2.1)

The space SBD(U) of special functions of bounded deformation is the set of u ∈
BD(U) such that |Esu|(U \Ju) = 0. For p ∈ (1,+∞), we further denote by SBDp(U)
the space of functions u ∈ SBD(U) such that Hn−1(Ju) < +∞ and e(u) ∈ Lp(U ;Mn

s ).
We now give the definition of GSBD(U), the space of generalized special functions

of bounded deformation [16]. For u : U → Rn measurable, ξ ∈ Sn−1, y ∈ Rn, and
V ⊆ Rn, we set

Πξ := {z ∈ Rn : z · ξ = 0} , V ξ
y := {t ∈ R : y + tξ ∈ V } ,

ûξy := u(y + tξ) · ξ for every t ∈ V ξ
y , J1

ûξy
:= {t ∈ V ξ

y : |[ûξy]| > 1} .

Then, we say that u ∈ GSBD(U) if there exists λ ∈ M+
b (U) such that for every

ξ ∈ Sn−1 one of the two equivalent conditions is satisfied [16, Theorem 3.5]:

• for every θ ∈ C1(R; [−1
2 ; 1

2 ]) such that 0 ≤ θ′ ≤ 1, the partial derivative
Dξ(θ(u · ξ)) belongs to Mb(U) and |Dξ(θ(u · ξ))|(B) ≤ λ(B) for every Borel
subset B of U ;

• for Hn−1-a.e. y ∈ Πξ the function ûξy belongs to SBVloc(U
ξ
y ) and∫

Πξ

∣∣(Dûξy)∣∣(Bξ
y \ J1

ûξy

)
+H0

(
Bξ
y ∩ J1

ûξy

)
dHn−1(y) ≤ λ(B)
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for every Borel subset B of U .

For u ∈ GSBD(U), the approximate symmetric gradient e(u) in (2.1) exists a.e. in U
and belongs to L1(U ;Mn

s ). Its components are denoted by ei,j(u) for i, j ∈ {1, . . . , n}.
The jump set Ju is countably (Hn−1, n− 1)-rectifiable with approximate unit normal
vector νu.

Finally, if U has a Lipschitz boundary ∂U and v ∈ GSBD(U), there exists a function
Tr(v) : ∂U → Rn such that for Hn−1-a.e. x ∈ ∂U

Tr(v)(x) = ap- lim
y→x
y∈U

v(y) .

We refer to Tr(v) as the trace of v on ∂U . Finally, for p ∈ (1,+∞) we say that
u ∈ GSBDp(U) if e(u) ∈ Lp(U ;Mn

s ) and Hn−1(Ju) < +∞. We further refer to [16]
for an exhaustive discussion on the fine properties of functions in GSBD(U).

3. Setting of the problem and main results

In this section we present the setting of the problem and the main results of the
paper. We start by discussing the energy functional that we consider in the non-
rescaled reference configuration. Let ω be an open bounded subset of Rn−1 with
Lipschitz boundary ∂ω. As we aim at deducing a model of brittle fracture on thin films
moving from the variational theory of brittle fractures in linearly elastic materials [9],
we endow ω with a fictitious thickness ρ > 0 and define Ωρ := ω× (−ρ

2 ,
ρ
2). Therefore,

the starting point of our analysis is the functional

Fρ(u) :=
1

2

∫
Ωρ

Ce(u) · e(u) dx+Hn−1(Ju) , (3.1)

where the displacement u : Ωρ → Rn belongs GSBD2(Ωρ) and C stands for the usual
linear elasticity tensor. In a fracture mechanics setting [9, 27], the volume integral
in (3.1) is the stored elastic energy, while the surface term denotes the energy dissipated
by the production of a fracture set Ju. We assume in (3.1) that the elastic body Ωρ

is homogeneous outside the crack Ju. Thus, the elasticity tensor C is supposed to be
constant in space. As usual, we assume that C is positive definite, that is, there exist
0 < c1 ≤ c2 < +∞ such that

c1|E|2 ≤ CE ·E ≤ c2|E|2 for every E ∈Mn
s . (3.2)

As it is customary in dimension reduction, we rescale the energy functional Fρ to
the fixed domain Ω1 = ω ×

(
− 1

2 ,
1
2

)
, the so called rescaled configuration. Proceeding

as in [8, Section 3.2], for every v ∈ GSBD2(Ωρ) we define the rescaled function u in
the rescaled configuration Ω1 as

u(x) :=
(
v1(ψρ(x)), . . . , ρvn(ψρ(x))

)
, ψρ(x) := (x′, ρxn) , for (x′, xn) ∈ Ω1 .

(3.3)
We notice that for x ∈ Ω1 and α, β = 1, . . . , n− 1 it holds

eα,β(v)(ψρ(x)) = eα,β(u)(x) =: eρα,β(u)(x) , (3.4)

eα,n(v)(ψρ(x)) =
1

ρ
eα,n(u)(x) =: eρα,n(u)(x) , (3.5)

en,n(v)(ψρ(x)) =
1

ρ2
en,n(u)(x) =: eρn,n(u)(x) . (3.6)
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We further define

φρ(ν) :=

∣∣∣∣(ν1, . . . ,
1

ρ
νn

)∣∣∣∣ for every ρ > 0 and every ν ∈ Rn . (3.7)

By a change of coordinate and using the notation (3.4)–(3.7), we rewrite (3.1) computed
for v ∈ GSBD2(Ωρ) as

Gρ(u) :=
ρ

2

∫
Ω1

Ceρ(u) · eρ(u) dx+ ρ

∫
Jv

φρ(νu) dHn−1 . (3.8)

Considering the functional (3.8) for u ∈ GSBD2(Ω1), we define

Eρ(u) :=


1

ρ
Gρ(u) for u ∈ GSBD2(Ω1) ,

+∞ otherwise in L0(Ω1) .
(3.9)

We now study the limit of Eρ as the thickness parameter ρ tends to 0. Before giving
the exact expression of the limit functional, however, we investigate the closedness of
a converging sequence uρ ∈ GSBD2(Ω1) equi-bounded in energy.

Proposition 3.1. Let uρ ∈ GSBD2(Ω1) and u : Ω1 → Rn measurable be such that

sup
ρ>0
Eρ(uρ) < +∞ (3.10)

and uρ → u in measure as ρ → 0. Then, u ∈ GSBD2(Ω1), e(uρ) ⇀ e(u) weakly
in L2(Ω1;Mn

s ), ei,n(u) = 0 and ei,n(uρ)→ 0 in L2(Ω1) for i = 1, . . . , n, and (νu)n = 0
Hn−1-a.e. on Ju.

Proof. From (3.10) we clearly deduce that e(uρ) is bounded in L2(Ω1;Mn
s ) and admits,

up to a subsequence, a weak limit f ∈ L2(Ω1;Mn
s ). Since uρ → u in measure in Ω1,

from (3.10) and [16, Theorem 11.3] we deduce that u ∈ GSBD2(Ω1) with e(u) = f
and that e(uρ) ⇀ e(u) weakly in L2(Ω1;Mn

s ).
By definition of Eρ and by (3.2) we have that

c1‖eα,n(uρ)‖22 = c1ρ
2‖eρα,n(uρ)‖22 ≤ ρ2Eρ(uρ)

and similarly c1‖en,n(uρ)‖22 ≤ ρ4Eρ(uρ). Hence, (3.10) implies that ei,n(uρ) → 0 in
L2(Ω1;Mn

s ), from which we deduce that ei,n(u) = 0 for i = 1, . . . , n.
Finally, by [31, Proposition 4.6], for every ρ̃ > 0 we have that

1

ρ̃

∫
Ju

|(νu)n| dHn−1 ≤
∫
Ju

φρ̃(νu) dHn−1 ≤ lim inf
ρ→0

∫
Juρ

φρ̃(νuρ) dHn−1

≤ lim inf
ρ→0

∫
Juρ

φρ(νuρ) dHn−1 ≤ lim inf
ρ→0

Eρ(uρ) .

Letting ρ̃→ 0 in the previous inequality and using again (3.10) we infer that (νu)n = 0
Hn−1-a.e. on Ju. �

In view of Proposition 3.1, we expect the limit functional to be defined on the space

KL2(Ω1) := {u ∈ GSBD2(Ω1) : ei,n(u) = 0 in Ω1 for i = 1, . . . , n, (3.11)

and (νu)n = 0 on Ju} .
We also define the space

KL(Ω1) := {u ∈ GSBD(Ω1) : ei,n(u) = 0 in Ω1 for i = 1, . . . , n, (3.12)

Hn−1(Ju) < +∞, and (νu)n = 0 on Ju} .
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We further denote by KL2(U) and KL(U) the same spaces defined on a generic open
subset U of Rn.

In the next theorem we complete the description of KL(Ω1). We collect in Corol-
lary 3.4 the properties of functions u obtained as limits of sequences uρ equi-bounded
in energy. The proof of the theorem is given in Section 4 (see, in particular, Proposi-
tions 4.3–4.7).

Theorem 3.2. Let u ∈ KL(Ω1). Then, the following facts hold:

(i) un does not depend on xn and it is approximately differentiable for Hn−1-
a.e. x′ ∈ ω. Moreover, denoting by ∇un its approximate gradient, we have
∇un ∈ GSBD(ω);

(ii) for Ln-a.e. (x′, xn) ∈ Ω1 we have

uα(x′, xn) = uα(x′)− xn∂αun(x′), α = 1, . . . , n− 1, (3.13)

where uα(x′) :=
∫ 1/2
−1/2 uα(x′, xn) dxn and u := (u1, . . . , un−1) ∈ GSBD(ω);

(iii) Ju = (Ju ∪ Jun ∪ J∇un)×
(
− 1

2 ,
1
2

)
.

Remark 3.3. In view of Theorem 3.2 we have that the space KL(Ω1) in (3.12) is
(n− 1)-dimensional in nature, as the out of plane component un only depends on the
planar coordinates x′, while the planar components uα, α = 1, . . . , n−1 depend linearly
on xn through (3.13). However, the approximate symmetric gradient e(u) ∈Mn

s can be
identified with an element of Mn−1

s , since the n-th column and the n-th row are zero.
The structure highlighted in Theorem 3.2 is typical of the so called Kirchhoff-Love
plate, which appears in many dimension reduction problems in elasticity. As already
mentioned in Section 1, Theorem 3.2 also states that the Kirchhoff-Love structure of
the displacement does not depend on the p-integrability of its approximate symmetric
gradient.

As a corollary of Theorem 3.2 we obtain the following.

Corollary 3.4. If u ∈ KL2(Ω1), then the items (i)–(iii) of Theorem 3.2 hold true with
the modification ∇un ∈ GSBD2(ω) and u ∈ GSBD2(ω).

In view of Remark 3.3 and of Corollary 3.4, it is convenient to introduce the following
reduced linear elasticity tensor:

C0E ·E := min
ξ∈Rn

CEξ ·Eξ for every E ∈Mn−1
s , (3.14)

where for every ξ ∈ Rn we have set

Eξ :=


e1,1 · · · e1,n−1 ξ1

...
. . .

...
...

en−1,1 · · · en−1,n−1 ξn−1

ξ1 · · · ξn−1 ξn

 (3.15)

With this notation at hand, the Γ-limit of Eρ writes

E0(u) :=


1

2

∫
Ω
C0e(u) · e(u) dx+Hn−1(Ju) if u ∈ KL2(Ω1),

+∞ otherwise in L0(Ω1),

and we have the following convergence result.

Theorem 3.5. The sequence Eρ Γ-converges to E0 w.r.t. the topology induced by the
convergence in measure.

The proof of Theorem 3.5 is given in Section 4.
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4. Proofs of Theorems 3.2 and 3.5

We start by proving Theorem 3.2. Its proof is articulated in the next four proposi-
tions. The first two give an approximation result in the spirit of [12, Section 4, Theorem
1] and [30, Theorem 5]. The last two propositions, instead, provide intermediate results
for the proof of items (i)–(iii) of Theorem 3.2.

We now recall the definition (cf. [30, formulas (39)–(41)]) of good/bad hyper-cubes
of an (n−1)-dimensional grid of Rn in relation with a rectifiable set with finite (n−1)-
dimensional Hausdorff measure.

Definition 4.1. Let h ∈ R+. The (n− 1)-dimensional h-grid Q0
h centered at zero and

parallel to the coordinate axis is defined as

Q0
h :=

n⋃
i=1

⋃
z∈hZ
{x ∈ Rn : xi = z} .

A generic (n − 1)-dimensional h-grid Qh parallel to the coordinate axis is obtained
simply by translating of a generic vector y ∈ [0, 1)n, i.e., Qh = Q0

h + hy.
We say that Q is a hyper-cube of Qh = Q0

h + hy if there exists z ∈ hZn such that

Q = z + hy + (0, h)n.

Definition 4.2. Let Γ ⊂ Rn be a countably (Hn−1, n−1)-rectifiable set withHn−1(Γ) <
∞. For every y ∈ Rn we introduce the directional half-neighborhood Jy of Γ

Jy :=
⋃
x∈Γ

[x, x− y] ,

where [a, b] denotes the segment joining a, b ∈ Rn. Set D := {ei, ei ± ej , i, j =
1, . . . , n, i 6= j}. Given an (n − 1)-dimensional h-grid Qh, we say that a hyper-cube
Qyh = z + hy + (0, h)n of Qh is a bad hyper-cube relative to Γ if there exist e ∈ D and
η ∈ {0, 1}n such that

z + hy + hη ∈ Jhe, with ηi = 0, if e = ei ,

z + hy + hη ∈ Jhe, with ηi = ηj = 0, if e = ei + ej ,

z + hy + hη + hej ∈ Jhe, with ηi = ηj = 0, if e = ei − ej .

Otherwise, we say that a hyper-cube of Qh is a good hyper-cube relative to Γ.

The following proposition provides an estimate of the Hn−1-measure of the bound-
aries of the bad hyper-cubes, which will be useful in view of the approximating result
of Proposition 4.4.

Proposition 4.3. Let Γ ⊂ Rn be a countably (Hn−1, n−1)-rectifiable set with Hn−1(Γ) <
∞, and let Γj be a sequence of measurable sets such that

Γj ⊂ Γ for every j ∈ N and
∞∑
j=1

Hn−1(Γj) = L <∞ .

Moreover, for every j ∈ N, every h > 0, and every y ∈ [0, 1)n, let Bh,j,y be the family
of bad hyper-cubes of Q0

h + hy relative to Γj and define

Ah,j :=
⋃

Q∈Bh,j,y

Q . (4.1)

Then, for every δ > 0 there exists a subset H ⊂ (0, 1)n with Ln((0, 1)n \ H) ≤ δ for
which for every y ∈ H there exist a sequence hk ↘ 0 and a sequence jm ↗ ∞ such
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that

lim sup
k→∞

Hn−1(∂Ahk,jm) < +∞ for every m, (4.2)

lim
m→∞

lim sup
k→∞

Hn−1(∂Ahk,jm) = 0 . (4.3)

Proof. Let D be as in Definition 4.2. For every j ∈ N let us denote by Jej the directional
half-neighborhood of Γj and define the discrete jump energy

Ey,h(Γj) := hn
∑
e∈D

∑
z∈hZn

1Jhej
(z + hy)

h|e|
.

Notice that, by definition of bad hyper-cubes, we have

Ey,h(Γj) ≥ C #Bh,j,yhn−1 , (4.4)

for a positive constant C independent of h and j. Moreover for every h we can give
the following estimate∫

[0,1)n

∞∑
j=1

Ey,h(Γj) dy =
∞∑
j=1

∑
e∈D

∑
z∈hZn

hn
∫

[0,1)n

1Jhej
(z + hy)

h|e|
dy

=
∞∑
j=1

∑
e∈D

∫
Rn

1Jhej
(y)

h|e|
dy =

∞∑
j=1

∑
e∈D

∫
Πe

(∫
R

1Jhej
(y + se)

h|e|
ds

)
dy

≤
∞∑
j=1

∑
e∈D

∫
Πe
H0((Γj)

e
y) dy ≤ c

∞∑
j=1

Hn−1(Γj) = cL ,

where c = max|ν|=1(
∑

e∈D |ν·e|/|e|). Therefore, if we set g(y) := lim infh→0+
∑∞

j=1E
y,h(Γj)

and define

H := {y ∈ [0, 1)n | g(y) ≤ cL/δ} ,
by Fatou lemma and Chebyshev inequality we get that

Ln([0, 1)n \H) ≤ δ .
Moreover, if y ∈ H, we have, up to passing to a subsequence depending on y, that

g(y) = lim
h→0+

∞∑
j=1

Ey,h(Γj) ≤
cL

δ
. (4.5)

Again by Fatou lemma we have, along the same subsequence, that
∞∑
j=1

lim inf
h→0+

Ey,h(Γj) ≤ g(y) ≤ cL

δ
. (4.6)

Therefore, for every ε1 > 0 there exists j1 ∈ N such that

lim inf
h→0+

Ey,h(Γj1) ≤ ε1 .

In particular, we can find a subsequence h1
k ↘ 0 such that

lim
k→∞

Ey,h
1
k(Γj1) = lim inf

h→0+
Ey,h(Γj1) ≤ ε1 .

Since the bounds (4.5)–(4.6) are still valid along the subsequence (h1
k)k, given ε2 > 0

we can find a sufficiently large j2 ∈ N for which

lim inf
k→∞

Ey,h
1
k(Γj2) ≤ ε2 .
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As before, we can find a subsequence (h2
k)k ⊂ (h1

k)k such that h2
k ↘ 0 and

lim
k→∞

Ey,h
2
k(Γj2) = lim inf

k→∞
Ey,h

1
k(Γj2) ≤ ε2 .

By induction, given a sequence εm ↘ 0, we can construct a sequence jm ↗∞ and, for
every m ∈ N, the subsequences (hmk )k ⊂ (hm−1

k )k satisfying

lim
k→∞

Ey,h
m
k (Γjm) = lim inf

k→∞
Ey,h

m−1
k (Γjm) ≤ εm .

Setting hk := hkk for every k, we infer that hk ↘ 0 and

lim
k→∞

Ey,hk(Γjm) ≤ εm for every m.

Finally, by (4.4) and by definition (4.1) of Ahk,jm we estimate, for a suitable con-
stants c1(n), c2(n) > 0 depending only on the dimension n,

lim sup
k→∞

Hn−1(∂Ahk,jm) ≤ c1(n) lim sup
k→∞

#Bhk,jm,y h
n−1
k

≤ c2(n) lim sup
k→∞

Ey,hk(Γjm) ≤ c2(n)εm ,

so that (4.2) holds. By letting m→∞ in the previous inequality we infer (4.3). �

We now provide an approximation result for a function v ∈ GSBD(Ω1) in terms
of more regular functions vk whose jump Jvk is contained in an (n − 1)-dimensional

h-grid Qh and that are W 1,∞ out of Jvk , as in [30, Theorem 5]. The main difference
is that here, in order to later prove Theorem 3.2, we have to carefully estimate the
measure Hn−1(πn(Jvk)), where πn denotes the orthogonal projection of Rn onto e⊥n .
We further point out that our approximation is local in space, i.e., for Ω′ b Ω1, and
that we do not need to approximate v in energy, as done in [13]. For these reasons, a
construction similar to that in [30, Theorem 5] can be performed in our setting without
the additional assumptions v ∈ L2(Ω1;Rn) and e(v) ∈ L2(Ω1;Mn

s ), which were instead
crucial in [12, 30] to guarantee the convergence in energy and to construct a recovery
sequence.

Proposition 4.4. Let U ⊂ Rn be open, v ∈ GSBD(U) with Hn−1(Jv) < ∞, and
V b U a Lipschitz regular domain with Hn−1(∂V ∩ Jv) = 0. Then, there exists
(vk)

∞
k=1 ⊂ GSBD(V ) ∩W 1,∞(V \ Jvk ;Rn) such that

(i) vk → v in measure in V as k →∞;
(ii) e(vk) ⇀ e(v) weakly in L1(V ;Mn

s ) as k →∞;
(iii) for every ξ ∈ Sn−1

lim
k→∞

Hn−1(πξ(Jvk) \ πξ(Jv ∩ V )) = 0 ;

(iv) Tr(vk)→ Tr(v) in Hn−1-measure on ∂V as k →∞;
(v) If v · ej is independent of xi, then for Hn−1-a.e. x′ /∈ πei(Jvk) the function t 7→

vk(x
′ + tei) · ej is constant.

Proof. First we prove that there exists a sequence (vh)h>0 ⊂ GSBD(V ) ∩W 1,∞(V \
Jvh ;Rn) satisfying (i), (ii), (iv), and (v) as h→ 0+, plus the fact that Jvh ⊆ Q0

h + hy
for some y ∈ [0, 1)n. In order to prove this, we proceed similarly to [30, Theorem 5]:
consider for a.e. y ∈ [0, 1)n the (n − 1)-dimensional h-grid Q0

h + hy and consider the
discretized function of v

vyh(ξ) := v(ξ + hy), ξ ∈ hZn ∩ (U − hy) ,
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and define the continuous interpolation of vyh

wyh(x) :=
∑

ξ∈hZn∩U
vyh(ξ)∆

(
x− (ξ + hy)

h

)
for x ∈ V ,

where

∆(x) :=
n∏
i=1

(1− |xi|)+.

Let us fix V b V ′ b U and let us define the piecewise constant strain in the direction
e ∈ D as

Ey,he (x) :=
∑
ξ∈V ′

[(vyh(ξ + he)− vyh(ξ)) · e]
h

cye,h(ξ)1ξ+hy+[0,h)n(x), x ∈ V ,

where cye,h(ξ) := 1 − 1Jeh(ξ + hy). Notice that, since V b V ′ b U , then Ey,he is well

defined in V for every sufficiently small h > 0. We claim that

lim
h→0+

∫
[0,1)n

(∫
V
|Ey,he (x)− fe(x)|dx

)
dy = 0 for every e ∈ D, (4.7)

where fe := e(v)e · e. In order to simplify the next computation let us set

Qyh(ξ) := [ξ + hy + [0, h)n] ∩ V , Uyh := U − hy .

Now we write∫
[0,1)n

(∫
V
|Ey,he (x)− fe(x)|dx

)
dy (4.8)

=

∫
[0,1)n

(∑
ξ∈V ′

∫
Qyh(ξ)

∣∣∣∣(v(ξ + hy + he)− v(ξ + hy)) · e
h

cye,h(ξ)− fe(x)

∣∣∣∣dx)dy

=

∫
V

(∑
ξ∈V ′

∫
[0,1)n

∣∣∣∣(v(ξ + hy + he)− v(ξ + hy)) · e
h

cye,h(ξ)− fe(x)

∣∣∣∣1Qyh(ξ)(x) dy

)
dx

≤
∫
V

(∑
ξ∈V ′
−
∫
ξ+[0,h)n

∣∣∣∣(v(z + he)− v(z)) · e
h

1U\Jeh(z)− fe(x)

∣∣∣∣1[0,1)n

(
x− z
h

)
dz

)
dx ,

where in the last inequality we have performed the change of variable z = ξ + hy and
we have used the trivial inclusion [0, 1)n ∩ (V−ξh − y) ⊂ [0, 1)n. We can continue the
estimate (4.8) by noticing that the cubes ξ + [0, h)n are pairwise disjoints, so that∫

[0,1)n

(∫
V
|Ey,he (x)− fe(x)| dx

)
dy (4.9)

≤
∫
V

(
1

hn

∫
U

∣∣∣∣(v(z + he)− v(z)) · e
h

1U\Jeh(z)− fe(x)

∣∣∣∣1[0,1)n

(
x− z
h

)
dz

)
dx

≤
∫
V

(
1

hn

∫
U\Jeh

∣∣∣∣(v(z + he)− v(z)) · e
h

− fe(x)

∣∣∣∣1[0,1)n

(
x− z
h

)
dz

)
dx

+

∫
V

(
1

hn

∫
Jeh
|fe(x)|1[0,1)n

(
x− z
h

)
dz

)
dx .
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We treat the last two integrals in (4.9) separately. For the first we have that∫
V

(
1

hn

∫
U\Jeh

∣∣∣∣(v(z + he)− v(z)) · e
h

− fe(x)

∣∣∣∣1[0,1)n

(
x− z
h

)
dz

)
dx

=

∫
V

(
1

hn

∫
Πe

(∫
(U\Jeh)ey

∣∣∣∣(v(y + te+ he)− v(y + te)) · e
h

− fe(x)

∣∣∣∣1[0,1)n

(
x− y − te

h

)
dt

)
dy

)
dx

≤
∫
V

(
1

hn

∫
Πe

(∫
(U\Jeh)ey

(
−
∫ h

0
|Dsv(y + te+ se) · e− fe(x)| ds

)
1[0,1)n

(
x− y − te

h

)
dt

)
dy

)
dx

=

∫
V

(
1

hn

∫
Πe

(∫
(U\Jeh)ey

(
−
∫ h

0
|fe(y + te+ se)− fe(x)| ds

)
1[0,1)n

(
x− y − te

h

)
dt

)
dy

)
dx,

where in the last equality we have used the fact that t /∈ (U \ Jeh)ey implies {t + s :
s ∈ [0, h)} ∩ (Ju)ey = ∅. We can continue the previous estimate with∫

V

(
1

hn

∫
U\Jeh

∣∣∣∣(v(z + he)− v(z)) · e
h

− fe(x)

∣∣∣∣1[0,1)n

(
x− z
h

)
dz

)
dx

≤
∫
V

(
−
∫ h

0

(
1

hn

∫
U
|fe(z + se)− fe(x)|1[0,1)n

(
x− z
h

)
dz

)
ds

)
dx

= −
∫ h

0

(∫
V

(
−
∫
x−[0,h)n

|fe(z + se)− fe(x)| dz
)

dx

)
ds

= −
∫ h

0

(∫
V

(
−
∫

[0,h)n
|fe(x− z + se)− fe(x)|dz

)
dx

)
ds

=

∫ 1

0

(∫
[0,1)n

(∫
V
|fe(x+ h(se− z))− fe(x)|dx

)
dz

)
ds .

The continuity property of the translations in L1(U) plus the Dominated Convergence
Theorem allow us to deduce that

lim
h→0+

∫
V

(
1

hn

∫
U\Jeh

∣∣∣∣(v(z + he)− v(z)) · e
h

− fe(x)

∣∣∣∣1[0,1)n

(
x− z
h

)
dz

)
dx (4.10)

≤ lim
h→0+

∫ 1

0

(∫
[0,1)n

(∫
V
|fe(x+ h(se− z))− fe(x)| dx

)
dz

)
ds = 0 .

The second term on the right-hand side of (4.9) can be estimated as follows∫
V

(
1

hn

∫
Jeh
|fe(x)|1[0,1)n

(
x− z
h

)
dz

)
dx ≤

∫
Jeh

(
−
∫

[0,h)n
|fe(z + x)|dx

)
dz

=

∫
[0,1)n

(∫
Jeh+hx

|fe(z)| dz
)

dx .

Being Ln(Jeh) infinitesimal as h → 0+ (see the proof of Proposition 4.3), we easily
deduce that

lim
h→0+

∫
V

(
1

hn

∫
Jeh
|fe(x)|1[0,1)n

(
x− z
h

)
dz

)
dx (4.11)

≤ lim
h→0+

∫
[0,1)n

(∫
Jeh+hx

|fe(z)| dz
)

dx = 0 .

As a consequence of (4.9)–(4.11) we obtain the claim (4.7). Moreover, by looking at
the proof of [30, Theorem 5, formulas (1’)–(3’b)], thanks to the fact that V b U and
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Hn−1(∂V ∩ Jv) = 0, we deduce that

lim
h→0+

∫
[0,1)n

(∫
V
|wyh(x)− v(x)| ∧ 1 dx

)
dy = 0 , (4.12)

lim
h→0+

∫
[0,1)n

(∫
∂V
|Tr(wyh)(x)− Tr(v)(x)| ∧ 1 dHn−1(x)

)
dy = 0 , (4.13)

lim
h→0+

∫
[0,1)n

Ey,h2 ((∂V )nh) dy = 0 , (4.14)

where (∂V )nh := {x ∈ Rn : d(x, ∂V ) < nh} and Ey,h2 ((∂V )nh) is defined as in [30,
formula (32)] as

Ey,h2 ((∂V )nh) := hn
∑
e∈D

∑
ξ∈(∂V )nh−hy

ξ∈(∂V )nh−hy−he

1Jhe(ξ+hy)

h|e|
.

We recall that since Jv is countably (Hn−1, n−1)-rectifiable and has finite measure,
arguing similarly to [20, Lemma 3.2.18] we find a sequence Kj of compact subsets
of Rn−1 with associated Lipschitz maps ψj : Kj → Rn such that ψj1(Kj1)∩ψj2(Kj2) = ∅
for j1 6= j2 and

Hn−1

(
Jv \

∞⋃
j=1

ψj(Kj)

)
= 0 and Hn−1(ψj(Kj) \ Jv) = 0 for j ∈ N . (4.15)

In addition, being Hn−1(∂V ∩ Jv) = 0 we may also suppose that

ψj(Kj) b V or ψj(Kj) b U \ V for j ∈ N . (4.16)

For every m ∈ N \ {0}, let jm be such that∑
j>jm

Hn−1(ψj(Kj)) ≤
1

m2
. (4.17)

Let us set ΓJ0 := Jv and Γjm := ∪j>jmψj(Kj) for m ≥ 1. In view of (4.15)–
(4.17) we can apply Proposition 4.3 from which we deduce, in combination with (4.7)
and (4.12)–(4.14), that there exists y ∈ [0, 1)n, a subsequence of (jm)m, which with
abuse of notation we still denote by (jm)m, and a subsequence (hk)k for which we have

lim
k→∞

∫
V
|Ey,hke (x)− fe(x)| dx = 0 for e ∈ D, (4.18)

lim
k→∞

∫
V
|wyhk(x)− v(x)| ∧ 1 dx = 0 , (4.19)

lim
k→∞

∫
∂V
|Tr(wyhk)(x)− Tr(v)(x)| ∧ 1 dHn−1(x) = 0 , (4.20)

lim
k→∞

Ey,hk2 ((∂V )nhk) = 0 , (4.21)

lim
m→∞

lim sup
k→∞

Hn−1(∂Ahk,jm) = 0 , (4.22)

lim sup
k→∞

Hn−1(∂Ahk,jm) < +∞ for every m, (4.23)

where Ahk,jm is the union of bad hyper-cubes of Q0
hk

+hky relative to Γjm . We further
notice that, following the proof of Proposition 4.3, we may assume that the first term
of the subsequence Γj0 = Jv. Since y is fixed, in what follows we omit the dependence
on y.
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Now we proceed with the construction of (vk)
∞
k=1. Arguing similarly to [30, Theo-

rem 5] we define the function vk equals to 0 on each bad hyper-cube of Q0
hk

relative

to Jv and vk := whk otherwise in V . In this way (4.19)–(4.21) imply (i) and (iv) by
arguing in a very same way as in [30, Theorem 5], while (v) comes by construction.
To prove (ii) we first notice that (4.18) implies in particular that

Ehke ⇀ fe, weakly in L1(V ) as k →∞.
By using Dunford-Pettis Theorem, we deduce the existence of a positive and increasing
map ϕ : R+ → R+ with limt→+∞ ϕ(t)/t = +∞, for which

sup
k∈N

∫
V
ϕ(|Ehke |) dx < +∞ .

On the other hand it is possible to verify that for a.e. x belonging to a good hyper-cube
of Q0

hk
relative to Jv the continuous interpolation whk satisfies

|e(whk)(x)e · e| ≤ C|Ehke (x)| , (4.24)

for a dimensional constant C > 0. For instance, if e = e1 we have that

e(whk)(x)e1 · e1 =
∑

ξ∈hkZn∩U
e

(
vyhk(ξ)∆

(
x− (ξ + hky)

hk

))
e1 · e1

= − 1

hk

∑
ξ∈hkZn∩U

x1−ξ1−hky1∈(0,h)

(
vyhk(ξ) · e1

)( n∏
j 6=1

(1− |xj − ξj − hkyj |)+

)

+
1

hk

∑
ξ∈hkZn∩U

x1−ξ1−hky1∈(−h,0)

(
vyhk(ξ) · e1

)( n∏
j 6=1

(1− |xj − ξj − hkyj |)+

)

=
∑

ξ∈hkZn∩U
x1−ξ1−hky1∈(0,h)

(
(vyhk(ξ + hke1)− vyhk(ξ)) · e1

)
hk

( n∏
j 6=1

(1− |xj − ξj − hkyj |)+

)
cye1,hk(ξ) ,

where, in the last step, we have used the fact that x belongs to a good hyper-cube.
Hence, we deduce (4.24) for e = e1. In a similar way, we can conclude (4.24) for every
e ∈ D.

As a consequence

|e(vk)(x)e · e| ≤ C|Ehke (x)| for a.e. x ∈ V , for e ∈ D.
For this reason, if we define the positive, increasing, and superlinear map ψC : R+ →
R+ as ϕC(t) := ϕ(t/C), then we deduce

sup
k∈N

∫
V
ϕC(|e(vk)(x)e · e|) dx < +∞ . (4.25)

Since Γj0 = Jv and, by construction, Jvk ⊂ ∂Ahk,j0 , by (4.23) we have the additional
information

sup
k∈N
Hn−1(Jvk) < +∞ . (4.26)

Combining (4.25) with (4.26) and (i), we can make use for example of the technique
in [16, Theorem 11.3] to deduce the validity of (ii).

To prove (iii) we fix ξ ∈ Sn−1. To simplify the notation we denote by Ak and A′k
the union of bad hyper-cubes of Q0

hk
relative to Jv and Jv ∩ V , respectively. By

construction, Jvk is contained in ∂Ak ∩ V . We proceed as follows: first we estimate
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the measure of the projection of A′k onto ξ⊥, then we show that the measure of the

projection of (Ak\A′k)∩V onto ξ⊥ is infinitesimal as k →∞, and finally we deduce (iii).
In what follows we consider only those indices j for which ψj(Kj) b V (see (4.16)).

Let us denote by Bhk,j the set of bad hyper-cubes relative to ψj(Kj) and let B′hk,j
be the set of hyper-cubes for which one of their edges is contained in the set {x ∈
V | dist(x, ψj(Kj)) ≤ hk}. Then, Bhk,j ⊆ B′hk,j . Now fix a direction ξ ∈ Sn−1. If we

set B′′k,j := πξ(∪Q∈B′hk,jQ), we have that

Hn−1(B′′k,j \ πξ(ψj(Kj))) = O(1/k) . (4.27)

Indeed, equality (4.27) follows from the fact thatB′′k,j ⊂ {y ∈ Πξ | dist(y, πξ(ψj(Kj))) ≤
(1 +

√
n)hk} and clearly, since πξ(ψj(Kj)) is compact, it holds true

lim
k→∞

Hn−1
(
{y ∈ Πξ | dist(y, πξ(ψj(Kj))) ≤ (1 +

√
n)hk} \ πξ(ψj(Kj))

)
= 0 .

In view of (4.27) given m we can find km such that for every j ≤ jm and for every
k ≥ km

Hn−1(B′′k,j \ πξ(ψj(Kj))) ≤
ε

jm
. (4.28)

Let us define Bk,1 := B′′k,1 and, by induction, Bk,j := B′′k,j \ ∪
j−1
l=1Bk,l for every 1 < j ≤

jm and for every k ≥ km. Notice that (4.28) implies

Hn−1(Bk,j \ πξ(ψj(Kj))) ≤
ε

jm
for 1 ≤ j ≤ jm and k ≥ km . (4.29)

Now for every k ≥ km, by construction we have that if Q ∈ B′hk,j for some 1 ≤ j ≤
jm, then πξ(Q) ⊂

⋃jm
j=1Bk,j . Therefore, we can use (4.15) and (4.29) to estimate for

every k ≥ km

Hn−1

(( jm⋃
j=1

⋃
Q∈Bhk,j

πξ(Q)

)
\ πξ(Jv ∩ V )

)
(4.30)

≤ Hn−1

(( jm⋃
j=1

⋃
Q∈Bhk,j

πξ(Q)

)
\
( ∞⋃
j=1

πξ(ψj(Kj))

))

≤ Hn−1

(( jm⋃
j=1

⋃
Q∈B′hk,j

πξ(Q)

)
\
( ∞⋃
j=1

πξ(ψj(Kj))

))

≤ Hn−1

(( jm⋃
j=1

Bk,j

)
\
( ∞⋃
j=1

πξ(ψj(Kj))

))

≤
jm∑
j=1

Hn−1
(
Bk,j \ πξ(ψj(Kj))

)
≤ ε .

To estimate the Hn−1-measure of the projection of the bad hyper-cubes relative to
Jv∩V which do not belong to Bhk,j for some 1 ≤ j ≤ jm, we can notice that such hyper-
cubes are contained in the family of bad hyper-cubes relative to Γjm = ∪j>jmψj(Kj).
If we denote by A′hk,jm the union of such bad hyper-cubes, we can use relation (4.22)
to write

lim sup
k→∞

Hn−1(πξ(∂A
′
hk,jm

)) ≤ lim sup
k→∞

Hn−1(πξ(∂Ahk,jm)) (4.31)
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≤ lim sup
k→∞

Hn−1(∂Ahk,jm) = O(1/m) ,

where in the first inequality we have used the following general fact

A′ ⊂ A⇒ πξ(∂A
′) ⊂ πξ(∂A),

for every couple of sets A′, A ⊂ Rn with A′ ⊂ A and A bounded. Now we define

A1
k := {Q ∈ Q0

hk
: Q is a bad hyper-cubes for Jv, Q ∩ V 6= ∅, Q ∩ (V \ (∂V )nhk) 6= ∅}

A2
k := {Q ∈ Q0

hk
: Q is a bad hyper-cubes for Jv, Q ∩ V 6= ∅, Q ∩ (V \ (∂V )nhk) = ∅}.

Notice that if Q ∈ A1
k then Q is a bad hyper-cube relative to Jv such that Q ⊂ V . In

particular, the inclusion Q ⊂ V implies that actually Q is a bad hyper-cube relative
to Jv ∩ V . Namely, the following implication holds true

Q ∈ A1
k ⇒ Q ⊂ A′k. (4.32)

On the other hand, if Q ∈ A2
k then Q is a bad hyper-cube relative to Jv such that

Q ⊂ (∂V )nhk which means that each of its edges is contained in (∂V )nhk . A similar
argument to the proof of [30, (3”) in Theorem 5] shows that there exists a dimensional
constant c > 0 for which

(#A2
k)h

n−1 ≤ cEhk2 ((∂V )nhk).

In particular we can infer

Hn−1
(
∂
( ⋃
Q∈A2

k

Q
))
≤ (#A2

k)h
n−1 ≤ cEhk2 ((∂V )nhk) .

Condition (4.21) ensures that

lim
k→∞

Hn−1
(
∂
( ⋃
Q∈A2

k

Q
))

= 0 . (4.33)

Every bad hyper-cube relative to Jv which has non-empty intersection with V is con-
tained in A1

k ∪ A2
k. Therefore, if we set

A1
k :=

⋃
Q∈A1

k

Q and A2
k :=

⋃
Q∈A2

k

Q

we can give the following estimate

Hn−1(πξ(∂Ak ∩ V ) \ πξ(Jv ∩ V )) (4.34)

≤ Hn−1(πξ(∂A
1
k) \ πξ(Jv ∩ V )) +Hn−1(πξ(∂A

2
k))

≤ Hn−1(πξ(∂A
′
k) \ πξ(Jv ∩ V )) +Hn−1(πξ(∂A

2
k)) ,

where for the last inequality we have used (4.32) to deduce that πξ(∂A
1
k) ⊂ πξ(∂A

′
k).

We estimate separately the limsup of the last two terms of (4.34). Concerning the first
term we can use implication (4.32) to write

Hn−1(πξ(∂A
′
k) \ πξ(Jv ∩ V )) ≤ Hn−1(πξ(∂Ahk,jm))

+Hn−1

(( jm⋃
j=1

⋃
Q∈Bhk,j

πξ(Q)

)
\ πξ(Jv ∩ V )

)
,

for every m, where we have used that

πξ(∂(A′k \Ahk,jm)) ⊂
jm⋃
j=1

⋃
Q∈Bhk,j

πξ(Q) .
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Hence, we can make use of (4.30) and (4.31) to write

lim sup
k→∞

Hn−1(πξ(∂A
′
k) \ πξ(Jv ∩ V )) ≤ O(1/m) + ε . (4.35)

The second term on the right-hand side of (4.34) can be estimated by using (4.33), i.e.

lim sup
k→∞

Hn−1(πξ(∂A
2
k)) ≤ lim sup

k→∞
Hn−1

(
∂
( ⋃
Q∈A2

k

Q
))

= 0 . (4.36)

Thanks to (4.35)–(4.36) and the arbitrariness of m ∈ N and ε > 0 we obtain from (4.34)

lim
k→∞

Hn−1(πξ(∂Ak ∩ V ) \ πξ(Jv ∩ V )) = 0 .

Finally, (iii) is proved since Jvk ⊂ ∂Ak ∩ V . �

Remark 4.5. The same argument used in [12, pp. 940–941] and [30, pp. 326–327, proof
of (1’)] shows that whenever v ∈ GSBD2(U) then (ii) of Proposition 4.4 becomes
‖e(vk)−e(v)‖L2(V ) → 0 as k →∞. We further mention that items (i)–(iv) of Proposi-
tion 4.4 can be also deduced, in the setting 1 < p <∞, from the recent results of [11,
Theorem 5.1]. However, property (v) does not directly follow from [11, Theorem 5.1]
because of the lack of regularity of the jump set of the approximating sequence, which
is not essentially closed.

Remark 4.6. Here we limit ourselves to observe that, in point (iii) of the previous
theorem, also Hn−1(πξ(Jv ∩ V ) \ πξ(Jvk)) goes to zero as k →∞ but possibly only for
a.e. ξ ∈ Sn−1.

In the next proposition we show (i) of Theorem 3.2 and do a first step towards the
proof of formula (3.13).

Proposition 4.7. Let u ∈ KL(Ω1). Then, un does not depend on xn. Moreover, for
every α = 1, . . . , n− 1 there exists an Hn−1-measurable function ψα : ω → R such that

uα(x′, xn) = Tr(uα)
(
x′,−1

2

)
−
(
xn +

1

2

)
ψα(x′) for Ln-a.e. (x′, xn) ∈ Ω1 . (4.37)

Proof. Combining the fact that en,n(u) = 0 with (νu)n = 0 we easily deduce that
Dnun = 0, so that un does not depend on xn.

To show formula (4.37) we consider a Lipschitz-regular open set ω′ b ω such that
Hn−1

(
(∂ω′ × (−1

2 ,
1
2)) ∩ Ju

)
= 0. For 0 < δ < 1

2 , we apply Proposition 4.4 to the

function u on the open sets ω × (−1
2 ,

1
2) and ω′ × (−δ, δ), taking care to have chosen

δ > 0 such that Hn−1(∂(ω′ × (−δ, δ)) ∩ Ju) = 0 (a.e. choice of δ does the job). We
denote by (uh)h ⊂ GSBD(ω′×(−δ, δ))∩W 1,∞(ω′×(−δ, δ)\Juh ;Rn) the approximating
sequence given by Proposition 4.4.

First of all notice that since (νu)n = 0, by property (iii) of Proposition 4.4 we know
that Hn−1(πn(Juh))→ 0 as h→∞. By passing eventually through a subsequence we

may suppose
∑

hHn−1(πn(Juh)) <∞. Hence, if we define

Ah :=
⋃
k≥h

πn(Juk) and A :=
∞⋂
h=1

Ah ,

then Hn−1(A) = 0. Moreover, from (i) and (iv) of Proposition 4.4 we deduce that
there exists a set I ⊂ (−1

2 ,
1
2) with H1(I) = 0 such that for α = 1, . . . , n − 1 the

following holds true:

(1) lim
h→∞

∫
ω′
|uh(x′, xn)− u(x′, xn)| ∧ 1 dHn−1(x′) = 0, xn ∈ (−1

2 ,
1
2) \ I;
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(2) lim
h→∞

∫
ω′
|Tr
(
(uh)α

)
(x′,−δ)− Tr(uα)(x′,−δ)| ∧ 1 dHn−1(x′) = 0.

We claim that for every t1, t2 ∈ (−1
2 ,

1
2) \ I we have

uα(x′, t1)− Tr(uα)(x′,−δ)
(t1 + δ)

=
uα(x′, t2)− Tr(uα)(x′,−δ)

(t2 + δ)
Hn−1-a.e. in ω′. (4.38)

To show (4.38) fix ε > 0. We use conditions (1) and (2) together with Egoroff’s
Theorem to deduce that, up to subsequences, there exists a measurable set E ⊂ ω′

with Hn−1(ω′ \ E) ≤ ε such that

lim
h→∞

‖uh(·, t1)− u(·, t1)‖L∞(ω′\E) = 0 , (4.39)

lim
h→∞

‖uh(·, t2)− u(·, t2)‖L∞(ω′\E) = 0 , (4.40)

lim
h→∞

‖Tr((uh)α)(·,−δ)− Tr(uα)(·,−δ)‖L∞(ω′\E) = 0 . (4.41)

Now let x′ ∈ ω′ \ (A ∪ E). Then, there exists h for which x′ /∈ Ah, that is, x′ ∈⋂
k≥h[ω′ \ πn(Juk)]. Therefore, being πn(Juk) closed sets, for every k ≥ h there exists

r > 0 (depending on k) for which

Bn−1
r (x′)× (−δ, δ) ∩ Juk = ∅ , (4.42)

where Bn−1
r (x′) ⊆ ω′ denotes here the (n−1)-dimensional ball of radius r and center x′.

In particular, being un independent of xn, by (4.42) and by (v) of Proposition 4.4
we have that the approximating functions uk is such that (uk)n does not depend
on xn in the set Bn−1

r (x′) × (−δ, δ). Moreover, since uk is Lipschitz continuous on
Bn−1
r (x′)×(−δ, δ), we can apply the Fundamental Theorem of Calculus on the segment
{x′} × (−δ, t1) (xn < δ) to deduce that, for α = 1, . . . , n− 1,

(uk)α(x′, t1)− Tr
(
(uk)α

)
(x′,−δ) = 2

∫ t1

−δ
eα,n(uk)(x

′, t) dt− (t1 + δ)Dα(uk)n(x′) .

Hence, by using (4.39), (4.41), the weak convergence (ii) of Proposition 4.4, and
the fact that eα,n(u) = 0, we can take the integral on an arbitrary measurable set
B ⊂ ω′ \ (A∪E) on both side of the previous inequality and let k →∞ to deduce that∫

B

uα(x′, t1)− Tr
(
uα
)
(x′,−δ)

t1 + δ
dHn−1(x′) = lim

k→∞

∫
B
Dα(uk)n(x′) dHn−1(x′) . (4.43)

Notice that the uniform convergence (4.39)–(4.41) together with the fact that uk ∈
W 1,∞([ω′×(−δ, δ)]\Juh ;Rn) guarantee that the integrand in the left hand side of (4.43)
belongs to L1(ω′ \ (A∪E)). Thanks to (4.40), the same argument shows that for every
measurable set B ⊂ ω′ \ (A ∪ E) it holds true∫

B

uα(x′, t2)− Tr
(
uα
)
(x′,−δ)

t2 + δ
dHn−1(x′) = lim

k→∞

∫
B
Dα(uk)n(x′) dHn−1(x′) . (4.44)

Finally, putting together (4.43) with (4.44) we deduce that

uα(x′, t1)− Tr
(
uα
)
(x′,−δ)

t1 + δ
=
uα(x′, t2)− Tr

(
uα
)
(x′,−δ)

t2 + δ
, Hn−1-a.e. in ω′\(A∪E).

Letting ε↘ 0 in the construction of E, we deduce (4.38) since Hn−1(A) = 0.
Now fix t ∈ (−1

2 ,
1
2) \ I and define the measurable set

H :=

{
x ∈ ω′ × (−δ, δ) | uα(x′, xn)− Tr(uα)(x′,−δ)

(xn + δ)
=
uα(x′, t)− Tr(uα)(x′,−δ)

(t+ δ)

}
.
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We claim that H has full measure in ω′ × (−δ, δ). Indeed by using Fubini’s Theorem
we can write

Ln(H) =

∫ δ

−δ
Hn−1({x′ ∈ ω | (x′, xn) ∈ H}) dxn,

which immediately implies our claim thanks to (4.38). By applying again Fubini’s
Theorem we infer that

H1({xn ∈ (−δ, δ) | (x′, xn) ∈ H}) = 2δ Hn−1-a.e. x′ ∈ ω′.

Thus, defining

ψδα(x′) :=
Tr(uα)(x′,−δ)− uα(x′, t)

(t+ δ)
for Hn−1-a.e. x′ ∈ ω′ ,

we obtain exactly that for Ln-a.e. x = (x′, xn) ∈ ω′ × (−δ, δ)

uα(x′, xn) = Tr(uα)(x′,−δ)− (xn + δ)ψδα(x′) , (4.45)

for every α = 1, . . . , n − 1. Moreover, since Tr(uα)(x′,−δ) → Tr(uα)(x′,−1
2) as

δ → 1
2

+
, defining

ψα(x′) :=
Tr(uα)(x′,−1

2)− uα(x′, t)

t+ 1
2

for Hn−1-a.e. x′ ∈ ω′

and passing to the limit as δ → 1
2

+
in (4.45) (this can be done since a.e. δ > 0

is admissible) we obtain (4.37) for Ln-a.e. (x′, xn) ∈ ω′ × (−1
2 ,

1
2). Finally, (4.37) is

achieved by letting ω′ ↗ ω. �

Proposition 4.8. Let u ∈ KL(Ω1). Then, there exists Γ′ ⊂ ω such that

Ju = Γ′ ×
(
− 1

2
,
1

2

)
. (4.46)

Moreover, if ψα are as in Proposition 4.7, then the functions

v(x′) :=
(
Tr(u1)

(
x′,−1

2

)
, . . . , T r(un−1)

(
x′,−1

2

))
,

ψ(x′) := (ψ1(x′), . . . , ψn−1(x′))

belong to GSBD(ω).

Remark 4.9. Notice that being the jump of u of the form Ju = Γ′×(−1
2 ,

1
2) and being un

independent of xn, then also Jun is of the form Γ′′ × (−1
2 ,

1
2) for some Γ′′ ⊂ Γ′.

We are now ready to prove Proposition 4.8.

Proof of Proposition 4.8. By [16, Theorem 4.19] we know that for L1-a.e. xn ∈ (−1
2 ,

1
2)

it holds true

(u1(·, xn), . . . , un−1(·, xn)) ∈ GSBD(ω) .

In order to simplify the notation, set w(x′, xn) := (u1(x′, xn), . . . , un−1(x′, xn)). Thus,
by (4.37) there exist yn 6= zn such that

w(x′, yn)− w(x′, zn)

(zn − yn)
= ψ(x′) ∈ GSBD(ω) ,

which in turn, by using again formula (4.37), also implies v ∈ GSBD(ω). This gives
the second part of the proposition. In particular, we notice that w(·, xn) ∈ GSBD(ω)
for every xn ∈ (−1

2 ,
1
2).
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In order to prove Ju = Γ′ × (−1
2 ,

1
2) for some Γ′ ⊆ ω, it is enough to prove that for

Hn−1-a.e. x = (x′, xn) ∈ Ju we have

H1
((
{x′} ×

(
− 1

2
,
1

2

))
∩ Ju

)
= 1 . (4.47)

Suppose x = (x′, xn) ∈ Ju. Since, by Proposition 4.7, un does not depend on xn, (4.47)
is satisfied whenever x′ ∈ Jun . Thus, without loss of generality we may assume x′ /∈
Jun . Then, there are two possibilities:

(1) there exists yn ∈ (−1
2 ,

1
2) \ {xn} such that (x′, yn) ∈ Ju;

(2) (x′, t) /∈ Ju for every t 6= xn.

In case (1), we further distinguish two subcases: either νu((x′, yn)) = ±νu((x′, xn)) or
νu((x′, yn)) 6= ±νu((x′, xn)). In the first case, by using formula (4.37) together with
the fact that un does not depend on xn we have

u(x′, t)− u(x′, s)

s− t
= (ψ(x′), 0) for (x′, t, s) ∈ ω ×

(
− 1

2
,
1

2

)
×
(
− 1

2
,
1

2

)
. (4.48)

This implies that x′ is a point of approximate continuity for ψ or a jump point for ψ
with νψ(x′) = ±νu(x′, xn). In particular, the last relation follows from (4.48) written
for (t, s) = (yn, xn), from the equality νu((x′, yn)) = ±νu((x′, xn)), and from the fact
that ψ does not depend on xn and (νu)n = 0.

Suppose now that x′ is a jump point of ψ (in the case of a point of approximate
continuity one can argue in the very same way). Then, there exist a 6= b ∈ Rn and
a′ 6= b′ ∈ Rn−1 such that

u(x+ ry)→ a1{νu(x)·z>0}(y) + b1{−νu(x)·z>0}(y) ,

locally in Ln-measure as r → 0+, and

ψ(x′ + ry′)→ a′1{νu(x)·z′>0}(y
′) + b′1{−νu(x)·z′>0}(y

′) ,

locally in Hn−1-measure as r → 0+. These two convergences imply that if we set
x0 := (x′, t) with t 6= xn, by using

u(x′, t)− u(x′, xn)

xn − t
= (ψ(x′), 0) ,

we deduce

u(x0 + ry)→ [a+ (xn − t)(a′, 0)]1{νu(x)·z>0}(y) (4.49)

+ [b+ (xn − t)(b′, 0)]1{−νu(x)·z>0}(y) ,

locally in Hn−1-measure as r → 0+. Since

a+ (xn − t)(a′, 0) 6= b+ (xn − t)(b′, 0) for a.e. t ∈
(
− 1

2
,
1

2

)
the convergence in (4.49) implies that (x′, t) ∈ Ju for a.e. t ∈ (−1

2 ,
1
2). Hence, (4.47) is

satisfied if (1) holds and νu(x′, yn) = ±νu(x′, xn).
In order to show that the set of x′ satisfying (1) and νu(x′, yn) 6= ±νu(x′, xn) isHn−2-

negligible, we recall that ψ, w(·,xn)
yn−xn , w(·,yn)

yn−xn ∈ GSBD(ω), and notice that, since x′ ∈
Jψ \Jun and (νu)n = 0, it holds x′ ∈ Jw(·,xn)∩Jw(·,yn) and νu(x′, xn) = (νw(·,xn)(x

′), 0).
Hence, applying for instance [5, Proposition 2.85],

0 = Hn−2({x′ ∈ Jw(·,xn) ∩ Jw(·,yn) : νw(·,xn)(x
′) 6= ±νw(·,yn)(x

′)})
= Hn−2({x′ ∈ ω \ Jun | (1) holds and ± νu(x′, xn) 6= νu(x′, yn)}) .

Therefore, Hn−1-a.e. x satisfying case (1) also fulfills (4.47).
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Finally, suppose (2) holds. Such points are a subset of Ju, denoted here by A,
satisfying H0((A)enx′ ) = 1 for every x′ ∈ πn(A). Since (νu)n = 0, by the Area Formula
we have

Hn−1(πn(A)) =

∫
Πen
H0((A)enx′ ) dHn−1(x′) =

∫
A
|νu · en|dHn−1 = 0 ,

and we conclude (4.47). �

We are now in a position to conclude the proof of Theorem 3.2.

Proof of Theorem 3.2. First we prove that un is approximately differentiable Ln-a.e.
in Ω1. In view of [20, Theorem 3.1.4] it is enough to prove that the approximate
partial derivatives ∂iun exist Ln-a.e. in Ω1 for every i = 1, . . . , n. Since we already
know that un does not depend on xn, we need only to prove ∂αun exist Ln-a.e. in Ω1

for every α = 1, . . . , n− 1.
Given α, we notice that since u ∈ GSBD(Ω1), setting ξ := (en + eα)/

√
2 we have

that ∂ξ(u · ξ) and ∂αuα exist Ln-a.e. in Ω1 and by formula (4.37) also ∂nuα exists
Ln-a.e. in Ω1.

We now claim that

∂αun = 2∂ξ(u · ξ)− ∂αuα − ∂nuα Ln-a.e. in Ω1 . (4.50)

Indeed, up to a set of Ln-measure zero we have that for every x ∈ Ω1 the following
holds true:

ap- lim
h→0

u(x+ hξ) · ξ − u(x) · ξ
h

= ∂ξ(u · ξ)(x) , (4.51)

ap- lim
h→0

uα(x+ hen)− uα(x)

h
= ∂nuα(x) , (4.52)

ap- lim
h→0

uα(x+ heα)− uα(x)

h
= ∂αuα(x) , (4.53)

ap- lim
h→0

ψ(x′ + heα) = ψ(x′) . (4.54)

By a simple algebraic computation we can write

un(x+ heα)− un(x) (4.55)

= un(x+ heα)− un(x+ heα + hen) + un(x+ heα + hen)− un(x)

= un(x+ heα)− un(x+ heα + hen) +
√

2u(x+ h
√

2ξ) · ξ −
√

2u(x) · ξ

− (uα(x+ h
√

2ξ)− uα(x)) .

By Proposition 4.7, un does not depend on xn. Thus,

un(x+ heα)− un(x+ heα + hen) = 0 . (4.56)

By (4.51) we have that for Ln-a.e. x ∈ Ω1

ap- lim
h→0

√
2u(x+ h

√
2ξ) · ξ −

√
2u(x) · ξ

h
= 2∂ξ(u · ξ)(x) . (4.57)

We re-write the last term on the right-hand side of (4.55) as

uα(x+ h
√

2ξ)− uα(x) = uα(x+ h(en + eα))− uα(x+ heα) + uα(x+ heα)− uα(x) .

Using formula (4.37) we have that

uα(x+ h(en + eα))− uα(x+ heα) = −hψα(x′ + heα) ,
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which implies, together with (4.54), that for Ln-a.e. x ∈ Ω1

ap- lim
h→0

uα(x+ h(eα + en))− uα(x+ heα)

h
= −ψα(x′) = ∂nuα(x) , (4.58)

where ψα, α = 1, . . . , n− 1 are the functions determined in (4.37). Therefore, combin-
ing (4.52), (4.53), and (4.58) we deduce that for Ln-a.e. x ∈ Ω1

ap- lim
h→0

uα(x+ h
√

2ξ)− uα(x)

h
= ∂nuα(x) + ∂αuα(x) . (4.59)

Inserting (4.56)–(4.59) in (4.55) we obtain (4.50).
Since α ∈ {1, . . . , n − 1} was arbitrary, we deduce that un is approximately dif-

ferentiable Ln-a.e. in Ω1. Furthermore, since un does not depend on xn, un is ap-
proximately differentiable Hn−1-a.e. on ω. If we denote (with abuse of notation)
∇un = (∂1un, . . . , ∂n−1un), then ∇un is the approximate gradient of un.

In order to prove that ∇un ∈ GSBD(ω), we claim that

∇un(x′) =
(
ψ1(x′), . . . , ψn−1(x′)

)
for Hn−1-a.e. x′ ∈ ω . (4.60)

Once we show (4.60), the fact that ∇un ∈ GSBD(ω) will follow from Proposition 4.8.
The equality (4.60) is a consequence of the hypothesis ei,n(u) = 0 and of (4.37). The
latter yields that ∂nuα = −ψα Ln-a.e.. Hence, being eα,n(u) = 0, we infer exactly
∂αun = ψα Ln-a.e., which is (4.60).

In order to prove (3.13) notice that formula (4.37) becomes now

uα(x′, xn) = Tr(uα)
(
x′,−1

2

)
−
(
xn+

1

2

)
∂αun(x′) for Ln-a.e. (x′, xn) ∈ Ω1 . (4.61)

Recalling that Ω1 = ω × (−1
2 ,

1
2), by integrating both sides of (4.61) with respect to

xn ∈ (−1
2 ,

1
2) we obtain

uα(x′) = Tr(uα)
(
x′,−1

2

)
− 1

2
∂αun(x′) for Ln-a.e. (x′, xn) ∈ Ω1 .

Combining the last two equalities we deduce exactly (3.13). The fact that u ∈
GSBD(ω) simply follows now by (3.13).

We are finally left to prove that Ju = (Ju∪Jun∪J∇un)×(−1
2 ,

1
2), for which we follow

the lines of [8, Proposition 5.2, Step 4]. By Proposition 4.8 we already know that Ju =
Γ′× (−1

2 ,
1
2) for some Γ′ ⊂ ω. Thus, we only need to show that Γ′ = Ju∪Jun ∪J∇un up

to a set of Hn−2-measure zero. First, we prove Γ′ ⊂ Ju∪Jun ∪J∇un . By formula (3.13)
and by Proposition 4.7 we have that

(∇un(x′), 0) =
u(x′, t)− u(x′, s)

s− t
for (x′, t, s) ∈ ω ×

(
− 1

2
,
1

2

)
×
(
− 1

2
,
1

2

)
.

Hence, for Hn−2-a.e. x′ ∈ Γ′, either x′ ∈ J∇un or x′ is an approximate continuity point
for ∇un. In the first case, we clearly have x′ ∈ Ju ∪ Jun ∪ J∇un .

Let us suppose, instead, that x′ is an approximate continuity point of ∇un. By
rewriting formula (3.13) in the vectorial form as

u = (u1, . . . , un−1, un)− xn(∂1un, . . . , ∂n−1un, 0) ,

then, it is easy to see that, being x′ a point of approximate continuity for ∇un, the fact
that (x′, xn) ∈ Ju for xn ∈ (−1

2 ,
1
2) forces x′ ∈ Ju ∪ Jun . This gives the first inclusion

Γ′ ⊂ Ju ∪ Jun ∪ J∇un .
To prove Ju ∪ Jun ∪ J∇un ⊂ Γ′ we argue as follows: if x′ ∈ Jun , then, by definition

of Jun , we have

H1
((
{x′} ×

(
− 1

2
,
1

2

))
∩ Ju

)
= 1 .
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Hence, we can reduce ourselves to prove the inclusion in the case x′ ∈ Ju∪J∇un . Since
Ju = Γ′ × (−1

2 ,
1
2), we can choose x̃n ∈ (−1

2 ,
1
2) such that v(·) := u(·, x̃n) ∈ GSBD(ω)

and Jv = Γ′ up to a set of Hn−2-measure zero in ω. Moreover, formula (3.13) implies
that

J∇un ⊂ Ju ∪ Jv and Ju ⊂ J∇un ∪ Jv .
Thus, we deduce that, up to an Hn−2-negligible set in ω,

J∇un \ Ju ⊂ Jv = Γ′ and Ju \ J∇un ⊂ Jv = Γ′ . (4.62)

It remains to prove that

J∇un ∩ Ju ⊂ Γ′ . (4.63)

If x′ ∈ J∇un ∩ Ju and J∇un , Ju have the same tangent plane at x′, i.e., ν := νu(x′) =
±ν∇un(x′), for α = 1, . . . , n− 1 there exist ξ±, η± ∈ Rn−1 with ξ+ 6= ξ− and η+ 6= η−

such that, by (3.13),

(u1, . . . , un−1)((x′, xn) + ry)→ (ξ+ − xnη+)1{ν·z>0}(y) + (ξ− − xnη−)1{−ν·z>0}(y)

locally in Ln-measure as r → 0. Since ξ+ − xnη+ 6= ξ− − xnη− for a.e. xn ∈ (−1
2 ,

1
2),

we deduce that H1(({x′} × (−1
2 ,

1
2)) ∩ Ju) = 1 and x′ ∈ Γ′.

Finally, applying [5, Proposition 2.85] to the functions u, xn∇un ∈ GSBD(ω) for
xn ∈ (−1

2 ,
1
2), we deduce that

Hn−2
(
{x′ ∈ J∇un ∩ Ju : νu(x′) 6= ±ν∇un(x′)}

)
= 0 .

This gives (4.63) and the conclusion of the Theorem. �

We can also conclude the proof of Corollary 3.4

Proof. By Theorem 3.2 we know that items (i)–(iii) of Theorem 3.2 hold. Since u ∈
GSBD2(Ω1) we deduce from the intermediate Propositions 4.7 and 4.8 that ∇un, u ∈
GSBD2(ω). �

We are now in a position to prove the Γ-convergence result of Theorem 3.5.

Proof of Theorem 3.5. We follow here the steps of [8, Theorem 5.1]. Since the conver-
gence in measure is metrizable, we can show the Γ-convergence in terms of converging
sequences. As for the Γ-liminf, for every infinitesimal sequence ρk, every u : Ω1 → Rn,
and every uk ∈ GSBD2(Ω1) such that uk → u in measure and

lim inf
k→∞

Eρk(uk) < +∞ ,

we have, in view of Proposition 3.1, that u ∈ KL2(Ω1). Furthermore, since (νu)n = 0
Hn−1-a.e. in Ju, by [31, Proposition 4.6] for every ρ̃ > 0 we have that

Hn−1(Ju) =

∫
Ju

φρ̃(νu) dHn−1 ≤ lim inf
k→∞

∫
Juk

φρ̃(νuk) dHn−1 (4.64)

≤ lim inf
k→∞

∫
Juk

φρk(νuk) dHn−1.

For every v ∈ GSBD2(Ω1) let us set e(v) := (eαβ(v))n−1
α,β=1. Then, by defini-

tion (3.8)–(3.9) of Eρ we have∫
Ω1

C0e(u) · e(u) dx ≤ lim inf
k→∞

∫
Ω1

C0e(uk) · e(uk) dx

≤ lim inf
k→∞

∫
Ω1

Ceρk(uk) · eρk(uk) dx .

(4.65)
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Hence, combining (4.64) and (4.65) we infer that

E0(u) ≤ lim inf
k→∞

Eρk(uk) ,

which in turn implies that E0 ≤ Γ-lim infρ→0 Eρ.
We conclude with the Γ-limsup inequality. Let u ∈ GSBD2(Ω1). If u /∈ KL2(Ω1),

then E0(u) = +∞ and there is nothing to show. If u ∈ KL2(Ω1), let us fix λ =
(λ1, . . . , λn) ∈ L2(Ω1;Rn) such that

C0e(u) · e(u) = C(e(u))λ · (e(u))λ a.e. in Ω1 , (4.66)

where we recall the notation introduced in (3.14)–(3.15). Let hρ,1, . . . , hρ,n ∈ C∞c (Ω1)
be such that

hρ,α → 2λα in L2(Ω1), for α ∈ {1, . . . , n− 1} , , (4.67)

hρ,n → λn in L2(Ω1) , (4.68)

ρhρ,i, ρ∇hρ,i → 0 in L2(Ω1) for i ∈ {1, . . . , n} . (4.69)

In particular, (4.67)–(4.69) imply that the sequences

Hρ,α(x′, xn) := ρ

∫ xn

0
hρ,α(x′, t) dt ∈ L2(Ω1) for α ∈ {1, . . . , n− 1} ,

Hρ,n(x′, xn) := ρ

∫ xn

0
hρ,n(x′, t) dt ∈ L2(Ω1)

satisfy Hρ,i, ∂jHρ,i → 0 in L2(Ω1) for every i, j ∈ {1, . . . , n}.
For every x = (x′, xn) ∈ Ω1 we define

uρ(x) := u(x) + (Hρ,1, . . . ,Hρ,n) (x) . (4.70)

Then, uρ ∈ GSBD2(Ω1), Juρ = Ju for every ρ > 0, and (νuρ)n = 0 on Juρ . Moreover,
we have that uρ → u in measure on Ω1.

We now write the components of eρ(uρ). Since u ∈ KL2(Ω1), for every α, β =
1, . . . , n− 1 we have

eρα,β(uρ) = eα,β(u) +
1

2
(∂αHρ,β + ∂βHρ,α) ,

eρα,n(uρ) =
1

2
hρ,α(x′, xn) +

1

2
∂αHρ,n(x′, xn) ,

eρn,n(uρ) = hρ,n(x′, xn) .

Thus, from (4.66)–(4.70) we deduce that

lim
ρ→0
Eρ(uρ) = lim

ρ→0

1

2

∫
Ω1

Ceρ(uρ) · eρ(uρ) dx+Hn−1(Ju)

=
1

2

∫
Ω1

C(e(u))λ · (e(u))λ dx+Hn−1(Ju) = E0(u) ,

and the proof is thus complete. �

In the following corollary we show that we can naturally handle the presence of
boundary conditions satisfying the properties of (3.11). Although the result follows
directly from Theorem 3.5, it justifies the study of convergence of minima and mini-
mizers, considered in Theorem 4.12 and Corollary 4.13 below.
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Corollary 4.10. Let g ∈ KL2(Rn)∩H1(Rn;Rn), and let us define, for u ∈ GSBD2(Ω1),

Egρ (u) := Eρ(u) +Hn−1

({
Tr(u) 6= Tr(g)

}
∩
(
∂ω ×

(
− 1

2
,
1

2

)))
, (4.71)

Eg0 (u) := E0(u) +Hn−1

({
Tr(u) 6= Tr(g)

}
∩
(
∂ω ×

(
− 1

2
,
1

2

)))
. (4.72)

Then, Egρ Γ-converges to Eg0 w.r.t. the topology induced by the convergence in measure
in Ω1.

Proof. We consider ω̃ ⊆ Rn−1 smooth, bounded, and such that ω b ω̃, and define

Ω̃ := ω̃ ×
(
− 1

2 ,
1
2

)
. For every u ∈ GSBD2(Ω1), we consider the extension

ũ :=

{
u in Ω1 ,

g in Ω̃ \ Ω1 .
(4.73)

Then, we can rewrite Egρ (u) as

Egρ (u) :=
1

2

∫
Ω1

Ceρ(ũ) · eρ(ũ) dx+

∫
Jũ∩Ω̃

φρ(νũ) dHn−1 .

With this notation at hand, we can show the Γ-liminf inequality by following step
by step the proof of Theorem 3.5. Given uρ ∈ GSBD2(Ω1) such that uρ converges in

measure to u ∈ GSBD2(Ω1), we consider their extensions ũρ, ũ ∈ GSBD2(Ω̃). If

sup
ρ>0
Egρ (uρ) < +∞ ,

we deduce that e(uρ) ⇀ e(u) weakly in L2(Ω1;Mn
s ) and u ∈ KL2(Ω1), so that also

ũ ∈ KL2(Ω̃). Furthermore, the bulk energy satisfies∫
Ω1

C0e(u) · e(u) dx ≤ lim inf
ρ→0

∫
Ω1

Ceρ(ũρ) · eρ(ũρ) dx .

As in (4.64) we have that

Hn−1(Jũ ∩ Ω̃) ≤ lim inf
ρ→0

∫
Jũρ∩Ω̃

φρ(νũρ) dHn−1.

Noticing that Hn−1(Jũ ∩ (Ω̃ \ Ω1)) = 0 and

Jũ ∩ ∂ω ×
(
− 1

2
,
1

2

)
=
{
Tr(u) 6= Tr(g)

}
∩
(
∂ω ×

(
− 1

2
,
1

2

))
,

we deduce that Eg0 (u) ≤ lim infρ→0 Egρ (uρ).
A recovery sequence can be constructed as in (4.70), where we modify a function u ∈
KL2(Ω1) within Ω1 by considering hρ,i ∈ C∞c (Ω1) as in (4.67)–(4.69), so that u remains
unchanged on ∂ω ×

(
− 1

2 ,
1
2

)
. �

We now discuss the convergence of minimizers of the functionals Egρ . To do this, we
recall here the GSBD-compactness result obtained in [14, Theorem 1.1] (see also [3]).

Theorem 4.11. Let U ⊆ Rn be an open bounded subset of Rn, let φ : R+ → R+ be an
increasing function such that

lim
t→+∞

φ(t)

t
= +∞,

and let uρ ∈ GSBD2(U) be such that

sup
ρ>0

∫
U
φ(|e(uρ)|) dx+Hn−1(Juρ) <∞ .
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Then, there exists a subsequence, still denoted by uρ, such that the set

A := {x ∈ U : |uρ(x)| → +∞ as ρ→ 0+}
has finite perimeter, uρ → u a.e. in U \ A and e(uρ) ⇀ e(u) weakly in L1(U \ A;Mn

s )
for some function u ∈ GSBD2(U) with u = 0 in A. Furthermore,

Hn−1(Ju ∪ ∂∗A) ≤ lim inf
ρ→0

Hn−1(Juρ) .

From Theorem 4.11 we deduce the convergence of minima and minimizers.

Theorem 4.12. Let g ∈ KL2(Rn) ∩H1(Rn;Rn), and let Egρ be the sequence of func-
tionals defined in (4.71). Assume that uρ ∈ GSBD2(Ω1) satisfies

lim inf
ρ→0

Egρ (uρ) < +∞ . (4.74)

Then, there exists a subsequence, still denoted by uρ, such that the set

A := {x ∈ Ω1 : |uρ(x)| → +∞ as ρ→ 0}
is a set of finite perimeter. Moreover, there exist A′ ⊆ ω and u ∈ KL2(Ω1) with u = 0
in A such that

A = A′ ×
(
− 1

2
,
1

2

)
, (4.75)

uρ → u a.e. in Ω1 \A , (4.76)

e(uρ) ⇀ e(u) weakly in L2(Ω1 \A;Mn
s ) , (4.77)

Hn−1(Ju ∪ ∂∗A) +Hn−1

({
Tr(u) 6= Tr(g)

}
∩
(
∂ω ×

(
− 1

2
,
1

2

)))
(4.78)

≤ lim inf
ρ→0

∫
Juρ

φρ(νuρ) dHn−1 +Hn−1

({
Tr(uρ) 6= Tr(g)

}
∩
(
∂ω ×

(
− 1

2
,
1

2

)))
.

Proof. Let ω̃ and Ω̃ be as in the proof of Corollary 4.10. Along the proof, we denote

by ∂∗E and ∂̃∗E the reduced boundary of a set E ⊆ Ω̃ in Ω and Ω̃, respectively.
The existence of the set A and of a limit function u ∈ GSBD2(Ω1) such that (4.76)–

(4.77) holds follows from Theorem 4.11 applied to the sequence ũρ ∈ GSBD2(Ω̃)

defined as in (4.73). Precisely, there exists A ⊆ Ω̃ and ũ ∈ GSBD2(Ω̃) such that (4.76)–

(4.77) hold for ũρ and ũ in Ω̃. Since ũρ = ũ = g in Ω̃ \ Ω1 and g ∈ H1(Rn;Rn), we

clearly have that u := ũ1Ω1 ∈ GSBD2(Ω1) and A ⊆ Ω1.

Let us denote by ν
ũ∪∂̃∗A the approximate unit normal to Jũ ∪ ∂̃∗A. By [31, Propo-

sition 4.6], ũ and A are such that∫
Jũ∪∂̃∗A

φ(x, ν
ũ∪∂̃∗A) dHn−1 ≤ lim inf

ρ→0

∫
Jũρ

φ(x, νũρ) dHn−1 (4.79)

for every φ ∈ C(Ω̃× Rn) such that φ(x, ·) is a norm on Rn for every x ∈ Ω̃ and

c1|ν| ≤ φ(x, ν) ≤ c2|ν| for every x ∈ Ω̃ and every ν ∈ Rn ,
for some 0 < c1 ≤ c2 < +∞.

Recalling (3.7), we deduce from (4.79) that for every ρ̃ > 0∫
Jũ∪∂̃∗A

φρ̃(νũ∪∂̃∗A) dHn−1 ≤ lim inf
ρ→0

∫
Jũρ

φρ̃(νũρ) dHn−1 (4.80)

≤ lim inf
ρ→0

∫
Jũρ

φρ(νũρ) dHn−1
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= lim inf
ρ→0

∫
Juρ

φρ(νuρ) dHn−1

+Hn−1

({
Tr(uρ) 6= Tr(g)

}
∩
(
∂ω ×

(
− 1

2
,
1

2

)))
< +∞ .

Passing to the limsup in (4.80) as ρ̃ → 0 we deduce that (ν
∂̃∗A

)n = (νu)n = 0 Hn−1-

a.e. in Ju ∪ ∂̃∗A. It follows that there exists A′ ⊆ ω such that (4.75) holds.
As a consequence of (4.74), we infer that ei,n(u) = 0 in Ω1 for every i = 1, . . . , n.

Hence, u ∈ KL2(Ω1). Taking into account that (νu)n = (ν
∂̃∗A

)n = 0 and that

Jũ ∩ ∂ω ×
(
− 1

2
,
1

2

)
=
{
Tr(u) 6= Tr(g)

}
∩ ∂ω ×

(
− 1

2
,
1

2

))
,

we infer (4.78) by rewriting (4.80), and the proof is thus concluded. �

Corollary 4.13. Under the assumptions of Theorem 4.12, let uρ ∈ GSBD2(Ω1) be a
sequence of minimizers of Egρ . Then, there exist a subsequence, still denoted by uρ, such
that the set A := {x ∈ Ω1 : |uρ(x)| → +∞} is of finite perimeter, and a minimizer u ∈
KL2(Ω1) of Eg0 with u = 0 on A such that (4.76)–(4.77) hold. Moreover, ∂∗A ⊆ Ju,
e(uρ)→ e(u) in L2(Ω1;Mn

s ), and

Hn−1(Ju) +Hn−1

({
Tr(u) 6= Tr(g)

}
∩
(
∂ω ×

(
− 1

2
,
1

2

)))
(4.81)

= lim
ρ→0

∫
Juρ

φρ(νuρ) dHn−1 +Hn−1

({
Tr(uρ) 6= Tr(g)

}
∩
(
∂ω ×

(
− 1

2
,
1

2

)))
.

Proof. Let uρ be as in the statement of the corollary. Then, it is easy to check
that (4.74) is satisfied. Hence, Theorem 4.12 implies that there exist A and u ∈
KL2(Ω1) such that (4.75)–(4.78) hold. The minimality of u follows from Theorem 3.5
by a Γ-convergence argument. Indeed, by (4.77)–(4.78) we have that∫

Ω1

C0e(u) · e(u) dx ≤ lim inf
ρ→0

∫
Ω1

Ceρ(uρ) · eρ(uρ) dx , (4.82)

Hn−1(Ju ∪ ∂∗A) +Hn−1

({
Tr(u) 6= Tr(g)

}
∩
(
∂ω ×

(
− 1

2
,
1

2

)))
(4.83)

≤ lim inf
ρ→0

∫
Juρ

φρ(νuρ) dHn−1 +Hn−1

({
Tr(uρ) 6= Tr(g)

}
∩
(
∂ω ×

(
− 1

2
,
1

2

)))
.

Thanks to Corollary 4.10, for every v ∈ KL2(Ω1) there exists a sequence vρ ∈ GSBD2(Ω1)
converging to v in measure such that

Eg0 (v) = lim
ρ→0
Egρ (vρ) . (4.84)

Combining (4.82), (4.83), and (4.84) we deduce that

Eg0 (u) ≤
∫

Ω1

C0e(u) · e(u) dx+Hn−1(Ju ∪ ∂∗A)

+Hn−1

({
Tr(u) 6= Tr(g)

}
∩
(
∂ω ×

(
− 1

2
,
1

2

)))
≤ lim inf

ρ→0
Egρ (uρ) ≤ lim inf

ρ→0
Egρ (vρ) = Eg0 (v) ,

which yields the minimality of u. Since we can construct a recovery sequence wρ ∈
GSBD2(Ω1) for u such that Egρ (wρ)→ Eg0 (u) and uρ is a minimizer of Egρ for every ρ, we
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deduce that, along a suitable not relabeled subsequence, the inequalities (4.82)–(4.83)
are actually equalities. This implies that ∂∗A ⊆ Ju, (4.81), and that∫

Ω1

C0e(u) · e(u) dx = lim
ρ→0

∫
Ω1

C0e(uρ) · e(uρ) dx .

From the last equality and from Proposition 3.1 we infer that e(uρ)→ e(u) in L2(Ω1;Mn
s ).
�
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nonlinear elasticity, Math. Models Methods Appl. Sci., 23 (2013), pp. 2701–2748.
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