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Effective conductivity of inertial flows through porous media
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We study two-dimensional incompressible inertial flows through porous media. At core (small) scale, we
prove that the constitutive, nonlinear model can be rewritten into a linear one by means of a new parameter K�

which encompasses all the inertial effects. In natural (large-scale) formations, K� is erratically changing, and we
analytically compute its counterpart, which is coined generalized effective conductivity, by the self-consistent
approach (SCA). In spite of its approximate nature, the SCA leads to simple results that are in good agreement
with Monte Carlo simulations.

DOI: 10.1103/PhysRevE.107.035102

I. INTRODUCTION

High-velocity flows through porous formations are en-
countered in several industrial and environmental applica-
tions, such as flow in chemical reactors, extraction of oil and
gas from reservoirs, and flow through rock-fill dams or in the
zones surrounding pumping and injecting wells.

The adopted (constitutive) model is usually the Darcy’s
law, i.e., KJ = v, relating the velocity field v to the gradient
J ≡ −∇h of the head h via the conductivity K [1]. However,
when the magnitude J ≡ |J| increases, so does the velocity,
and concurrently the Darcy’s model is not adequate, anymore.
In this case, the pertinent flow regime is the Forchheimer
one, which accounts also for the impact of the inertial terms,
besides the viscous ones [2]. Within the constitutive model,
these effects are modeled by an extra term proportional to the
magnitude |v| = √

v · v of the velocity, i.e.,

KJ = (1 + β
√

K |v|)v, (1)

where β > 0 quantifies the impact of the inertial terms (e.g.,
[3]). In particular, for β → 0, Eq. (1) reduces to the Darcy’s
law. Alternative formulations, based on the concept of energy
dissipation, have been also proposed (see [4], and references
therein).

The Forchheimer’s model (1) applies only to homogeneous
media, and concurrently it is not suitable for natural geologic
formations, where both K and β vary in the space over several
orders of magnitude [5,6]. These erratic fluctuations have a
decisive impact upon flow evolving in geological formations
(see, e.g., [7]). Generally, such variations are modeled within
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a stochastic framework that regards K and β as random fields
(a comprehensive exposition can be found in [8]). As a matter
of fact, the flow variables become stochastic.

One of the aims in the theory of flows through hetero-
geneous media pertains to the derivation of a constitutive
model satisfied by the average variables. The coefficient that
relates the mean velocity 〈v〉 to the mean gradient 〈J〉 is
termed “effective conductivity.” Computing this latter has a
long tradition traced back to [9], and subsequently forwarded
to numerous branches of physics such as electricity, wave
scattering, and the theory of elasticity (for a wide review,
see [10,11], and references therein). In porous media fluid
mechanics, the same problem has been pioneered by [8] in the
case of mean uniform Darcy-type flows. More recently, such
an approach has been extended to nonuniform mean (such as
source-type) flows by [12]. Likewise, the natural question is
whether one can derive an effective conductivity also for flows
in the Forchheimer’s regime. This problem has received scarce
attention (with the exceptions of the studies of [7,13,14]), its
importance notwithstanding.

In the present study we investigate how the spatial vari-
ability of the β coefficient and the conductivity K affects
the generalized effective conductivity (GEC). The latter is
computed by means of the self-consistent approach (SCA),
which regards the formation as a bundle of inclusions set at
random in the space. Then, the GEC is derived by requir-
ing that it is equal to the conductivity of the medium as a
whole [15].

The paper is organized as follows. We first cast the Forch-
heimer’s model in a form which enables one to treat it like
the Darcy’s law. Subsequently, we derive the expression of
the GEC, and discuss its general properties. Then, we move
to the discussion of results after adopting a (fairly general)
model for the bivariate distribution of the random pair (K, β ).
We end up with concluding remarks, with a few highlights on
the potential applicability of our results.
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FIG. 1. Dependence of the ratio between the Forchheimer con-
ductivity K� relative to the Darcy conductivity K versus the
nondimensional group JβK3/2 of the flow’s parameters.

II. GENERAL RESULTS

We consider steady flow driven by a gradient J ≡ (Jx, Jy)
in a two-dimensional, unbounded domain. The flow obeys the
Forchheimer’s law (1). In order to cast the latter in the form of
a Darcy-type model, we rewrite Eq. (1) in terms of its scalar
components:

K =
(

1 + β|J|
√

K

∣∣∣∣vγ

Jγ

∣∣∣∣
)

vγ

Jγ

(γ = x, y), (2)

with |J| ≡ J = (J2
x + J2

y )1/2 . Hence, solving Eq. (2) with
respect to the unknown vγ /Jγ , and back substitution into
Eq. (1), leads to a Darcy’s-type constitutive model, i.e., K�J =
v, where now the conductivity K� is given by

K� ≡ K�(K, β ) = 2K

1 +
√

1 + 4JβK3/2
. (3)

It is important to underline that such a procedure does not
destroy the nonlinearity (i.e., inertial effects) of the flow prob-
lem, being the original nonlinearity now encapsulated into the
new conductivity (3). The importance of casting the Forch-
heimer’s law (1) within a model resembling de facto the Darcy
law, is that, in accordance with the continuum mechanics
approach [1], one can use the former for all applications re-
lying upon the Darcy model, by replacing K → K�, solely. A
similar result, which can be achieved also by dealing with the
Forchheimer model (1) written in norm, has been obtained by
[13]. In particular, for β → 0 one recovers the classical Darcy
law. On the other hand, a very large value of β is attached
to a flow dominated by inertia, and concurrently the velocity
drastically decreases (ultimately vanishing for β → ∞).

To quantify the importance of the Forchheimer conduc-
tivity (3) relative to the Darcy conductivity, Fig. 1 depicts
the ratio K�/K as a function of JβK3/2. The latter param-
eter quantifies the importance of the inertial terms relative
to the viscous ones, and therefore can be considered akin
to a Reynolds number (see, e.g., [16]). It is seen that the
occurrence of one of the two (i.e., Forchheimer vs Darcy)

regimes depends upon a dimensionless combination of (i)
the inertial coefficient β, (ii) the power K3/2, and (iii) the
magnitude of the gradient J . As a consequence, even for
highly inertial flows (large β) one can still deal with a Darcy
(purely viscous) flow, provided that a very poorly conducting
medium, with a small gradient, is considered. In particular,
inspection from Fig. 1 suggests that the Darcy regime ap-
plies whenever JβK3/2 < 10−1. Conversely, the Forchheimer
regime becomes predominant for JβK3/2 > 102. The range
10−1 < JβK3/2 < 102 covers the transition from one regime
to the other. The occurrence of three different flow regimes,
in dependence on the Reynolds number JβK3/2, was also
pointed out by [17,18]. With these prerequisites, we are now
in a position to compute the generalized effective conductivity
Keff by means of the SCA.

Generalized effective conductivity

Due to the natural heterogeneity of porous formations,
regarding the pair (K, β ) as constant is too simplistic. In fact,
they usually, with K in particular, vary in the space in a man-
ner which does not allow modeling them by a deterministic
approach. For this reason, it is customary to regard the pair
(K, β ) as Gaussian, bivariate, stationary, and random field
[19]. As a consequence, the flow variables become stochastic,
and we are interested here in quantifying their mean values.
In particular, we aim at computing the coefficient Keff (known
as effective conductivity) relating the mean velocity 〈v〉 to the
mean gradient 〈J〉, i.e., Keff〈J〉 = 〈v〉. This effective constitu-
tive model, together with the mass conservation ∇ · 〈v〉 = 0,
can be used to solve various problems of practical interest.
In other words, inertial flows through heterogeneous porous
media are tackled by considering a homogeneous (fictitious)
medium of effective conductivity. While this topic is well
established for flows in the Darcian regime (see, e.g., [20]),
to our knowledge, there are very few studies [13,14] dealing
with the analogous problem in the Forchheimer regime.

Here, the effective conductivity is computed by means of
the SCA [21]. Thus, the formation is regarded as a bundle of
many, randomly arranged, nonoverlapping, circular inclusions
embedded into a matrix (background) of constant conductiv-
ity K∞ [Fig. 2(a)]. Each inclusion has a K� value which is
now random in the space. Then, by invoking ergodicity, the
above single realization is replaced by the ensemble aver-
age, and concurrently interaction among inclusions becomes
that of a single inclusion implanted into a medium which
is homogenized by means of the effective conductivity Keff

[Fig. 2(b)]. It is therefore clear that the core of the SCA is
how a uniform flow field is “deformed” by a circular inclusion
�� of conductivity K� different from the conductivity K∞ of
the background �∞. This approach has been implemented in
numerous branches of physics, such as electromagnetism, heat
transfer, and diffusion (see, e.g., [15]), and therefore, although
results in the present study pertain to random porous media,
they nevertheless find application in a much wider spectrum,
where nonlinear constitutive laws are concerned.

In order to grasp the effect of the inertia for the problem
at stake, it suffices dealing with the flow net as distorted by a
single inclusion (of radius R), being the effective conductiv-
ity computed as ensemble average over many of such single
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FIG. 2. (a) Sketch of the heterogeneous (circular with a large
radius) medium made up of many circular inclusions of randomly
distributed conductivities and (b) its transition to an effective medium
by means of the SCA.

realizations. For this reason, in Fig. 3 we depict the contour
levels of the scaled head (red dashed lines):

h

R
= κ� x

R

{
1 + (1−κ� )/(1+κ� )

(x/R)2+(y/R)2 (x, y) ∈ �∞
2

1+κ� (x, y) ∈ ��,
(4)

and the stream function (blue continuous lines):

ψ

RK∞
= y

R

{
1 − (1−κ� )/(1+κ� )

(x/R)2+(y/R)2 (x, y) ∈ �∞
2κ�

1+κ� (x, y) ∈ ��,
(5)

pertaining to a Forchheimer-type flow (uniform at infinity),
and disturbed by an inclusion, being

κ� ≡ K�

K∞
= 2

K

K∞
(1 +

√
1 + 4JβK3/2 )−1. (6)

FIG. 3. Contour plot of the scaled head Eq. (4) and stream func-
tion Eq. (5) for given ratio K/K∞ = 10/1 and two, widely different
values of b ≡ JβK3/2 referring to (a) Darcy’s regime, i.e., b 	 1,

and (b) Forchheimer’s regime, i.e., b 
 1, respectively. Lengths are
scaled by the radius R of the circular inclusion (whose center is set
at the origin of the framework).

The contrast ratio κ� quantifies the impact of K� relative
to that of the background K∞. For illustration purposes, in
Fig. 3 the ratio K/K∞ is taken equal to 10/1. Hence, for b ≡
JβK3/2 	 1 the flow lies within Darcy’s regime (see Fig. 1),
and the inclusion �� acts like an attractor for the stream lines
(top figure in Fig. 3), since in this case one has κ� � K/K∞ =
10 (see, e.g., [22]). Conversely, when b ≡ JβK3/2 
 1 (a
circumstance calling for Forchheimer’s regime) K� becomes
so small that �� now behaves like a flow barrier (bottom figjre
in Fig. 3).
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To compute the GEC by means of the SCA, one first has
to derive the ensemble averages of (i) the velocity 〈v〉 and
(ii) the head gradient E ≡ −∇〈h〉. Subsequently, the GEC is
obtained by requiring that it fits the equation 〈v〉 − Keff E =
0. It is therefore clear that the crux of the matter consists in
calculating the expression of the local velocity v as well as
of the gradient J, as a function of K� ≡ K�(Y, ζ ) and of the
given (i.e., constant) head gradient 〈J〉 applied at the boundary
of the flow domain. These two quantities were computed by
[23], and we quote here only the final result, i.e.,

J = −
(

1 + K∞ − K�

K∞ + K�

)
〈J〉, v = − 2 K∞ K�

K∞ + K�
〈J〉, (7)

with the conductivity K� given by (3). Thus, by taking the
ensemble averages of (7), it yields

E = −
[

1 +
∫

dK dβ f (K, β )
K∞ − K�

K∞ + K�

]
〈J〉, (8)

〈v〉 = −2 K∞

[∫
dK dβ

f (K, β ) K�

K∞ + K�

]
〈J〉, (9)

being f ≡ f (K, β ) the bivariate probability density function.
The difference with previous results (see, e.g., [22]) stems
from the dependence of the conductivity also upon the inertial
parameter β. Then, application of the above stated definition
of effective conductivity (with K∞ ≡ Keff ) leads to

1 +
∫

dK dβ f (K, β )
Keff − K�

Keff + K�

− 2
∫

dK dβ
f (K, β ) K�

Keff + K�
= 0. (10)

This equation can be rearranged, after some algebraic manip-
ulations relying upon the property

∫
dK dβ f (K, β ) = 1, as∫

dK dβ f (K, β )
K� − Keff

K� + Keff
= 0. (11)

Equation (11) generalizes Eq. (3.4.45) in [8]; in fact, for
β → 0 it yields K� → K , and one recovers the governing
equation for the effective conductivity in Darcy’s regime. Like
the effective Darcy law [see, e.g., [24]], even the GEC results
in a local medium’s property (locality), whose scalar nature is
due to the isotropic heterogeneity’s structure of K and β (see
the exhaustive review on the matter in [6,14]).

We wish to establish upper and lower bounds for the GEC.
Toward this aim, we note that the continuous function

F (t ) =
∫

dK dβ f (K, β )
K� − t

K� + t
(12)

is monotonously decreasing with F (0) = 1 and F (∞) = −1,
and therefore Keff is determined uniquely (black line in Fig. 4
) by computing (numerically) the root of (12). Moreover, since
F ≡ F (t ) is a convex function, one can get a lower bound Keff

<

for the GEC by dealing with the zero, i.e., Keff
< = −1/F ′(0),

of the tangent (red line in the inset of Fig. 4) to the func-
tion F (t ) at t = 0. Hence, upon evaluation of the derivative
F ′(t )|t=0, it yields

Keff
< = 1

2

[∫
dK dβ

f (K, β )

K�

]−1

= 1

2

〈
1

K�

〉−1

= K�
H

2
. (13)

FIG. 4. Sketch illustrating the method to get a lower bound Keff
<

of the GEC, by dealing with the root of the tangent (red line) to the
function F (t ) at t = 0.

Thus, one can claim that the half of the harmonic mean K�
H

represents a lower bound for the GEC. The upper bound Keff
>

is obtained by applying the same reasoning as before with t in
(12) replaced by 1/t . The final result is

Keff
> = 2

∫
dK dβ f (K, β )K� = 2K�

A, (14)

being K�
A the arithmetic mean. To summarize, the GEC lies

within the interval [K�
H/2, 2K�

A], which is slightly larger than
that, i.e., [KH , KA], pertaining to a purely Darcy flow. This
is due to the fact that, unlike Darcy’s regime (where the
effective conductivity is affected by the uncertainty of a single
quantity), here the extra stochastic nature of the parameter β

de facto enlarges the range of variability of Keff . A similar
conclusion, although by a different approach, was achieved
by [14]. Other bounds can be obtained by employing the
variational approach, in close analogy to [25], or by means
of the energy-dissipation concept [8].

The above general results provide a direct means to grasp
the main features of the mean velocity field, when a small
amount of information about the statistics of the pair (K, β )
is available. Noteworthy, they are also useful for codes pro-
viding the numerical solution of Eq. (11). In what follows, we
discuss the structure and the properties of the GEC for a fairly
general model of bivariate joint probability density function
f ≡ f (K, β ).

III. DISCUSSION

The nonlinear equation (11) allows computing the GEC,
once the model for the bivariate probability distribution func-
tion f ≡ f (K, β ) is selected. While there is a large body of
field data suggesting that both ln K (see the comprehensive
review in [6]) and ln β [an updated review can be found in
[14], and references therein] can be modeled as Gaussian,
the cross-correlation ln K-ln β deserves a further discussion.
The most exhaustive reviews on this topic are from [26] and
[27], who showed that the inertial coefficient is significantly
affected by the conductivity’s heterogeneity, displaying, in
particular, an overall negative correlation (i.e., ρ � 0) with the
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FIG. 5. Normalized GEC as a function of bG ≡ JβGK3/2
G , and

given values of the variances σ 2
Y = σ 2

ζ for (a) uncorrelated and (b)
negatively correlated Y -ζ . The insets show a comparison between
Monte Carlo simulations (symbols) and the analytical model (lines).

conductivity K (in line with [19]). For these reasons, in what
follows we shall regard K = KG expY and β = βG exp ζ as
normally distributed, negatively correlated random variables,
being KG-βG and Y -ζ the geometric means and the fluctua-
tions, respectively.

Figure 5 shows the scaled Keff/KG versus the dimen-
sionless parameter bG ≡ JβGK3/2

G ∈ [10−4; 104] [for a wide
overview of the values taken by βG and KG, see [6,28], re-
spectively], for several values of the variances σ 2

Y and σ 2
ζ , that

are taken equal for simplicity (similar conclusions are drawn
for σ 2

Y = σ 2
ζ ). In particular, we have considered two cases: (i)

uncorrelated and (ii) negatively correlated Y –ζ , which cover
the majority of the practical situations. The behavior at small
bG values (Darcian regime) can be elucidated after expanding
the term (K� − Keff )/(K� + Keff ) appearing in Eq. (11) in the
MacLaurin series of bG. Omitting the algebraic details, the
governing equation for κ = Keff/KG writes as∫

R
dY exp

(
− Y 2

2σ 2
Y

)
expY − κ

expY + κ
− bGϒκ � 0, (15)

being ϒκ ≡ ϒκ (ρ, σY , σζ ) a non-negative function (whose
cumbersome expression is not relevant for the discussion at
stake). As such, in the Darcian regime the GEC is smaller
than the first term on the left hand-side in Eq. (15), which
coincides with the expression obtained by [8]. The reduction
of the GEC with increasing variances is explained by noting
that, in these cases, in most of the points of the flow domain
the (K, β ) values differ significantly from their means, and
concurrently the GEC lies still within the transitional regime
(see Fig. 1), the small bG notwithstanding.

The most evident feature is that the GEC turns out to
be a monotonously decreasing function of bG. To provide
a physical explanation, we may focus on the flow’s pattern
determined by a single inclusion (see Fig. 3 with b replaced
by bG), since the GEC is computed as ensemble average
over many of these realizations. Thus, as discussed above,
streamlines circumvent the inclusion �� for bG 
 1. As a
consequence, streamlines (and concurrently the mean flux)
entering the inclusion reduce. Since the mean gradient 〈J〉 is
constant, the GEC reduces. A similar argument is the key to
explain the increase of Keff with negatively increasing cor-
relation between Y and ζ . Toward this aim, it is convenient
dealing with (6) that, upon substitutions K = KG expY and
β = βG exp ζ , reads as

κ� = 2
KG

K∞
expY

⎡
⎣1 +

√
1 + 4bG exp

(
ζ + 3

2
Y

)⎤
⎦

−1

. (16)

Thus, an increase of ζ implies a (linear) reduction of Y . Since
the quantity in the square brackets in (16) does not change
significantly for any given bG, one can claim that stream-
lines entering the inclusion thin out (due to the reduction of
KG/K∞). Hence, the gradient reduces (see the lower picture
in Fig. 3), and concurrently the GEC increases in order to
adjust the flux passing through the boundary ∂�� of the
inclusion, as demanded by the mass conservation principle.
Finally, to corroborate our analytical results, Monte Carlo
simulations (MCs) have been carried out, as well. For the sake
of completeness, we describe herein the procedure leading to
the MCs. Thus, any realization of the Gaussian, stationary,
correlated, random fields Y and ζ is generated (by means of
Cholesky decomposition), and subsequently mapped upon a
numerical (50 × 50 nodes) mesh [step (i)]. Then, the system
of flow equations{

∂γ vγ = 0,

∂γ h = (1 + β
√

K |v|)vγ

(17)

is converted into a set of algebraic equations (finite difference
method) which are solved (iteratively) for the nodal values
of the head and concurrently of the velocity [step (ii)], to
provide results for a single realization. The domain � is a
square, whose center coincides with the origin (0,0), where
on two apart (vertical) sides the boundary condition is that
of a “given” head drop up or downstream, whereas along the
remaining parallel (horizontal) sides a zero (vertical) velocity
boundary condition is imposed. These boundary conditions
are deterministic, and therefore they are the same in all the
realizations. Finally, steps (i) and (ii) are iterated to obtain at
each node results for multiple (i.e., Nr = 5000) realizations.
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Hence, the GEC is evaluated at the center of � (since this
point is sufficiently far away from the boundaries, whose
impact is not accounted for in the analytical model) as follows:

Keff � −
⎡
⎣ Nr∑

i=1

vi
x(0, 0)

⎤
⎦/⎡

⎣ Nr∑
i=1

∂xhi(0, 0)

⎤
⎦. (18)

The numerical simulations (symbols in the insets of Fig. 5)
are in good agreement with their analytical counterparts (con-
tinuous lines).

To conclude, we wish to emphasize that the analytical
expression of the GEC relies on a quite robust, seldom en-
countered (see, e.g., [14]) assumption about the shape of the
bivariate probability density function f . In addition, it is not
limited to small variances of Y and ζ .

IV. CONCLUSIONS

We have studied a two-dimensional, high-velocity, steady
flow through a porous medium. The constitutive (Forch-
heimer) model is cast in a Darcy-type equation, where the
coefficient K� is shown to coincide with the Darcy conduc-
tivity, i.e., K , when the inertial parameter β vanishes. This
enables one to treat flow in the Forchheimer regime like that
occurring in the Darcy regime, simply by replacing K → K�.
Three different flow regimes are identified, and they span from
a purely viscous one, to that dominated by inertial effects.
In the intermediate regime, both viscous and inertial forces
influence the flow.

Besides the theoretical interest, our study provides a way
of modeling the stochastic heterogeneity of porous media.
Thus, we have focused on the computation of the GECby
means of the SCA. The GEC is derived by assuming that (i)
the background surrounding each inclusion is homogeneous;
this approximation is reasonable when interactions between

blocks can be neglected. (ii) Inclusions are circular, which
is an accurate approximation for isotropic formations. (iii)
The domain is large enough to allow adoption of the ergod-
icity assumption. Although assumptions (i)–(iii) are clearly
approximations, they nevertheless do not limit the accuracy
of results, as demonstrated by means of Monte Carlo simula-
tions.

General (i.e., valid for any bivariate probability density
function f ) bounds for the GEC are derived. They result
as slightly larger than those known for the effective Darcy
conductivity, as a consequence of the larger uncertainty at-
tached to the stochastic nature of the β parameter. The
structure and the properties of the GEC are discussed for a
fairly general shape of f . In particular, the GEC is found
to increase for reduced values of the coefficient of corre-
lation between the log-transforms of the conductivity and
the inertial parameter, as well as of the variances of the
former parameters and of the Reynolds number. This is
explained straightforwardly as a consequence of the mass
conservation.

Our results find application in the study of flow and trans-
port through strongly heterogeneous (with large variances)
porous formations. Noteworthy, they can also be used as a
benchmark to validate complex numerical codes. Finally, the
present study may serve as a starting point to come up with an
effective Forchheimer law, in close analogy to the approach
developed for stratified formations [12,14,29,30].
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