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Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of patients with chronic
myeloid leukemia (CML). However, continued use of these inhibitors has contributed to
the increase in clinical resistance and the persistence of resistant leukemic stem cells
(LSCs). So, there is an urgent need to introduce additional targeted and selective
therapies to eradicate quiescent LSCs, and to avoid the relapse and disease
progression. Here, we focused on emerging BCR-ABL targeted and non-BCR-ABL
targeted drugs employed in clinical trials and on alternative CML treatments, including
antioxidants, oncolytic virus, engineered exosomes, and natural products obtained from
marine organisms that could pave the way for new therapeutic approaches for
CML patients.

Keywords: chronic myeloid leukemia, tyrosine kinase inhibitors, quiescent leukemia stem cells, Non-BCR-ABL
targeted drugs, oncolytic therapy, antioxidants, exosomes, marine organisms
1 INTRODUCTION

Chronic myeloid leukemia (CML) is caused by a t (9;22) (q34; q11) reciprocal translocation
resulting in the fusion between the breakpoint cluster region (BCR) and Abelson leukemia (ABL1)
genes (1). The resultant BCR-ABL fusion protein, is a hyper-activated tyrosine kinase. The target-
therapy is mainly based on the use of tyrosine kinase inhibitors (TKIs) that can inhibit this fusion
protein’s activity (1).

Currently, the annual incidence of CML varies from 0.7 to 1.0 cases per 100 000 inhabitants, it
increases with age and is higher in men than women with a ratio ranging from 1.2- 1.7 (2). CML
occurs in the chronic phase (CML-CP) associated with massive expansion of myeloid cells.
Acquisition of genetic mutations in BCR-ABL1 and/or epigenetic alterations results in progression
of the disease to an advanced phase classified as accelerated (CML-AP) or blastic (CML-BP) (3).
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In most classification systems, the following criteria are considered
for a differential diagnosis between AP and BP: the percentage of
blasts or basophils, white blood cells and splenomegaly
unresponsive to therapy (4).

The development of TKIs has been crucial role in increasing
the survival of patients in chronic-phase and limiting the disease
progression. However, some limitations of TKIs treatment are
related to the accumulation of BCR-ABL1mutations, which leads
to the initial and persistent resistance to TKIs dependent to BCR-
ABL. Furthermore, TKI-therapy is not effective on quiescent
leukemia stem cells (LSCs) as they exhibit independent BCR-
ABL TKI resistance (5). It was demonstrated that there is a
connection between the quiescent LSCs and the CML
progression as their genetic instability favors the accumulation
of mutations, stimulating the progression of the disease to
accelerated and blastic-phase (6). The molecular pathways
altered in CML, which include the JAK/STAT, NF-kB, WNT/
b-catenin, PI3K/AKT/mTOR, Hedgehog and NOTCH
pathways, are involved in LSCs maintenance and resistance to
TKIs (7). In addition to the side effects of TKIs approach (8), this
therapeutic strategy has the following disadvantages: the high
costs of TKIs and healthcare, of molecular monitoring of patients
during the therapy (9) and teratogenicity (10).

Several studies are focused on the achievement of the
treatment-free remission (TFR), a condition aiming to the
interruption of TKI therapy in CML patients without
recurrence of the disease. The recent guidelines recommend
TKI discontinuation in CML-CP patients pre-treated for at
least 3 years who exhibited molecular response with BCR-
ABL1 level of < 0.01% or a 4-log reduction in transcription
level respect to the baseline (MR4) for at a minimum 2 years (11).
The efficacy of TFR seems related both to the duration of
treatment with TKIs and the persistent molecular response.
During the first 6 months after TKIs discontinuation, a deeper
monitoring of patients is required to identify molecular relapse
(11). Conversely, it was observed that only 14% of the total
molecular recurrences occurred in follow-up CML patients after
2 years from TKIs discontinuation (12). Although further
investigations are required in order to better clarify the failure
of TFR, the level of natural killer cells and the presence of factors
that stimulate the resistance of LSCs could affect the time of TFR
(13). However, it is necessary to restart with TKI-therapy when
molecular recurrences are detectable in patients (11). Here, we
discuss the mechanisms underlying TKIs-resistance and we
provide an update on current and innovative therapeutic
approaches as strategies for CML therapy, focusing on in vitro
and in vivo findings.
1https://www.ema.europa.eu/en/medicines/human/EPAR/tasigna#authorisation-
details-section.
2https://www.ema.europa.eu/en/medicines/human/EPAR/sprycel.
3https://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021986_022072_
SprycelTOC.cfm.
2 OVERVIEW OF CONVENTIONAL
TKI TREATMENT

Tyrosine kinase inhibitors (TKIs) have improved survival of
patients with CML. Imatinib (Gleevec), a drug of first-line in the
therapy of CML, was approved by Food and Drug Administration
(FDA) in 2001 for accelerated phase and subsequently for newly
Frontiers in Oncology | www.frontiersin.org 2
diagnosed CML-CP patients. TKIs recognize the binding site for
ATP in BCR-ABL kinase but with different affinity related to
eventual mutations occured (Figure 1A). The missense and
frameshift mutations in this site are related to Imatinib-
resistance development (14, 15). For this reason, second and
third-generation TKIs were developed: Dasatinib (Sprycel),
Nilotinib (Tasigna), Bosutinib (Bosulif) and Ponatinib (Iclusig)
(16, 17). In particular, European Medicines Agency (EMA)
approved Dasatinib and Bosutinib in all three phases of CML
while Nilotinib only during the chronic and accelerated phase
(18–211–3). In the Table 1, we report the known BCR-ABL
mutations responsible for drug resistance in patients. By
evaluating the efficacy of second-generation TKIs versus
Imatinib in peripheral blood leukocytes derived from newly
diagnosed patients, these drugs significantly induced
apoptosis more than Imatinib (43). In addition, these drugs
were tested in clinical trials for newly diagnosed CML-CP
patients. After a follow-up of 12 months with Dasatinib (44),
Nilotinib (45) or Bosutinib (46), significantly higher rates of major
molecular response (MMR) and complete cytogenetic response
(CCyR) have been observed (NCT00481247; NCT00471497;
NCT02130557). The most common side effects are pleural
effusion occurring after Dasatinib treatment (47, 48), headache
and skin rashes more frequent with Nilotinib compared to
Imatinib (45). Increased transaminase levels and diarrhea are
observed in patients treated with Bosutinib respect to Imatinib
(46). According to guidelines, the use of second-generation TKIs is
recommended for patients without comorbidities over Imatinib
monotherapy (8) in order to obtain a faster response and thus
make the patients eligible for TFR (11). It is necessary to re-initiate
the therapy when molecular relapse occurs (11). A new selective
TKI is Radotinib (IY5511HCl), currently approved in Korea for
CML-CP patients with newly diagnosis or not responsive to other
TKIs (49). The efficacy and safety of Radotinib were demonstrated
in a phase II study (NCT01602952). After treatment with this TKI,
65% of enrolled patients had amajor cytogenetic response (MCyR)
and a CCyR in 47%of them. Themost commonhematological side
effects are thrombocytopenia (24.7%) and anemia (5.2%); while the
non-hematological ones are fatigue (3.9%), asthenia (3.9%) and
nausea (2.6%) (50). Compared to Imatinib, Radotinib showed
superior efficacy with 91% CCyR versus 77% and induced MMR
in 52% of patients (NCT01511289) (51).

Ponatinib is a third-generation TKI employed for CML patients
carrying the T315I mutation in BCR-ABL (BCR-ABLT315I) for
which first and second-generation TKIs result inefficient (38).
Unlike the other inhibitors mentioned above, Ponatinib inhibits
the BCR-ABLT315I activity due to its major affinity to modified
amino acid I315 (52). In a recent clinical trial, its efficacy was
demonstrated with the achievement of prolonged MMR and
MCyR in patients intolerant to Dasatinib/Nilotinib or having
T315I mutation (NCT01207440) (53). Adverse effects seen after
December 2021 | Volume 11 | Article 801779
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Ponatinib-treatment are rash, abdominal pain, dryness of the skin,
thrombocytopenia and increased lipase levels (39), thrombosis and
other cardiovascular problems (54). For this reason, several studies
Frontiers in Oncology | www.frontiersin.org 3
evidence the need to use low doses of Ponatinib to treat CML
patients resistant to other TKIs without impairing its efficacy
(55, 56).
TABLE 1 | The main TKIs approved for CML patients during the various phases of the disease, their molecular targets and BCR-ABL mutations responsible for drug
resistance in CML patients.

Drugs Molecular target of
the drugs

Indications of drug use for CML patients at various
phases of the disease

BCR-ABL mutations responsible for drug
resistance in patients

Ref

Imatinib BCR-ABL First line TKI in CML (all phase) Y253F/H; E255K; M351T; F359V; T315I; F317L;
Q252H/R

(22–261)
For adult and children with a new diagnosis of CML or not
eligible for bone marrow transplant.

Nilotinib BCR-ABL For CML-CP and -AP patients resistant or intolerant to other
options, such as Imatinib.

T315I (27–302)

For newly diagnosed CML-CP patients.
Dasatinib BCR-ABL/Src First line TKI for newly diagnosed CML patients. Less sensitive mutations: Y253H; E255V/K, F359V/C

T315I
(28, 31–33)

For resistance or intolerance to other drugs, including
Imatinib, in all CML phases.

Less sensitive mutations: V299L; F317L

Bosutinib BCR-ABL/Src After intolerance or resistance to prior therapy. T315I (34–373,4)
For newly diagnosed-CML patients as first line TKI drug

Ponatinib BCR-ABL, Src, Akt For all phase CML patients resistant or intolerant to prior TKI
therapy.

Compound mutations in CML-AP (T315I/E453K) and
CML-BP (T315I/F359C) patients

(38–425)

In presence of T315I BCR-ABL mutation in all CML phases
December 2021 | Volume 11 |
1https://www.ema.europa.eu/en/documents/overview/glivec-epar-summary-public_en.pdf.
2https://www.accessdata.fda.gov/drugsatfda_docs/nda/2007/022068s000_LBL.pdf.
3https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/20334s007s008lbl.pdf.
4https://www.ema.europa.eu/en/documents/overview/bosulif-epar-medicine-overview_en.pdf.
5https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/203469s022lbl.pdf.
A

B

FIGURE 1 | Current status of TKI therapy for CML. (A) Most approved drugs recognize the binding site for ATP in BCR-ABL, as: Imatinib, Dasatinib, Nilotinib,
Bosutinib, and Ponatinib. Asciminib binds to the myristoyl pocket of the BCR-ABL kinase. The new molecules of third and fourth generation TKIs including:
Olverembatinib (HQP1351), Vodobatinib (K0706) and PF-114. (B) Omacetaxine is an approved inhibitor that blocks protein synthesis.
Article 801779
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3 NEW BCR-ABL AND NON-BCR-ABL
TARGETED THERAPIES

Although TKIs have proven their clinical efficacy in the treatment
of CML, the onset of resistance still represents a critical issue. In
order to overcome the resistance, alternative therapies have been
developed. For this reason, innovative BCR-ABL targeted or NON
BCR-ABL targeted drugs can be considered as a valid alternative
for CML patients resistant/intolerant to conventional treatment.

New approaches based on combination of drugs that act on
different pathways can improve their effectiveness to obtain
optimal response and reach TFR more quickly (57). We
describe new specific drugs, focusing on the mechanisms of
action, efficacy and safety. In detail, the molecules acting on
BCR-ABL include Asciminib (ABL001), Olverembatinib
(HQP1351), PF-114 and K0706 (58).
Frontiers in Oncology | www.frontiersin.org 4
Non-BCR-ABL targeted therapies are employed to act on
different pathways than those related to TKIs and/or promote
LSCs eradication to overcome TKIs resistance in CML. Among
these, we describe the action of inhibitors targeting farnesyl
transferase (Lonafarnib and Tipifarnib), mammalian target of
Rapamycin (mTOR, Rapamycin and Everolimus), Janus kinase 2
(JAK2), histone deacetylase (HDAC) and aurora kinase;
peroxisome proliferator-activated receptor gamma (PPARg)
activators, hypomethylating agents and Omacetaxine. All drugs
tested in clinical studies are summarized in Table 2.

3.1 BCR-ABL Targeted Therapy
3.1.1 Asciminib
Asciminib is a potent, specific BCR-ABL kinase inhibitor that
recognizes the myristoyl pocket contrary to conventional TKIs
that target the ATP binding site (Figure 1A). Asciminib binds to
December 2021 | Volume 11 | Article 801779
)

TABLE 2 | New BCR-ABL and NON BCR-ABL targeted therapeutic approaches for CML patients.

Drugs Molecular target of the drugs Indications or efficacy Clinical Trials Number

BCR-ABL targeted therapy
Asciminib (ABL001) BCR-ABL1 Kinase Resistance or failure to TKI Monotherapy/combination NCT03595917 (Phase I)

The combination therapy is promising in patients with
T315I mutation

NCT03578367 (Phase II with Imatinib)
NCT03595917 (Phase I with Dasatinib
NCT02081378 (Phase I with Nilotinib)
NCT03106779 (Phase III with
Bosutinib)

Olverembatinib (HQP1351) BCR-ABL1 Resistance or failure to TKI NCT03883087 (Phase II)
Is efficacious in patients with T315I and other mutations NCT03883100 (Phase II)

Vodobatinib (K0706) BCR-ABL1 Resistance or failure to ≥ 3TKIs, except for patients
carrying BCR-ABL T315I mutation

NCT02629692 (phase I/II)

PF-114 BCR-ABL1 Resistance or failure to ≥2GTKI NCT02885766 (phase I/II)
Is efficacious in patients with T315I mutations and other
resistant mutations in BCR-ABL

NON BCR-ABL targeted therapy
Tipifarnib or Zarnestra
(R115777)

Farnesyl transferase Resistance or failure to TKI NCT00040105 (phase I)

Lonafarnib (SCH66336) NCT00047502 (phase I)
NCT00038597 (phase II)

Rapamycin mTOR Resistance or failure to TKI NCT00776373 (phase I/II)

Everolimus
In combination with DNA damaging agent etoposide

NCT00081874 (phase I/II)
NCT00093639 (phase I)

Ruxolitinib JAK2/STAT5 Resistance disease to eradicate the LSCs. In combination
with Nilotinib in advanced or resistant disease

NCT01702064 (phase I)
NCT02253277 (phase I)

In combination with conventional TKIs and TFR NCT03654768 (phase II)
NCT03610971 (phase II)

Panobinostat (LBH589) Histone deacetylase Resistance or failure to TKI NCT00449761(phase II)
NCT00451035 (phase II)

Tozasertib (MK0457) Aurora kinase and BRC-ABL Resistance or failure to TKI NCT00405054 (phase II)
Is efficacious in patients with T315I NCT00500006 (phase I)

Danusertib (PHA-739358) Activity against BCR kinase including the gatekeeper
T315I mutant

The European Clinical Trails
Data Base (EudraCT number 2007-
004070-18).

Pioglityazone PPARgamma Resistance disease to eradicate the LSCs. NCT02888964 (phase II)
In combination with Imatinib is promising and TFR EudraCT 2009-011675-79

NCT02889003 (phase II)
Decitabine DNA Resistance or failure to TKI NCT01498445 Phase I/II

Have effects both with monotherapy or combined with
imatinib

NCT00042016 Phase II
NCT00054431 Phase II

Omacetaxine Protein synthesis Resistance to ≥ 2 TKIs NCT00462943 (phase II)
Monotherapy in patients with BCR-ABL T315I mutation NCT02078960 (Phase I/II)

NCT00375219 (phase II)
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the BCR-ABL oncoprotein, induces a conformational change in
the myristoyl pocket leading to the inactive state of the kinase
and its regulation (59). Its different mechanism of action could
increase the efficacy especially in patients resistant or with
therapeutic failure to conventional TKIs.

A combined approach of TKIs with Asciminib is important,
having a different target therapy site.

In phase I studies (NCT03595917 and NCT02081378),
Asciminib monotherapy showed the achievement of MCyR in
82% of chronic phase CML-patients who failed with three or
more TKIs (57, 60), and at 12 months the incidence of MMR and
CCyR were 48% and 70%, respectively (61). Clinical trials are
ongoing to evaluate the efficacy of the combination of Asciminib
with Imatinib (phase II study: NCT03578367), Dasatinib (phase I
study: NCT03595917), Nilotinib (phase 1 study: NCT02081378)
and Bosutinib (phase III study: NCT03106779). However,
preliminary data confirm that this drug has greater efficacy
compared to Bosutinib and high tolerability in CML-CP
patients resistant or intolerant to ≥2 prior TKIs (62). Recently,
the FDA approved Asciminib (Scemblix, Novartis AG) for
patients in the chronic phase with failure to ≥2 TKIs or
carrying T315I mutation (634). In conclusion, the combination
of Asciminib with ATP-competitive TKIs can be considered a
valid therapeutic approach in CML patients with failure of
more TKIs.

3.1.2 Olverembatinib
Olverembatinib (HQP1351) is a new third-generation TKI, active
against both wild type (wt) and mutated BCR-ABL (mut)
isoforms. Recently, Jiang et al. demonstrate, in a phase I study
in patients with CML resistant to current TKIs therapies, a long-
lasting antitumor activity associated with high tolerability,
particularly in subjects with T315I mutation (64). Preliminary
data on patients with mean follow-up of 12.8 months showed
that the treatment with HQP1351 promoted the achievement of
a complete haematological response (CHR) in 94.5% of CML-CP
and 84.6% of CML-AP patients versus baseline. In 69.1% of
chronic phase subjects, the treatment induced MCyR compared
to 42.9% in accelerated phase. A notable increase in CCyR was
instead observed in 60.5% of patients with CML-CP compared to
baseline, in the corresponding CML-AP patients was only 35.7%.
These results were also confirmed in patients carrying BCR-ABL
T315I mutation (64). Two Phase II clinical studies are ongoing in
China in patients with CML-CP and CML-AP harboring T315I
mutation to evaluate the efficacy of HQP1351 both on the MCyR
and major hematological response, as well as its safety profile
(NCT03883087 and NCT03883100). Non-severe clinical effects,
such as thrombocytopenia, anaemia and leukopenia, were found
in CML-CP and CML-AP patients (65).

3.1.3 Vodobatinib and PF-114
Vodobatinib (K0706) and PF-114 are innovative ATP-
competitive TKIs belonging to third- and fourth-generation,
4 https://www.fda.gov/drugs/resources-information-approved-drugs/fda-
approves-asciminib-philadelphia-chromosome-positive-chronic-myeloid-
leukemia.
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respectively. K0706 is a novel BCR-ABL TKI direct to wild-
type and mutated isoforms although with less affinity for T315I
mutation (66). A phase I/II study (NCT02629692) is ongoing to
evaluate the efficacy and safety of K0706 in patients with
comorbidities precluding the use of conventional second-
generation TKIs or after ≥ 3 TKIs failure. The initial phase I
results of this study showed disease progression in patients
carrying BCR-ABL T315I mutation, therefore the enrolment of
patients with this mutation was stopped (67).

PF-114 is a TKI similar to Ponatinib due to its chemical
structure, capable of acting on both wt and mutated BCR-ABL
including T315I. Unlike Ponatinib, PF-114 was designed not to
inhibit the vascular endothelial growth factor receptor (VEGFR)
in order to reduce cardiovascular effects in patients (68). 65
patients, resistant to second-generation TKIs or carrying the
BCR-ABLT315I mutation, were enrolled in a phase I/II clinical
study to evaluate safety, pharmacokinetics and tolerability still
ongoing (NCT02885766). In a phase I study, Turkina et al.
achieved a complete hematologic response in 42.1% patients
treated with PF-114 of which 37.5% were carriers of the T315I
mutation. At different doses, mainly 200 and 300 mg, a complete
MMR occurred in 11% of patients and a MCyR in 28.5% (69).
However, the most effective dose was 300 mg with effective
response in 41.6% of patients with BCR-ABLT315I. The most side
effect of PF-114 is reversible grade 3 skin toxicity was found at
400 mg, in 11/12 patients (70).

In conclusion, PF-114 and K0706 have an acceptable safety
profile in patients who are resistant and/or intolerant to ≥3 TKIs
for K0706 and ≥ 2 for PF-114 (67, 70).
3.2 Non BCR-ABL Targeted Therapy
3.2.1 Tipifarnib and Lonafarnib (Farnesyl
Transferase Inhibitors)
Farnesyl transferase inhibitors (FTIs), as Tipifarnib or Zarnestra
(R115777) and Lonafarnib (SCH66336), inhibit the activity of
farnesyl transferase, acting on downstream targets such as the
oncogene RAS and resulting in cell growth arrest (71, 72).

In a first pilot study conducted with Tipifarnib asmonotherapy,
a complete or partial haematological response was detected in 7/22
patients with a minor transient cytogenetic response in 4 of
these (73).

Co-treatment with Tipifarnib, after previous Imatinib failure,
induced a cytogenetic and overall haematological response in
36% and 76% of patients, respectively (NCT00040105). The
combination was also well tolerated and had a selective activity
for mutated kinase domains (74).

Regarding Lonafarnib, its efficacy was evaluated as
monotherapy in a pilotal study on 13 patients with chronic
and accelerated phase CML, finding a haematological response in
only 15.3% (NCT00038597) (75). Subsequently, the combination
with Imatinib was tested on a larger court of CML patients,
finding an increase in its efficacy in 35% of patients, based on
haematological and cytogenetic responses (NCT00047502) (76).

Using Lonafarnib as monotherapy only small benefits are
seen in patients, while the combination can be used in patients
unresponsive to TKI therapy (57).
December 2021 | Volume 11 | Article 801779
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3.2.2 mTOR Inhibitors
The specific target of mTOR inhibitors is a serine/threonine
kinase which is over-activated in CML. Rapamycin and
Everolimus belong to this family. To date, only one clinical
trial is currently ongoing for Rapamycin in combination with
DNA-damaging agents (etoposide) (NCT00776373) (57).
Everolimus blocks the constitutive activation of mTOR and
makes cells more sensitive to Imatinib in combination therapy.
Two clinical trials are underway to prove its safety and efficacy
both as monotherapy and in co-treatment (NCT00081874
and NCT00093639).

3.2.3 JAK2 Inhibitors
JAK2 inhibitors, such as Ruxolitinib, act on Janus kinase 2 (JAK2),
an intracellular kinase commonly involved in phosphorylation and
activation of STAT5 (77). There is considerable clinical interest in
inhibiting JAK2 activity to deplete quiescent TKIs-resistant LSCs.
The advantage of these inhibitors may be related to their ability to
downregulate the JAK2/STAT5 pathway which plays a crucial role
in the proliferation and survival of CML LSCs (78). A promising
therapeutic approach given by the combination of Ruxolitinib and
Nilotinib has been evaluated in adult CML-CP patients in a phase 1
study. Preliminary data confirm that the combination Ruxolitinib
and Nilotinib is safe and well tolerated with encouraging molecular
responses (NCT01702064; NCT02253277). However, these data
need to be validated in a phase II study (79). An ongoing phase II
study has the primary objective to evaluate the molecular responses
after the combination of Ruxolitinib plus conventional TKIs
(NCT03654768). The effectiveness on TFR of adding Ruxolitinib
to TKIs is currently under a phase II study (NCT03610971).

In conclusion, the main advantage in the use of this
therapeutic approach with JAK2 inhibitors may be associated
with the eradication of LSCs responsible for BCR-ABL
independent resistance.

3.2.4 Histone Deacetylase Inhibitors
Emerging alternative therapies are Histone deacetylase inhibitors
(HDACis), involved in the epigenetic modifications that regulate
the acetylation state of histones. Zhang et al. proved in CML cells
that the co-treatment of HDACi with Imatinib downregulated the
expression levels of genes involved in the maintenance of CML
LSCs, such as Wnt/b-catenin (80). Panobinostat is a HDACi,
whose efficacy was demonstrated both in vitro including on cells
carrying BCR-ABLT315I and in vivo as reported in two phase 2
clinical trials (NCT00449761 and NCT00451035) (57). In patients
CML-CP resistant to ≥ 2 TKIs, Panobinostat monotherapy didn’t
induce MCyR but only in 3% a complete haematological response
was observed (81). Finally, emerging evidence has shown that
HDACis may have promising action as a combination therapy in
patients with TKIs failure compared to the reduced efficacy in
monotherapy (82).

3.2.5 Aurora Kinase Inhibitors (AURCis)
Aurora kinase inhibitors act on the serine-threonine kinases of
Aurora family proteins which are key regulators of cell division
whose dysregulation results in DNA alterations and cellular
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transformation. Tozasertib and Danusertib are Aurora kinase
inhibitors. The first drug is known to avoid CML progression
and even lead to a change from advanced to chronic phase in CML
patients, including those carrying BCR-ABLT315I. The second
agent is characterized by a dual role, since it can inhibits both
Aurora kinase family and BCR-ABL, including T315I (82). As
monotherapy, a phase II study was performed in CML-CP
patients with T315I mutation (NCT00405054). Overall, a major
cytogenetic response was achieved in 8% of patients, unconfirmed
complete or partial response in 6% and only 13.3% had a complete
haematological response (83). While, the combination with
Dasatinib was used in phase I study to determine safety and
efficacy of Tozasertib (NCT00500006).

Danusertib is a drug with an acceptable safety profile, as
demonstrated in a clinical trial (EudraCT number 2007-004070-
18). When it was administered as a single drug, complete
molecular and cytogenetic responses appeared to be constant
over time in all patients carrying T315I BCR-ABL mutation (84).

3.2.6 PPARgamma (PPARg) Activators
Glitazones are PPARgamma (PPARg) activators utilized for
diabetic patients. However, they can be successfully employed in
CML therapy, especially to counteract thepersistence ofCMLLSCs.
PPARg reduce the expression of STAT5 and its downstream targets
which are involved in the survival of quiescent CML LSCs. As
shown inclinical trials (NCT02888964; EudraCT2009‐011675‐79),
the combination of Pioglitazonewith Imatinibwas well tolerated in
CML patients with a better molecular response (MR 4.5) in 56%
versus 23% found in patients treated with Imatinib alone (85).
Finally, there is a current phase II study that aims to further
characterize the use of Pioglitazone in patients with TKIs failure
after first TFR to proceed with the second discontinuation attempt
(NCT02889003). In summary, this combination constitutes a
potential strategy for the eradication of quiescent LSCs.

3.2.7 Hypomethylating Agents
High methylation levels in ABL play a critical role in the
progression from CML-CP to CML-BP (86). Since DNA
methylation correlates with the progression, the use of
hypomethylating agents constitutes an alternative therapy in
combination with TKIs in CML. Among these drugs, Decitabine
in combination with Dasatinib induced complete haematological
response in 48% of patients, achieving MCyR and MMR in 44%
and 33% of patients, respectively (NCT01498445) (87). Severe
myelosuppression was an adverse effect occurring in patients
treated with this methylating agent (88). Two clinical trials of
phase II are evaluating the efficacy of Decitabine both as
monotherapy and in combination with Imatinib in patients who
had no benefit from conventional therapy and disease progression
(NCT00042016; NCT00054431). Venetoclax, a selective BCL2
inhibitor, is approved in combination with hypomethylating
agents for newly diagnosed Acute Myeloid Leukemia (AML)
(89). Preclinical studies demonstrated a synergism of Venetoclax
in combination with BCR-ABL TKI in the eradication of LSCs in
CML-BP (90). Indeed, the overall response rate (ORR) was 75% in
CML-BP and 43% in AML patients (91).
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3.2.8 Omacetaxine
A new drug relevant for the treatment of chronic or accelerated
phase CML is Omacetaxine, considered a third generation TKI
capable of inhibiting protein synthesis (Figure 1B). The efficacy
of Omacetaxine has been evaluated in several clinical trials in
patients resistant to more than 2 TKIs (NCT02078960, phase I/II
and NCT00462943, phase II) and carriers of the T315I mutation
(NCT00375219, phase II). FDA guidelines indicate this drug
effective for patients intolerant/resistant to ≥2 TKI, including
those with BCR-ABLT315I (68). Based on the results obtained by
Cortes et al., 18% of patients with CP-CML achieved persistent
MCyR for 12.5 months; while only 14% of CML-AP patients had
a major haematological response for 4.7 months (92). Therefore,
long-term administration of Omacetaxine results in prolonged
benefits. On the other hand, the main adverse effect is the
haematological toxicity induced in 10% of CML-CP patients
and in 5% of CML-AP patients resulting in discontinuous
treatment (92).
4 INNOVATIVE POTENTIAL THERAPEUTIC
APPROACHES IN CML THERAPY

4.1 Antioxidants and Their Role in
CML Therapy
The activity of BCR-ABL oncoprotein is linked to ROS
production leading to the onset of new mutations (93). This
“self-mutagenesis” favors the progression of CML from CP to BP
(94). Usually, alterated levels of antioxidant enzyme superoxide
dismutase (SOD) (95), thiobarbituric acid reactive substances
(TBARS), total lipid hydroperoxides (96) and higher plasmatic
malondialdehyde levels are observed in CML patients compared
to healthy subjects (97). Antioxidants could be a useful weapon
to reduce oxidative stress and to hinder the onset of new BCR-
ABL mutations, as demonstrated in vivo with xenograft mice
(98). Ghalaut et al. detected a reduction in nitrosative stress (NO)
levels following the addition of turmeric to the diet of patients
treated with Imatinib (99) proposing the antioxidants as possible
new therapeutic approach. The anti-proliferative and pro-
apoptotic properties of curcumin are known, as demonstrated
in K562 leukemia cells (100). It was also proved that curcumin
was able to increase PTEN and inhibit BCR-ABL activity in vitro,
while the tumor size was reduced in xenograft model (101). Wu
et al. proposed two curcumin derivates, C086 and C817, as a
potential therapeutic approach to counteract Imatinib-resistance
(102, 103). Curcumin derivates are capable of promoting
apoptosis in cells carrying the following mutations: Y253F,
Q252H and, including, T315I. Moreover, a reduced survival of
CML progenitor/stem cells, obtained from patients ‘bone
marrow, was observed after the treatment with the same
derivatives of curcumin (102, 103). These agents may
constitute a new potential therapeutic approach to overcome
the persistence of LSCs resistant to TKIs.

Although several antioxidants play an essential role in reducing
oxidative damage, some of them at high concentrations show pro-
oxidant action and induce death in cancer cells (104) such as
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resveratrol (RES) which has a dual effect in a dose-dependent
manner (105). The latter is a compound that at low doses (20 µM)
it is able to reduce oxidative stress (106) while at higher doses
(60mmol/L) it induces apoptosis in K562 cells depending on the
duration of the treatment (107).

Damiano et al. evaluated the antiproliferative effects of
combining TKIs (Nilotinib or Dasatinib) with different
antioxidants including RES, d-tocotrienol (d-TOCO) and a
new recombinant mitochondrial manganese containing
superoxide dismutase (rMnSOD) in K562 cells. The results
suggested that the combination increased the action of
inhibitors and induced the cytotoxic effect through the
production of ROS confirming the potential use of
antioxidants in CML (108).

4.2 Oncolytic Virus
The development of a specific target-therapy is a major focus of
cancer research. In recent years, oncolytic virus (OV) therapy or
virotherapy has become a promising alternative strategy through
the use of wild type or genetically modified viruses (109).

In detail, the most exploited oncolytic viruses in virotherapy
are: adenovirus, herpesvirus, herpes simplex (HSV), measles
virus, parvovirus and reovirus (110–113). For human
adenovirus and herpes simplex 1 (HSV-1), additional genetic
modifications are required in order to both mitigate virulence
and improve specificity and safety (114, 115). Non-human
viruses don’t need to be modified due to their species-specific
infection capacity (116–118).

In our previous studies, we demonstrated the efficacy of the
Caprine herpesvirus type 1 (CpHV-1) in promoting the death of
different tumor cell lines. However, it was not able to reduce the
viability of K562 probably due to a lower permissiveness of these
cells to this type of caprine virus (116).

To improve the efficacy of virotherapy, viruses are often
engineered or modified with tumor suppressor or pro-
apoptotic genes (119). As suggested by in vitro and in vivo
studies, adenoviruses with chimeric Ad5/11 fiber expressing
Beclin-1 could be a promising approach in CML therapy (120).

By overexpressing Beclin-1 protein in chimeric adenovirus 5/
11 (SG511-BECN), Tong et al. induced autophagy in primary
cells obtained from Imatinib-resistant CML patients.

Increased survival has also been shown in xenografted mice
after treatment with SG511-BECN (121).

Li et al. used oncolytic viruses in combination with other
anticancer drugs to demonstrate their efficacy in CML. The data
confirmed a high antitumor action in multidrug- resistant CML
cells after combined treatment with SG511-BECN and
chemotherapy agents (122). In conclusion, these promising
results reinforce the idea of employing this new type of
therapeutic approach also for CML disease.

4.3 Exosomes as Biomarkers
and Drug Carriers in CML
Exosomes are membrane-bound extracellular vesicles (EVs) that
carry both RNA and other bio-molecules, such as lipids and
proteins; they are often found in biological fluids, including
blood, urine and cerebrospinal fluid (123).
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The presence of BCR-ABL is now also known in exosomes
obtained from CML cells (124), therefore these EVs could be
useful for the identification of new biomarkers for CML. One of
these is miR-140-3p, upregulated in CML patients and involved
in the inflammatory process (125).

Exosomes can also be used as drug carriers in fact Bellavia et
al. employed exosomes expressing Interleukin 3 (IL-3), whose
receptor is usually overexpressed in CML blasts, to deliver
Imatinib or BCR-ABL siRNA. These exosomes thus loaded
were capable of inhibiting cancer cell growth both in vitro and
in vivo (126). While these data are promising, further studies are
needed to demonstrate and test the efficacy of exosomes as a
vehicle for CML-specific drugs and siRNA.

4.4 Active Compounds From Marine
Organisms
Marine organisms are able to produce metabolites with
bioactivities useful for the treatment or prevention of human
pathologies (127–130). There are currently on the market
fourteen compounds derived from marine species used for
various types of cancer (such as multiple myeloma, leukemia,
lymphoma, breast, ovarian, lung and urothelial cancer),
hypertriglyceridemia, pain and infections (https://www.
midwestern.edu/departments/marinepharmacology/clinical-
pipeline.xml). In addition to those on the market, other marine
compounds/extracts showed antiproliferative activities against
various cancer cells (131–133). Anticancer is the most frequent
activity identified for marine derived compounds, maybe because
these molecules have defensive roles in the natural environments.
In addition, there is great interest in marine natural products
because of their novel chemical structures that often have no
other equivalent in terrestrial habitats (~70% of their structural
scaffolds are only found in marine organisms).

Most of the marine compounds active against chronic
myelogenous leukemia cells derives from sponges. The
National Cancer Institute screened about 90,000 extracts of
terrestrial and marine plants, and invertebrates on its prescreen
platform of 60 human cell lines including the K562 and the
HL-60 cell lines (134). Data showed that different phyla,
including Annelida, Bryozoa, Chlorophyta, Chordata, Cnidaria,
Cyanophyta, Echinodermata, Mollusca, Phaeophyta, Porifera,
Rhodophyta and Tracheophyta (Mangrove) and 620/9945
extracts had antileukemia properties. Among the screened
organisms, Porifera showed selectivity against leukemia cell
lines (134). Regarding the purified compounds from sponges
with activity against CML, there are gombamide A, compound 1-
8, Lembehyne B, Heteronemin, Smenospongine, Aaptamine,
chujamides A and B (135–142).

In particular, gombamide A is a peptide obtained fromClathria
gombawuiensis, a native sponge of Korean waters (135). It was
proved that gombamide A had cytotoxicity effects against K562
cells with LC50 of 6.9 µM (135). Compound 1-8, extracted from
the sponge Coscinoderma sp. of Chuuk Island (Micronesia) (136),
showed to be cytotoxic against K562 leukemia cells with LC50
value of 0.9-5.5 µM. Lembehyne B, an acetylenic alcohol obtained
from the sponge Haliclona sp. living in the Indonesian waters
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(137), exhibited cytotoxic properties against K562 cells showing an
IC50 of 3 µM (138). In addition, Lembehyne B induced apoptosis
and phosphatidylserine externalization on the plasmatic
membrane after treatment. Heteronemin is a sesterterpene
derivative isolated from the sponge Hippospongia sp (139).
which showed strong anticancer activity against K562 cells with
EC50 value of 0.41 ± 0.08 mg/mL. Smenospongine is a compound
extracted from the marine sponge Dactylospongia elegans which
was active against K562 cells and promoted cell cycle arrest when
tested at 5-15 µM (140). In addition, Smenospongine was able to
block the progression of cell cycle by increasing p21 levels and
reducing Rb phosphorilation in K562 cells. Aaptamine is a
marine-derived alkaloid isolated from the sponge Aaptos
suberitoids (141) and able to inhibit CML K562 cell proliferation
with a GI50 of 10 mM. Aaptamine also induced the arrest of cell
cycle at G2/M phase and a higher p21 levels, as demonstrated by
protein analyses in K562 cells. Finally, the isolation from the
sponge Suberites waedoensis of chujamides A and B was reported
by Song and co-authors (142). Chujamides A and B are cyclic
cysteine bridged peptides, with cytotoxicity toward K562 cells with
LC50 values of 37 µM and 55.6 µM, respectively.

Other promising activities derive from marine microalgae,
more manageable to grow in small or large photobioreactors
compared to sponges and representing an eco-friendly and eco-
sustainable source of new compounds from marine environments
still poorly explored (130, 133, 143–145). Carbenolide was isolated
from the dinoflagellate Amphidinium sp. GA3P and was able to
induce apoptosis in K562 cells by inhibiting DNA topoisomerase I
and II showing an IC50 of 30 ng/mL (146). Additionally, it was
shown that Carbenolide raised lifespan in mice implanted with P-
388 leukemia cells (147). Recently, Atasever-Arslan and
collaborators (148) tested a serious of microalgae for possible
cytotoxicity against both HL60 and K562 cell lines. Stichococcus
bacillaris, Phaeodactylum tricornutum,Microcystis aeruginosa and
Nannochloropsis oculata extracts were found active against one or
both cell lines when screened at 1-500 µg/mL. In particular, S.
bacillaris, M. aeruginosa and N. oculata extracts were able to
induce apoptosis in K562 cells as demonstrated by Annexin V, PI
and DNA fragmentation analyses. S. bacillaris also increased
phospho-p38 MAPK protein levels in K562 cells. Atasever-
Arslan et al. (148) chemically characterized the composition of
oils of these microalgal species by gas chromatography-mass
spectrometry (GC-MS) and found 206 compounds. In the active
extracts, twelve of these compounds were identified. Hence, these
twelve molecules were further analyzed for docking analysis
against various key intracellular proteins and results showed that
five of them had in silico possible antileukemic activities (e.g.
inhibitors of key proteins).
5 CONCLUSION

Targeted therapy using TKIs is considered the conventional
treatment in CML patients. Some limitations of TKIs use are
the high healthcare costs of the drugs, the continuous molecular
monitoring of patients for the identification of new mutations
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and the persistence of LSCs that induce resistance to TKIs.
At present, the development of new therapeutic approaches
aims at increasing survival, improving quality of life and
achieving successful TFR after TKIs discontinuation. BCR-ABL
targeted and non BCR-ABL targeted therapies, alone or in
combination with conventional inhibitors, constitute a new
valid approach to achieve better molecular, haematological or
cytogenetic responses and to attempt TFR. Preliminary data in
vitro and in vivo results based on the use of oncolytic viruses and
engineered exosomes as drugs carrier prove that they could be
employed to selectively eradicate CML cells. The ability of
antioxidants in combination with TKIs could be a future
approach to be employed for CML therapy. Although further
investigation is required to better understand the molecular
mechanism of these new agents, they represent promising
options that could pave the way for new therapeutic
approaches for CML patients.
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