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Abstract: In this work, the stress relaxation behavior of 3D printed PLA was experimentally investi-
gated and analytically modeled. First, a quasi-static tensile characterization of additively manufac-
tured samples was conducted by considering the effect of printing parameters like the material infill
orientation and the outer wall presence. The effect of two thermal conditioning treatments on the
material tensile properties was also investigated. Successively, stress relaxation tests were conducted,
on both treated and unconditioned specimens, undergoing three different strains levels. Analyti-
cal predictive models of the viscous behavior of additive manufactured material were compared,
highlighting and discussing the effects of considered printing parameters.

Keywords: additive manufacturing; stress relaxation; viscoelasticity; analytical fitting; experimental
mechanics; polylactic acid (PLA)

1. Introduction

Additive manufacturing (AM), or 3D printing, is an advanced technology that enables
high-accuracy and low-cost production of physical models and structures of complex
geometry. In the last few years, AM significantly evolved in a growing market. Additive-
manufactured parts are built layer by layer with deposition of material according to 3D
digital design [1–4]. AM technology is currently adopted in a wide range of engineering
applications such as mechanical, biomedical, construction, aerospace, and food industries
as well as in academic research [5–9]. Currently, many different technologies are available
in the AM field and can be classified by means of the energy source or the way the material
is joined, for instance, by using a binder, laser or heated nozzle. A classification is also
possible by group of materials processed, such as plastics, metals or ceramics [10]. The most
common materials used in AM are certainly plastics and polymers in general; nevertheless,
the strong technological development has allowed also metallic and ceramic materials to
become of interest in this field. Table 1 shows the different materials that can be used in
relation to the various technological processes described. Among polymers, polylactic
acid (PLA), also known as polylactide, is attracting increasing interest from industry and
researchers. PLA is a biodegradable thermoplastic polyester derived from totally renewable
resources such as sugar beets and corn [11]. In specific conditions [12], the decomposition
of PLA into water, carbon dioxide and humus (the black organic material in soil) can be
obtained. Furthermore, PLA shows interesting mechanical properties such as high stiffness
and high strength if compared to many synthetic polymers [13]. Physical and mechanical
properties of PLA are extensively discussed in [14]. Therefore, PLA is proving to be a
potential alternative to replace petroleum-derived polymers [12]. It is used in a variety of
bio-medical applications as well such as dialysis media, porous scaffolds, bone-fixation
devices, interference screws, drug-eluting stents, sutures, and suture anchors [15–17].
It is noteworthy that untreated PLA has mechanical properties heavily dependent on
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temperature and, for this reason, its application is preferable in low-temperature solutions,
usually up to 60 °C [18]. On the contrary, an annealing thermal treatment (between glass
transition and melt temperatures) could enhance the mechanical properties of FDM–PLA
parts [19].

Fused deposition modeling (FDM) is the most popular and affordable AM extrusion-
based method to manufacture polymer-based structures. Because of its extensive use, a
thorough understanding of the influence of the manufacturing process on the mechani-
cal properties of PLA material is crucial. The quality of products fabricated by the FDM
process is usually affected from surface roughness, poor precision and low strength [20].
An opportune selection of printing parameters, such as temperature, printing speed, wall
thickness and layer height, can significantly improve the overall printed samples qual-
ity [21,22]. The mechanical behavior of polymeric structures is mainly governed by time
dependent rheological effects, and therefore, the prediction of the inelastic mechanical
behavior, in terms of monotonic and cycling loading, as well as creep and relaxation, is
of great importance [23,24]. The viscoelastic behavior of polymers strongly influences the
optimal choice of their fields of application. The viscoelasticity of materials is exhibited in
different ways, such as the progressive deformation of a material sample under constant
stress, i.e., creep behavior, and the gradual reduction in force when the sample is subject to
a constant strain, i.e., stress relaxation. In general, viscoelasticity is a phenomenon associ-
ated with time-dependent material response [25]. Biodegradable polymers can undergo
failure much before the anticipated yielding and ultimate tensile strength, due to its viscous
nature, which leads to the creep or relaxation rupture. For example, in Grabow et al. [26],
significant creep deformation in PLA stents was reported when subjected to a constant
load. Up to the proportionality limit, deformation occurring in the polymer specimen is
similar to the uncoiling of a molecular chain. No intermolecular slippage is noticed, and
strains are recoverable in this area but only after a certain period. The deformation that
occurs beyond this proportionality limit is unrecoverable. These distortions occur due to
the actual displacement of the molecules over each other, which causes permanent defor-
mation [27,28]. In [29], the creep behavior of biodegradable PLA was analyzed, considering
the effects of layer thickness and printing angle. Creep response was also modeled by
using Burger model for predictive purposes. The static properties of printed PLA and their
dependency on printing parameters have been extensively studied, and many works are
available on these topics. On the other hand, although several papers have dealt with the
investigation of creep behavior of printed PLA materials, the literature on stress relaxation
response of PLA subject to thermal ageing is limited. In this work, an investigation of
the viscoelastic behavior of the PLA as a function of the infill strategy is presented. First,
the static characterization of PLA samples, printed using different infill orientations, was
carried out. Afterwards, an extensive campaign of stress relaxation tests was conducted.
Here, the influence of infill strategy was taken into account. Finally, analytical predictive
models to describe the relaxation behavior of the PLA printed by FDM technology were
described and compared. The presented results can be useful for expanding the use of PLA
material in the 3D printing of products for further engineering sectors.
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Table 1. Materials for additive manufacturing and related technological processes.

Technology Polymers Metals Ceramics Composites

Stereolithography • •
Digital light processing •

Multi-jet modeling • •
Fused deposition modeling •

Electron beam melting •
Selective laser sintering • • • •
Selective heat sintering •

Direct metal laser sintering •
Plaster-based 3D printing • •

Laminated object
manufacture • • • •

Ultrasonic consolidation •
Laser metal deposition • •

2. Materials and Methods
2.1. Experimental Methods

The experimental campaign was performed on samples printed with a PLA plus
filament, by Zhuhai SUNLU Industrial Co., Zhuhai, China, whose nominal properties are
reported in Table 2.

Table 2. Nominal PLA filament properties provided by the supplier.

Filament Diameter
[mm] Tensile Strength [N] Melt Flow Rate

[g/10 min]
Transition

Temperature Tg [°C]

1.75 ± 0.02 108 ÷ 147 9 ÷ 11 62.5

A commercial FDM linear Cartesian machine, Artilery Sidewinter X1 (Shenzhen
Yuntuchuangzhi Technology Co., Ltd., Shenzhen, China), equipped with a direct extrusion
system, was adopted to 3D print the material. It was extruded through a 0.4 mm-diameter
nozzle with an extrusion temperature of 210 ◦C and a deposition velocity of 60 mm/s.
Other critical printing parameters such as the bed plate temperature and the layers height
were set to 50 ◦C and 0.1 mm, respectively. The manufacturing process was conducted in a
controlled environment. Currently, there is no specific standard reference for additively
manufactured polymers testing. Therefore, the experimental campaigns presented in this
work were conducted by adopting a custom rectangular cross section sample, Figure 1a,
with a length in the traction direction equals to 120 mm, a width of 6 mm and a thickness
of 3 mm. The gauge length was set to 25 mm. The specimens were clamped using self-
tightening wedge grips mounting specific jaws for polymers, thus avoiding specimen
distortions due to overly hard clamping. Tests on specimens realized according to ASTM
D638 standard were also performed, but the dog bone geometry seemed not suitable for
the FDM samples printed with the selected parameters, due to the great deal of breakages
in fillets close to the clamping area. A similar premature failure of ASTM D638 printed
specimens was also highlighted in [30].

In a standard FDM process, the thermoplastic filament is melted in a liquefier and
extruded through a nozzle onto the build platform according to the predetermined tool
paths. Once a layer is completed, the extrusion apparatus is raised (or the build platform
is lowered), and then the next layer is deposited on the previous one. The whole process
is repeated until the entire part geometry is realized [31]. Generally, the FDM technology
is characterized by the presence of contour lines, Figure 1b, enclosing the slice section,
representing a key factor respect to the workpiece dimensional quality and geometrical
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accuracy [32]. Sets of specimens were printed with and without the outer wall, consisting
of a single contour line, to investigate the effect of the contour on the mechanical behavior
of additive manufactured material. In addition, to evaluate the influence of the printing
orientation on the PLA mechanical response, three different printing infill directions were
tested as schematically reported in Figure 1c. The considered infill orientations were
0◦, 45◦ and 90◦ respect to the traction direction.Every layer was printed using the same
infill direction and automatic stacking strategy was not adopted. Moreover, in order to
analyze the mechanical behavior of printed PLA under operative conditions, heat and
cold thermal treatments were applied to specimens printed with the 0° infill direction,
i.e., the configuration providing higher strength. The heating conditioning sequence was
obtained by holding the samples for 8 h in an air-circulating oven at a temperature (Th) of
about the 80% of the material transition temperature Tg. The cooling treatment consisted
of maintaining the specimens for 8 h in a laboratory freezer at constant Tc = −15 ◦C
temperature. The temperature levels selected for the thermal treatments were chosen as
representative of operating conditions to simulate the natural aging of the material. In both
cases, the specimens returned to room temperature in calm conditions.

Figure 1. Schematic representation of specimens geometry (a), contour and infill lines (b) and
considered printing direction (c).

Quasi-static tensile characterization was conducted to estimate the material elastic
properties depending on the infill orientation, the contour influence and thermal condi-
tioning. A servo-hydraulic testing machine Instron 8500 plus (Instron, Buckinghamshire,
UK), with a 1 kN load cell, was adopted to execute tensile tests under displacement control.
The average elastic modulus and the deformation correspondent to the maximum reached
stress were estimated. Successively, experimental stress relaxation characterization of the
additively manufactured PLA was executed under strain control. Constant tensile defor-
mation εo was applied to the specimens and the corresponding engineering stress trend
σ(t) was evaluated over an assigned dwell time ∆t. In the present work, three straining
values, respectively, equal to the 27%, 36% and 45% of the deformation at the maximum
stress, were considered for the contoured 0°, 45° and 90° infill printed direction samples.
The relaxation phenomenon was measured over a time ∆t = 500 s.
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2.2. Analytical Methods

Three different predictive laws were adopted to model the viscoelastic behavior of
PLA samples. A comparison of analytical modeling and an evaluation of the infill direction
influence on the relaxation behavior was performed. All the experimental data from the
three test strain levels for each infill printing direction were collected in a unique set to
identify model parameters. The best data fitting was reported by means of the correlation
coefficient. First, a rheological Maxwell model was implemented [33]. As reported in (1),
the trend of the stress over the time depends on the imposed straining ε0 level and on
the two parameters A1 and A2 which, respectively, represent the spring stiffness and the
dashpot damping value.

σ(t) = ε0 · A1 · ε−t/A2 (1)

Second, a more complex standard Linear Solid model [34] was implemented. In (2),
the correspondent formulation for the stress evolution over the time, is reported.

σ(t) = ε0 · [B1 + B2 · ε−t/B3 ] (2)

Similar to the Maxwell approach, in the standard linear solid model, the stress is
linearly dependent on the imposed strain level ε0 through three elements: a spring with
stiffness B2 and a dashpot with damping coefficient B3 combined in parallel to a further
spring of stiffness B1. The representations of the above-mentioned Maxwell and Linear
Solid rheological models are reported in Figure 2a,b, respectively.

(a) (b)
Figure 2. Scheme of the considered linear rheological models: (a) Maxwell model and (b) Linear
Solid model.

Finally, the nonlinear Findley model was enforced [35]. According to (3), the evolution
of stress over time results to be function of the initial stress value σ0 at the time t = 0, the
stress-dependent fitting parameter σ1, the fitting exponent n and of the material constant tc
that was considered as unitary in the present study, according to literature [36,37].

σ(t) = σ0 + σ1 · (t/tc)
n (3)

Since the purpose of this work is the estimation of relaxation influence on the elastic
properties, the presented analytical models were analyzed in terms of creep modulus E(t),
obtained by dividing the stress over time σ(t) by the constant deformation value ε0, as
reported in (4).

E(t) =
σ(t)
ε0

(4)

In the following Table 3, the resultant creep modulus expression and the fitting con-
stants are reported for each considered model. It is worth noting that only the parameters
σ0 and σ1 of Findley law modified their nomenclature in E0 and C due to the division by
remote strain.
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Table 3. Considered analytical models creep modulus expression and fitting constants.

Maxwell Linear Solid Findley

Creep
Modulus A1 · e−t/A2 B1 + B2 · e−t/B3 E0 + C · tn

Material
Constants A1; A2 B1; B2; B3 C; n

Experimental curve fitting was achieved, implementing the creep modulus expression
on the MatLab Curve Fitting Toolbox, adopting the non-linear least squares method with
the trust region fit option enabled. The R-squared (R2) values were compared to determine
the most accurate model for the experimental data fitting. The identified law was adopted to
appreciate the influence of the material infill direction, as well as the thermal conditioning,
on the relaxation behavior of the tested 3D printed PLA.

3. Results and Discussion
3.1. Experimental Quasi-Static and Long-Term Behavior

With the purpose to estimate the elastic behavior of the AM material, three tensile
tests were performed on each specimen type. The elastic modulus E, the tensile strength σ∗

and the correspondent deformation ε∗ of the contoured specimen type were reported in
Table 4 collected by the material infill direction.

Table 4. Elastic characterization of contoured specimens.

Infll Direction 0° 45° 90°

E [MPa] 3045 ± 3 2914 ± 3 2932 ± 3
σ∗ [MPa] 60 ± 3 54 ± 3 47 ± 3

ε∗ 2.75% 2.05% 1.75%

The 0° specimens resulted in the higher values of the elastic modulus, strength and
correspondent deformation at peak stress. The 45° samples presented a drop in the elastic
modulus of about 5% and a reduction in strength of 10%, while the 90° specimens carried
out a tensile strength lower than 21% with respect to the 0° direction. The effect of contour
was estimated and representative results for the 45° and for 90° infill direction are, respec-
tively, reported in Figure 3a,b. A comparison with the correspondent contoured specimen
outcomes is also shown in the same figure. The different behavior could be related to
the way the infill lines are loaded. Indeed, in the 0° specimens all the filament lines were
aligned to the loading direction. Therefore, they were loaded along their axis. Instead, the
90° specimens were orthogonal to the load, thus the resultant interface between adjacent
filaments was much more stressed than in the 0° specimens. Moreover, samples with an
outer wall presented contour lines always oriented at 0°, i.e., the stiffer direction. Despite
only one outer wall line being used, the experimental stress–strain curves of contoured
45° and 90° samples were considerably influenced by its presence. The hygroscopic nature
of the PLA material [38] and manufacturing flaws can influence the behavior of printed
samples. Within this context, thermal treatments, in particular cooling conditioning, could
provide performance degradation.
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(a) (b)
Figure 3. Contoured vs. not contoured specimens tensile curves; (a) 45° infill orientation; (b) 90° infill
orientation.

A reduction in strength was noticeable and not influenced by the infill direction, with
a drop of about 16% for both the considered directions, while negligible variations were
appreciated in the elastic modulus. Furthermore, the influence of thermal treatments on the
material elastic properties were estimated through tensile tests conducted on 0° conditioned
specimens; the results are reported in Table 5.

Table 5. Elastic characterization of thermally conditioned 0° specimens.

Conditioning Th = 50 ◦C Tc = −15 ◦C

E [MPa] 3005 ± 3 2990 ± 3
σ∗ [MPa] 46 ± 3 43 ± 3

ε∗ 1.56% 1.65%

The quasi-static tensile behavior of thermal conditioned sets is graphically reported in
Figure 4. In comparison with the untreated material, a fairly negligible difference (<3%)
was detectable in elastic modulus, whilst a decay of about 25–29% in strength was noticed.
The cooled specimens were demonstrated to have worse mechanical behavior.

Figure 4. Tensile curves of 0° specimens thermally treated and unconditioned.

The stress relaxation behavior of printed PLA material was investigated and the results
discussed in term of normalized creep modulus over time. The normalized creep modulus
was computed as the ratio between the creep modulus (4) and the average elastic modulus
above was presented. The relaxation results, for the imposed strain values, were reported
collected by the infill printing orientation, in Figure 5a for the 0°, in Figure 5b for 45° and in
Figure 5c for 90° infill orientation.
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(a) (b) (c)

Figure 5. Normalized creep modulus over time at room temperature; (a) 0° infill orientation; (b) 45° in-
fill orientation; (c) 90° infill orientation.

It is worth noting that samples printed with 90° orientation seem to exhibit non-linear
viscoelastic behavior. This response could be ascribed to the way the material is loaded
with respect to the infill lines orientation. The 90° samples lay orthogonally to the loading
direction, and the sample’s response was much more influenced by the interface behavior
of adjacent infill lines and eventual flaws.

The 0° and 45° tested specimens resulted in less dispersed data compared to that
showed by the 90° specimens. The average creep modulus decay, in the investigated ∆t,
was estimated to be equal to about 13%, 11% and 13%, respectively, for 0° and 45° and 90°.
The outcomes of relaxation tests on the thermally conditioned 0° specimens, here reported
in Figure 6a with regard to heating treatment and in Figure 6b for those subject to cooling,
showed higher data scatter than unconditioned ones. Both thermal treatments produced
an increment of the creep modulus decay with respect to the unconditioned test outcomes.

(a) (b)
Figure 6. Normalized creep modulus over time for thermally conditioned 0° specimens; (a) Thermal
conditioning T = 50 °C; (b) Thermal conditioning T = −15 °C.

3.2. Analytical Modeling of Stress Relaxation Response

The above-proposed analytical models were implemented to fit experimental data
sets with all the adopted strain levels. In such a way, the effect of the infill direction on the
material relaxation behavior was highlighted. To estimate the models’ fitting quality, the
coefficient of determination (R-squared) values were computed and reported in Table 6.
With respect to the Maxwell and Linear Solid relationships, the Findley model resulted in
the higher average value of R2, always over 0.85.
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Table 6. Analytical models R-squared values for the 0°, 45° and 90° infill orientation.

R2 0° 45° 90°

Maxwell 0.87 0.80 0.73
Linear Solid 0.96 0.92 0.84

Findley 0.97 0.94 0.85

A graphical representation of the Findley empirical model outputs and the experimen-
tal outcomes, in terms of normalized creep modulus, is presented in Figure 7a for 0°, in
Figure 7b for 45°, and in Figure 7c for the 90° infill direction.

(a) (b) (c)

Figure 7. Trend of normalized creep modulus at room temperature; (a) 0° infill orientation; (b) 45°
infill orientation; (c) 90° infill orientation.

The same analytical fitting procedure was applied to the experimental relaxation
results of thermally conditioned specimens. The R2 values, carried out by the analyses of
analytical models, are listed in Table 7. Furthermore, for the treated specimens, the Findley
law showed a satisfactory prediction of response, with R2 values always over 0.93.

Table 7. R-squared values from data fitting of the thermally conditioned specimens.

R2 Th Tc

Maxwell 0.87 0.80
Linear Solid 0.96 0.92

Findley 0.97 0.94

Among the investigated predictive models, the Findley equation resulted in the best
experimental data fitting, independent of the infill orientation and thermal treatment. Thus,
it was selected for comparing the stress relaxation behavior of the untreated and thermally
conditioned specimens with different infill orientations. The computed values of Findley
model parameters are presented in Table 8 for all the considered testing conditions and
manufacturing processes.

Table 8. Findley model parameters for the treated and unconditioned specimens.

Specimen Type C n

Untreated
0° −51.4605 0.3283

45° −60.0284 0.2650
90° −70.6612 0.2636

Treated Th −59.1985 0.3462
Tc −57.7070 0.3604
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The comparison among the analytical curves for all the investigated cases is reported
in Figure 8. It shows that the material relaxation behavior is hardly influenced by the infill
printing direction. Indeed, the normalized creep modulus decreased in the range of 11–14%.
From a practical point of view, a difference of about 3% can be considered negligible. The
thermal conditioning procedures affected relaxation response of printed PLA, showing a
stress decay greater than 45% with respect to the untreated samples.

Figure 8. Comparison of stress relaxation curves by Findley model.

4. Conclusions

In this study, three different printing infill directions (0°, 45° and 90°) were considered
for evaluating the tensile behavior of printed PLA by FDM technique. The presence
of a single-line outer wall was also analyzed. The tensile strength of contoured 0° and
45° specimens was higher than about 17% of the ones without an outer wall. From an
operational point of view, the presence of the contour increases the dimensional accuracy
of the product.

Secondly, the stress relaxation response was experimentally investigated under dif-
ferent uniaxial strain levels at room temperature. Stress decay ranging from 11% to 14%
was acquired. Three analytical models were used for describing stress relaxation response:
Maxwell equation, standard Linear Solid model and Findley law. Among them, the Findley
empirical expression was confirmed as being the most suitable predicting the tested PLA.

Furthermore, two thermal conditioning procedures were considered for 0° samples
in order to reproduce the natural ageing of materials. Both cooled and heated specimens
provided a degradation of quasi-static and long-term material properties.

The presented outcomes pointed out the significance of stress relaxation effects in AM
PLA structures. Thus, a preliminary predictive analysis should be considered to guarantee
reliability over time of 3D printed parts in applications with imposed displacements, e.g.,
medical brace prostheses or screw joints.
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