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A B S T R A C T   

The purpose of this study is to evaluate different lightweight concretes for the first time formulated with 
lightweight expanded aggregates produced only with industrial waste. The motive is that a lack of knowledge 
still exists in the literature about how to integrate these waste-based aggregates in lightweight concrete. To 
achieve the desired bloating and aggregates physical properties, PC-TV screen glass and ceramic tile polishing 
sludge were selected as suitable raw materials. Both were characterized by mineralogical and chemical analyses 
and the effect of different combinations was pointed out. Hot-stage microscopy was used to determine the 
bloating rates and firing behavior. Lightweight expanded aggregates were obtained using both static laboratory 
kiln and rotating pilot kiln, by firing at maximum temperatures between 1150 and 1200 ◦C, to simulate the 
industrial production process and favor scaling up. The so obtained aggregates were characterized from the 
physical-mechanical point of view, highlighting an important bloating attitude and bulk density lower than 700 
kg/m3 for all the test conditions. Bulk density, water absorption and mechanical properties are fully comparable 
to commercial counterparts. The best material was used as coarse aggregate in lightweight structural concrete 
and cellular concrete prepared at pilot scale (for structural application and thermal/acoustic insulation, 
respectively). The technical properties are consistent with standard requirements of compressive strength (>25 
MPa for lightweight structural concrete) and thermal conductivity (18–24 W/m*K for cellular concrete). These 
results demonstrate the technological feasibility of using waste-based aggregates into lightweight concrete 
design, according to a circular economy vision.   

1. Introduction 

The systematic switch-off of the analogical broadcasting system and 
the consequent passage to digital terrestrial broadcasting, is accompa
nied by huge replacement of old CRT (Cathode Ray Tube) apparels with 
new TV units equipped with LCD/LED screens (Hermans et al., 2001). 
Unfortunately, despite increasing efforts, few advances were made on 
the treatment process of e-wastes so that the preferred choice is still 
limited to landfilling (Baldé et al., 2017). 

As reported by “The Global E-waste Monitor 2014: Quantities, flows 
and resources” (from the United Nations University), 41.8 million tons 

of electronic wastes and millions tons of cathode ray tube residues were 
produced in 2014 worldwide (Baldé et al., 2017). This trend is not ex
pected to decrease in next years (Yao et al., 2018). The presence of 
hazardous elements, i.e. Pb in the tube and funnel glass and high amount 
of Sr and Ba in the screen glass (SG), generates problems related to old 
screens disposal and waste management (2000/532/ EC, 2000). The 
disposal of such component represents only among the various critical 
issues common to many other wastes from industrial activities that 
should be considered according to concepts of circular economy and 
reuse For this reason, several recent investigations (Behera et al., 2021; 
Camana et al., 2021; Chinnu et al., 2021; Lim et al., 2019; Liu and 
Coffman, 2016; Ma et al., 2021; Mpatani et al., 2021; Upadhyay et al., 
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2021; Wan et al., 2021) proposed a plenty of solutions aimed at using 
municipal or industrial wastes in the ceramic or building sectors, 
including Lightweight Expanded Aggregates (hereafter LEA) giving 
them a sort of second life as secondary raw materials (Dondi et al., 2009, 
2016). This increased interest in LEA production is also boosted by a 
growing number of studies on the use of a wider range of urban and 
industrial wastes as materials for LEA production (Cáceres et al., 2019; 
Dondi et al., 2016). 

According to standard definition, lightweight aggregates are mineral 
granular, with a bulk density not higher than 2000 kg/m3 this latter 
considered as the key classifier parameter that distinguishes lightweight 
from dense aggregates (UNI EN 13055, 2016; Bush et al., 2006; de 
Gennaro et al., 2004). Lightweight aggregates have a lot of applications: 
e.g., as loose material, in back wall fillers and in the agronomic field or, 
once mixed with a binder, in the manufacture of plaster, asphalt and 
lightweight structural concrete, in particular in the production of 
thermo-acoustic insulators in lightweight concrete (Mindness et al., 
2002). Due mainly to the increasing demand for lightweight structural 
and insulating (thermal and acoustic) mortars and concretes, LEA are 
currently the object of a revitalized interest (Kurpińska and Ferenc, 
2020; Li et al., 2020; Oktay et al., 2015). 

Artificial lightweight expanded aggregates are usually produced 
from natural raw materials (such as clay, shales or zeolites-rich rocks) 
able to bloat by themselves (Bush et al., 2006; de Gennaro et al., 2009; 
Dondi et al., 2016) through a quick heating at high temperature given by 
gases released during hating. If the ceramic matrix exhibits a suitable 
permeability and viscosity of the liquid phase, the formed gases can be 
then entrapped and the desired expansion is achieved (Molinari et al., 
2020; Moreno-Maroto et al., 2020). If the ceramic matrix exhibits a 
suitable permeability and viscosity of the liquid phase, the formed gases 
can be then entrapped and the desired expansion is achieved (Molinari 
et al., 2020; Moreno-Maroto et al., 2020). When these conditions do not 
occur, the addition of an expanding agent is necessary. An industrial 
waste can be selected as gas-forming substance (Dondi et al., 2016). 
Dried Polishing Mud (hereafter DPM) from stoneware tile polishing 
process is known as bloating enhancer, given by silicon carbide 
contamination (about 1% SiC) derived by lapping tools abrasion (de 
Gennaro et al., 2007, 2009; Zanelli et al., 2021). At high temperature, 
SiC oxidises leading to dissociation and gas production (Molinari et al., 

2021; Opila and Nguyen, 1998). 
Overall, LEA are currently the object of a revitalized interest, due 

mainly to the increasing demand for lightweight structural and insu
lating (thermal and acoustic) mortars and concretes (Kurpińska and 
Ferenc, 2020; Li et al., 2020; Oktay et al., 2015; Xie et al., 2019). 

This interest is also fueled by a growing awareness about environ
mental sustainability, which is stimulating various studies on the use of 
urban and industrial wastes as possible raw materials for LEA produc
tion (Amin et al., 2020; Cáceres et al., 2019; Dondi et al., 2016). 

Such new generation of raw materials is often characterized by a 
much wider range of chemical and mineralogical composition with 
respect to clays and shales. For this reason, this new kind of aggregates 
often shows a different technological behavior, imposing some adjust
ments to the manufacturing process (shaping and firing treatments) in 
order to meet the expected product specifications. 

Glass-based batches represent a test-bench of chemical composition 
and operative conditions, in order to appraise the role of the physical 
properties of LEA in binder hardening, such as water absorption, bulk 
density, and mechanical strength. Another goal is to go further the state 
of the art for waste recycling: in literature there is a certain number of 
papers dealing with expansion of waste glass (Adhikary et al., 2021; 
Bernardo et al., 2010; Ducman et al., 2002; Kourti and Cheeseman, 
2010; Li et al., in press; Molinari et al., 2021; Mueller et al., 2008; 
Pascual et al., 2021; Tuan et al., 2013; Wei et al., 2011; Yio et al., 2021) 
but no one exist, at best of our knowledge, using glass waste from PC and 
TV screen and moreover on concretes based on these LEA. 

Unlike other papers, this research: 

• aims to demonstrate the technological feasibility of different light
weight concretes for the first time formulated with waste-based 
aggregates;  

• Evaluates the full production chain: from the formulation of suitable 
LEA batches by utilizing only waste (PC-TV screen and SiC- 
containing porcelain stoneware tile polishing sludge), to the 
upscaling of LEA manufacturing to a pilot line, to eventually 
formulate, produce and characterize the lightweight concretes con
taining waste-based LEA. 

The paper is so structured: after the description of experimental ac
tivities (section 2), the results are illustrated and discussed, first about 
waste characterization and mix formulation (section 3.1) then moving to 
LEA production and characterization (section 3.2) and finally produc
tion and characterization of lightweight concretes (section 3.3). 

2. Materials and methods 

Two wastes were selected from same number Italian waste man
agement facilities: a glass from TV-PC screen (SG) and a mud from the 
polishing of ceramic tiles (DPM). Both starting materials and fired 
products were characterized by: 

2.1. Mineralogical composition 

Mineralogical qualitative and quantitative analysis (Table 1) were 
performed by X-ray powder diffraction (XRPD) using a Panalytical 
X’Pert Pro diffractometer, equipped with a RTMS X’Celerator detector 
with Cu-Kα radiation, operating at 40 kV and 40 mA. Scans were 
collected in the range 5–80 ◦2θ using a step interval of 0.017 ◦2θ, with a 
step counting time of 120 s. Mineral phases were identified by the 
Panalytical Highscore Plus 3.0c software and PDF-2/ICSD mineral da
tabases and quantitative phase Rietveld refinement were performed 
using Topas software (version 5.0, Bruker, Germany) (Bish and Howard, 
1988; Bish and Post, 1993; Rietveld, 1969). Crystalline and vitreous 
phases were calculated by means of internal standard method (20 wt% 
of Al2O3, 1 μm, Buehler Micropolish). 

List of used abbreviations 

C Cellular concrete experimental specimen 
CCAT Charge Compensated Aluminium in Tetrahedral 

coordination 
CRT Cathode Ray Tube 
DPM Dried Polishing Mud 
EDS Energy Dispersive Spectroscopy 
GNF Glass Network Formers 
GNM Glass Network Modifiers 
HSM Hot Stage Microscope 
LCD Liquid Crystal Display 
LEA Lightweight Expanded Aggregates 
LED Light Emitting Diode 
LS Lightweight Structural concrete experimental specimen 
LoI Loss on Ignition 
NBO/T Non-Bridging Oxygens per Tetrahedrally-coordinated 

cations 
SEM Scanning Electron Microscope 
SG Screen Glass waste 
SiC Silicon Carbide 
XRPD X-Ray Powder Diffraction 
XRF X-Ray Fluorescence  
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2.2. Chemical composition 

Chemical analyses of raw materials were carried out, on pressed 
powder pellets, using an Axios Panalytical X-ray fluorescence (XRF) 
spectrometer, equipped with six analyzer crystals, three primary colli
mators and two detectors (flow counter and scintillator). Analytical 
uncertainties are 1–2% for major elements and 5–10% for trace elements 
(Cucciniello et al., 2017). The weight Loss on Ignition (LoI) was deter
mined by gravimetric techniques, firing at 1000 ◦C powders previously 
dried at 110 ◦C overnight. 

2.3. Firing behavior and LEA production 

Firing behavior was evaluated by a Hot-Stage Microscope (HSM - 
Expert System Solutions - Misura 2) on cylindrical specimen heated with 
a heating rate of 10 ◦C/min until melting (2 mm diameter, 3 mm height) 
(Dondi et al., 2001). The laboratory scale batches were designed with 
the goal of maximizing the amount of wastes that allow to comply with 
the required physical and technological properties of the products. The 
mix design and the obtained chemistry are reported in Table 2. Labo
ratory simulation of LEA manufacturing process was conducted on three 
mixes by preparing about 8 g of powder and pressing at 40 MPa (pellets 
with a diameter of 10 mm). The pellets were fired in electric chamber 
static kiln (Nannetti mod. CV) at maximum temperatures of 1150 and 
1200 ◦C and 5 min well time. Moreover, the best mixture of was chosen 
to a larger scale production (35 L) and in rotating inclined kiln (Lab scale 
prototype from Nannetti) for about 40 min, with 5 min of soaking time 
and at the maximum temperature of (1225 ◦C) (de Gennaro et al., 2009). 

2.4. Composition and properties of the vitreous phase 

Based on bulk chemistry and mineralogical properties of the fired 
bodies, chemical composition of vitreous phase was determined to 
evaluate glass structure parameters (Table 3). The chemical composition 

of the vitreous phase was calculated by subtracting from the bulk 
chemistry of the fired body the contribution of mineralogical phases, 
assuming their stoichiometric compositions weighted on the quantita
tive phase analysis. Physical properties at high temperature were esti
mated by predictive models based on the chemical composition of the 
liquid phase (Fluegel, 2007). The vitreous phase contains different ele
ments that affect both structure and properties of the glass network. In 
order to facilitate data interpretation, some parameters were used to 
express specific structural features of the melt: 

Table 1 
Chemical and mineralogical composition of waste and their characteristic tem
peratures by hot-stage microscopy. aExpansion <100 vol% is assumed for 
samples that did not reach the initial volume after the first sintering phase.  

Components Units Ceramic tile polishing 
sludge (DPM) 

TV and PC screen 
glass waste (SG) 

SiO2 wt% 66.37 63.78 
TiO2 0.55 0.41 
Al2O3 19.35 2.34 
Fe2O3 0.81 0.10 
MgO 2.64 0.31 
CaO 1.64 1.02 
SrO 0.05 7.73 
BaO 0.04 8.55 
Na2O 3.47 7.53 
K2O 1.81 7.22 
P2O5 0.26 – 
Loss on ignition 3.00 1.02 
Quartz wt% 18 2 
K-feldspar 3 – 
Plagioclase 3 – 
Vitreous phase 72 98 
Others (mullite, zircon, 

SiC, etc.) 
3 tr 

Sintering temperature (Ts) ◦C 1185 ± 5 695 
Softening temperature (Tr) ◦C 1220 ± 5 855 
Melting temperature (Tf) ◦C 1330 ± 5 1080 
Temperature of maximum 

expansion (Tme) 

◦C 1240 ± 5 1215 

Temperature of max 
expansion rate (Tmve) 

◦C 1220 ± 5 1200 

Maximum volume 
expansion at Tme 

vol% 310 ± 0.1 <100a 

Isothermal expansion after 
30 min at Tmve 

vol% 250 ± 0.1 <100a  

Table 2 
Mix design and chemical composition of the LEA batches.  

Mix design (wt %) Mix 1 Mix 2 Mix 3 

DPM 40 50 60 
SG 60 50 40 
Chemical composition of the LEA batches (wt%) 
SiO2 66.03 66.43 66.83 
TiO2 0.47 0.49 0.50 
Al2O3 9.40 11.16 12.92 
Fe2O3 0.40 0.47 0.54 
MgO 1.27 1.51 1.75 
CaO 1.29 1.36 1.42 
SrO 4.71 3.93 3.16 
BaO 5.20 4.34 3.48 
Na2O 5.99 5.59 5.19 
K2O 5.12 4.58 4.04 
P2O5 0.11 0.13 0.16 
Loss on Ignition 1.80 2.00 2.21  

Table 3 
Phase composition together with the chemical composition and estimated shear 
viscosity of the vitreous phase.  

Samples Mix1 Mix2 Mix3 

Firing temperature (◦C) 1150 1200 1150 1200 1150 1200 
Bulk density (kg/m3) 710 770 740 730 740 770 
Phase composition (wt%) 
Quartz 2 1 2 3 3 3 
K-feldspar 9 8 12 10 18 14 
Plagioclase 5 5 5 5 2 2 
Vitreous phase 84 86 81 82 77 81 
Chemical composition of the vitreous phase (wt%) 
SiO2 65.52 65.91 66.04 65.59 66.11 66.04 
TiO2 0.56 0.55 0.60 0.60 0.65 0.62 
Al2O3 7.86 7.89 9.64 9.97 11.90 12.22 
Fe2O3 0.48 0.47 0.58 0.57 0.70 0.67 
BaO 6.19 6.05 5.36 5.29 4.52 4.30 
SrO 5.61 5.48 4.85 4.79 4.10 3.90 
MgO 1.51 1.48 1.86 1.84 2.27 2.16 
CaO 1.28 1.25 1.42 1.40 1.73 1.65 
Na2O 6.58 6.42 6.32 6.25 6.50 6.18 
K2O 4.28 4.38 3.15 3.52 1.30 2.07 
P2O5 0.13 0.13 0.16 0.16 0.21 0.20 
NBO/Ta (1) 0.26 0.26 0.25 0.25 0.23 0.23 
GNFb (% atom) 34.79 34.98 35.98 35.94 37.20 37.33 
CCATc (% atom) 4.16 4.18 5.10 5.28 6.30 6.47 
GNMd (% atom) 18.21 17.85 15.38 15.29 12.33 11.95 
Viscosity (Log10 Pa s) 3.04 2.77 3.30 2.98 3.55 3.24  

a (NBO/T) Degree of polymerization of the melt - From the composition of the 
liquid phase: Number of Non-Bridging Oxygens (NBO) per Tetrahedrally- 
coordinated cations (Si,Al) as atomic percentage. 

b (GNF) Glass network formers - From the composition of the liquid phase: 
GNF (atom%) = Si + CCAT, corresponding to Al3+charge compensated by alkali 
or alkaline earths. 

c (CCAT) Charge compensated aluminium in tetrahedral coordination - From 
the composition of the liquid phase: Al3+ charge compensated by alkali and 
alkaline earths: CCAT(atom%) = Na + K+2Ca+2 Mg (up to max value = Al). 

d (GNM) Glass network modifiers - From the composition of the liquid phase: 
alkali and alkaline earths exceeding CCAT: GNM (atom%) = Na + K+2 
Mg+2Ca–CCAT. 
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- Degree of depolymerization of the melt (NBO/T) defined as the 
number of Non-Bridging Oxygens (NBO) per tetrahedrally- 
coordinated cations (Si, Al) as atomic percentage and calculated 
from the composition of the vitreous phase;  

- Glass network formers (GNF) - From the composition of the liquid 
phase: GNF (atom%) = Si + CCAT, corresponding to Al3+ charge 
compensated by alkali or alkaline earths.  

- Charge compensated aluminium in tetrahedral coordination (CCAT) 
- From the composition of the liquid phase: Al3+ charge compensated 
by alkali and alkaline earths: CCAT(atom%) = Na + K+2Ca+2 Mg 
(up to max value = Al).  

- Glass network modifiers (GNM) - From the composition of the liquid 
phase: alkali and alkaline earths exceeding CCAT: GNM (atom%) =
Na + K+2 Mg+2Ca–CCAT. 

2.5. Microstructure 

Micro-textural observations were carried out by Scanning Electron 
Microscopy coupled with Energy Dispersive Spectroscopy (SEM-EDS; 
JEOL JSM-5310 coupled with Oxford Instruments Microanalysis Unit 
equipped with an INCA X-act detector) and by using the digital micro
scope (HIROX RH-2000). 

2.6. LEA and concrete characterization 

Physical and technological properties of LEA were tested by means of 
European Standards: bulk density (kg/m3) (Archimede’s principle), 
loose bulk density (kg/m3), strength of particle (MPa) (Control Test 
equipment - load rate 1 MPa*s-1, 20 samples), particle size distribution 
(mm) and water absorption (%) (UNI EN 13055, 2016). As regards 
concretes, four different batches were designed and produced following 
standard indications (UNI 11013, 2002) in order to test LEA-containing 
concretes and regular ones (as reference) for each feature. For this 
reason, two kind of lightweight structural concretes (LS1-LS2) and 
cellular concretes (C1–C2) were cured in a controlled temperature 
chamber (20 ◦C for three days) then in water filled tanks (20 ◦C) until 
final maturation (28 days) (UNI EN 12390-1, 2012; UNI EN 12390-2, 
2019). 

Lightweight structural concretes were tested by means of mass vol
ume and compressive strength, on cubic specimens (15 × 15 × 15 cm) 
(UNI EN 12390-3, 2019; UNI EN 12390-4, 2019; UNI EN 12390-7, 
2021). 

Cellular concretes were tested by means of mass volume (UNI EN 
12390-7, 2021) and thermal conductivity, on tile shaped specimens (20 
× 20 × 3 cm). Thermal conductivity evaluation followed experimental 
procedures reported in literature (Buonanno et al., 2003; Dell’Isola 
et al., 2012; Frattolillo et al., 2005; ISO/IEC Guide 98-1, 2009). The 
latter based on a one-dimensional steady state comparative method and 
expanded uncertainty with a level of confidence of 95%. In particular, a 
temperature gradient is established across the sample using electrical 
heaters and a thermostatic bath. The sample is bounded above and 
below by two reference structures, each comprising a glass plate be
tween two isothermal copper parallel plates. Under the hypothesis of 
one-dimensional (vertical) heat flux and negligible boundary thermal 
losses, the effective thermal conductivity (λ) can be evaluated as the 
arithmetic mean of the thermal conductivity values obtained by 
equating the heat fluxes measured at the top, middle and at the bottom 
of the sample. That is, the heat flow through the sample can be measured 
by measuring the temperature gradient across reference Pyrex® glass 
plates, whose thermal conductivity and its corresponding uncertainty is 
known. 

3. Results and discussion 

3.1. Waste characterization and mix formulation 

Both wastes were selected with a particle size distribution of less 
than 200 μm, which falls within the general trends identified to obtain 
the best behavior in terms of both expansion and technological prop
erties of LEA (Dondi et al., 2016). 

Both ceramic sludge and screen glass have a high silica content 
(about 65%), in accordance with literature data (Méar et al., 2006) and 
about 23% of fluxing content (i.e., the sum of Fe2O3+CaO + MgO +
Na2O + K2O + SrO + BaO). The ceramic tile polishing sludge (DPM) has 
a composition close to the porcelain stoneware, being mainly consti
tuted by glassy phase plus crystalline components like quartz, plagio
clase and minor quantity of mullite, zircon and synthetic silicon carbide 
(Table 1). 

SG waste is characterized by high amounts of SrO and BaO (~8 wt 
%), confirming the not-recycling attitude of this waste according to 
European Directives (2000/532/ EC, 2000, 2001/118 /EC, 2001, 
2001/119 /EC, 2001, 2001/573/ EC, 2001, 2014/ 955/EU, 2014) and 
indirectly the need to provide alternatives to landfill disposal. The only 
crystalline phase present is a 2 wt% of quartz, probably due to a 
contamination during recycling operations (Table 1). 

The thermal behavior of the two wastes is completely different: the 
glass sample exhibits characteristic temperatures much lower than those 
of DPM with no evident expansion (Table 1). In contrast, DPM exhibits 
an isothermal expansion of 310% after firing. On the basis of this 
peculiar behavior, the only way to use the SG waste is to mix it with 
DPM, known to play a bloating-enhancer role (de Gennaro et al., 2007, 
2009; Monteiro et al., 2004). Formulation and composition of the 
selected mixtures are reported in Table 2. 

3.2. LEA production and characterization 

Firing conditions were set to be consistent with previous experi
mental researches (de Gennaro et al., 2007, 2009) and following sug
gested temperatures from Hot Stage Microscope (HSM) results. 

Bulk density values were evaluated for samples fired at 1150 and 
1200 ◦C (Fig. 1) with 5 min of well time and are reported in Table 3. All 
samples show bulk density values below 1000 kg/m3 and, in particular, 
sample Mix1 has the lowest density value (710 kg/m3) after firing at 
1150 ◦C. 

The mineralogical composition of waste-based LEA consists in K- 
feldspar, plagioclase, quartz, and abundant vitreous phase. (Table 3). 
Changes of the mineralogical composition of the bodies is mirrored in 
the chemical composition of the vitreous phase which in turn determines 
the degree of polymerization and physical properties, like shear vis
cosity at high temperature (Table 3). It is known that for a vitreous phase 
content higher than 75 wt%, both bulk viscosity and bloating index are 
mainly controlled by the chemical composition of the vitreous phase 
(Kaz’mina, 2010). In this study, the vitreous phase is always higher than 
75% (77–86 wt%) therefore, the effect of bloating index, in relation to 
the chemical composition of the vitreous phase and its physical prop
erties, was investigated (Table 3). Growing the percentage of DPM waste 
(both at 1150 and 1200 ◦C) the contents of SiO2, Al2O3, TiO2, Fe2O3, 
MgO increased in the vitreous phase, while the amounts of Na2O, K2O, 
BaO and SrO decreased. 

The progressive increase of DPM brought about a gradual shift in the 
structural features of the melt, which turned slightly more polymerized 
(Number of Non-Bridging Oxygens per Tetrahedrally-coordinated cat
ions (Si,Al) as atomic percentage NBO/T passing from 0.26 to 0.23). This 
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trend agrees with the strong decrease of glass network formers and the 
growth of network formers (Table 3). This latter is mainly due to the 
incorporation of tetrahedrally-coordinated aluminum in the network 
charge compensated by alkali. 

Such a chemical composition of the liquid phase reflects in a 
decreasing fluidity at high temperature, as suggested by the increase of 
viscosity with the increase of the DPM content. 

As reported in literature (Petersen et al., 2017), the viscosity window 
for obtaining a low-density glass foam, observed for bottle glass with SiC 
as foaming agent, is between 3.3 and 4.0 log10 Pa s range, that can be 
compared with the values calculated for the studied mixtures. In 
particular, these values correspond to the viscosity data calculated for 
these bodies (Mix1, 2, 3). At firing temperature of 1150 ◦C, the sample 
Mix1 is the less dense (710 kg/m3) with a viscosity value of 3.04 log10 
Pa s. Temperature rising reduces glass viscosity, both favoring SiC 
oxidation and allowing gas expansion and bloating. At the same time, 
progressive decrease of glass viscosity favors bubbles coalescence and 
gas leaching, so reducing expansion efficiency and leading to higher 
bulk density (Molinari et al., 2020; Wang et al., 2018). 

The presence of solid particles boosts the effective viscosity of the 
glass-crystals system (Giordano, 2019; Giordano et al., 2008; Prousse
vitch et al., 1993). At the same time, foam stability and bloating effi
ciency are limited (Dondi et al., 2016). Given the presence of the same 
crystalline structures in similar amounts, it is believed that the effect of 
the solid load is the same and therefore can be overlooked. Based on the 
main physical and chemical properties discussed, all the tested mixes are 
suitable for the use as coarse aggregate in concrete manufacturing 
(Molinari et al., 2020; Wang et al., 2018). 

However, Mix1 was chosen for the pilot scale production (35 L – 
Mix1L) as the best compromise between the largest amount of waste 
glass used in mix design and good LEA technical features (firing 

temperature = 1150 ◦C; particles density = 710 kg/m3). LEA produced 
with the rotary kiln have a glassy but rough external surface (Fig. 2a) 
which reasonably will favor the adherence between aggregate and 
cement. 

Proceeding with a refining process for operative conditions for a 
large-scale production, thermal behavior of Mix1L was tested and results 
are reported in Table 4. Indeed, based on Tmve (1125 ◦C) and considering 
the gap between the inner part of the rotary tube and the value detected 
by the thermocouple (external to rotating tube) of the oven, a produc
tion temperature of 1225 ◦C was chosen (de Gennaro et al., 2009). By the 
technical viewpoint, Mix1L aggregates have similar mineralogical 
composition and viscosity, once compared to the samples prepared at 
the small laboratory scale (Mix 1 LEA), keeping close to the viscosity 
window for obtaining a low-density glass foam reported in literature 
(Petersen et al., 2017). 

In the Mix1L, also the microstructure was evaluated in terms of 
quantity and quality of both pores and septa constituting the expanded 
structure (Figs. 2b and 3). Micrographs show that bubbles produced by 
bloating are characterized by a bimodal size distribution: a first popu
lation, with bubble diameters ranging from 100 to 500 μm (Fig. 3a) and 

Fig. 1. Appearance of LEA fired at 1150 ◦C and 1200 ◦C.  

Fig. 2. Appearance of large-scale LEA production fired at 1150 ◦C.  

Table 4 
Phase composition of Mix1L (large-scale production in rotary kiln at 1225 ◦C). 
Chemical composition and viscosity of the vitreous phase. Characteristic tem
peratures of LEA evaluated by hot stage microscope (HSM).  

Phase composition (wt%) Unit Mix1L 

Quartz wt% 2 
K-Feldspar 7 
Plagioclase 3 
Vitreous phase 88 
Chemical composition of the vitreous phase (wt%) 
SiO2 wt% 64.52 
TiO2 0.60 
Al2O3 7.40 
Fe2O3 0.51 
MgO 1.63 
CaO 1.17 
SrO 6.04 
BaO 6.67 
Na2O 6.60 
K2O 4.72 
P2O5 0.14 
Viscosity (Log10 Pa s) 2.97 
Sintering temperature (Ts) ◦C 1010 
Softening temperature (Tr) ◦C 1018 
Melting temperature (Tf) ◦C 1323 
Temperature of maximum expansion (Tme) ◦C 1233 
Temperature of max expansion rate (Tmve) ◦C 1125 
Maximum volume expansion at Tmve % 220 
Isothermal expansion after 30 min at the Tmve % 160  
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a class of smaller bubbles, ranging from 10 to 50 μm, mainly present in 
walls (septa) between larger bubbles (Fig. 3c) as already reported for 
this type of LEA (de Gennaro et al., 2009). 

The physico-mechanical features of experimentally produced LEA 
were evaluated according to standard procedure (UNI EN 13055, 2016) 
and compared to those of some commercial products with a similar bulk 
density value (Table 5). As commercial products, in general, also 
waste-based LEA offer, as whole, a remarkable range of physical char
acteristics (e.g., bulk density and water absorption) and processing 
conditions (e.g. firing behavior). Leaching tests were performed in 
previous investigations on ceramic materials containing PC-TV glass 
(Raimondo et al., 2007; Dondi et al., 2009) or polishing sludge (Gar
cía-Ten et al., 2016; Sarani et al., 2018). No mobilization of elements of 
concern (Ba, Sr, transition metals) was observed in vitrified products 
(Raimondo et al., 2007; García-Ten et al., 2016) at variance of the few 
mg/kg of Ba and Sr found in leachates from porous products (Dondi 
et al., 2009; Sarani et al., 2018). 

3.3. LEA in lightweight concretes 

Mix-designing concrete composition must start from an initial pre
vision of required concrete performances (workability, mechanical 
resistance, durability, etc.) and from the characteristics of the available 
raw materials (cement, aggregates, additives). According to this 
consideration, mix-design is based on some experimental correlations 
between the composition of the concrete, on one hand, and the perfor
mance of the hardened concrete by means of the characteristics of the 
used materials, on the other (Collepardi et al., 2016; Lydon, 1972; 
Neville, 2012). 

Briefly summarizing the fundamental experimental correlations 
among components, is possible to assume that:  

1 The water amount (in kg/m3) influences the workability of the fresh 
mix (and hardened concrete performances) and can depend by the 
type of aggregate (rounded or crushed), its size (maximum diameter) 
and presence of additives (water reducers and aerating agents).  

2 The water/cement ratio (w/c) represents the relationship between 
the total amount of water in the mix by weight, including the hu
midity of the aggregates, and the amount of cement. It is a 

fundamental parameter for the quality of concrete, capable of 
influencing numerous important characteristics and performances 
such as mechanical strength of the hardened conglomerate, perme
ability, the extent of shrinkage, etc. The optimal w/c value to pro
duce a hardened concrete with high compressive strength and low 
permeability is 0.4 (Collepardi et al., 2016; Lydon, 1972; Neville, 
2012)  

3 The volume of inert material is calculated by difference through a 
balance of volume by subtracting from the volume of concrete, those 
of the other ingredients (i.e., the volumes of water, cement and air);  

4 Volume of the total aggregate amount is divided by contributions of 
two main classes of aggregates (commonly sand and gravel) based on 
the granulometric curves with respect to the optimal curve chosen 
(Fuller, Bolomey, Cubic). 

From the above reported consideration the role of water amount is a 
key for a correct mix-design and a very important contribution is due 
water absorption of aggregates. In fact, while an unsaturated aggregate 
removes water from the mixture, one with a wet surface provides water 

Fig. 3. Micrographs of the internal microstructure of the Mix1L aggregates in section: the scale bar is 500 μm (a), 100 μm (b) and 50 μm (c).  

Table 5 
Physical-mechanical features of waste-based aggregates compared to those of some commercial products with a similar bulk density value.    

Sample Particle size distribution Bulk density Loose bulk density Water absorption (24h) Strength of particle  

(mm) (kg/m3) (kg/m3) (%) (MPa) 

commercial LEA Knaufa 3–8 <1000 440 (±15%) <13 <2 
Granulati Zandobbiob 3–8 <1000 450 (±15%) >10 >1 
Termolitec 3–8 <1000 380 (±15%) >10 >1 
Lecad 3–8 <1000 380 (±15%) >10 >1 
Leca piùd 3–8 <1000 380 (±15%) <10 >1,5 
Mix1L 3–10 860 670 2.05 1.54  

a www.knauf.it. 
b www.granulati.it. 
c www.termolite.info. 
d www.leca.it. 

Fig. 4. Bulk density of LWA from waste as a function of water absorption 
(Dondi et al., 2016). 
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to the mixture. In order to respect a w/c ratio close to the optimal value 
(0.4), the use of an aggregate giving small water absorption coefficient is 
encouraged (Collepardi et al., 2016; Lydon, 1972; Neville, 2012). 

Comparing technical features achieved on Mix1L, with literature 
data (Fig. 4), waste-based aggregates fall within the field of materials 
with low density and low water absorption (Dondi et al., 2016). The 
latter feature is due to the glassy surface created during firing. 

Aggregate size plays another key role to produce a concrete with the 
maximum possible density, or with the lowest number of voids between 
individual granules. The particle size curve of the solid system (cement 
+ aggregate) must follow specific equations that guarantee the 
maximum dimensional sorting and the right compromise between 
density and workability (Fennis and Walraven, 2012). 

If large size aggregates are in excess, the mixture would be hardly 
workable without the addition of water (that can be considered detri
mental to mechanical characteristics) on the contrary, if fine aggregate 
is in excess, a greater amount of water is required to wet the entire 
surface, determining, again, a high water/cement ratio. For this reason, 
three particle size distribution curves were commonly used to have the 
best particle size distribution: the Fuller curve, the Bolomey curve and 
the Cubic curve (Collepardi et al., 2016). As clearly visible in Fig. 5, 
Mix1L lot, was sieved and selected to be consistent with Fuller curve 
trend for an optimal particle size packing. 

To test the possible use of Mix1L aggregate in concrete 
manufacturing, two different types of batches were prepared following 
common experimental recipes and using mix design reported in Table 6:  

1) Lightweight Structural concretes (LS specimens).  
2) Foamed Cellular concretes (C specimens). 

The lightweight structural concrete is useful to build elevations of 
existing buildings that are not strong enough to bear the weight of or
dinary concrete structures and which would therefore require complex 
adaptation interventions to increase their bearing capacity. The use of a 
structural lightweight concrete reduces, also, the inertia forces that arise 
when the structure is subject to seismic movements, allowing a decrease 
in the reinforcement with the same section, or a decrease in the resistant 
section with the same reinforcement (Collepardi et al., 2016; Neville, 
2012). 

The foamed cellular concrete, instead, is produced by mixing, in a 
foaming equipment, a cement grout with a protein-based foam obtained 
with specific foaming agents. In this way, a closed air cell structure 
coated with cement is formed inside the cement mixture, giving high 
insulating power and considerable lightness to the material. 

As regards “LS”, mix design were experimentally conceptualized 
with two different ratios (LS1 and LS2) between fine and coarse aggre
gates (to better estimate waste-based aggregates contribution to con
crete properties), both with the same w/c ratio (0.46). For “C” mix 

design, a common recipe without coarse aggregate addition was 
considered (C1 - reference) along with a waste-based aggregates addi
tion recipe (C2) for a direct comparison. 

Accordingly, to their final application, the two types of concrete, 
containing experimental Mix1L aggregates, have been tested for 
compressive strength (LS specimens) and thermal conductivity (C 
specimens) (Table 6). Standard values are reported for reference (UNI 
EN 1745, 2020; UNI EN 206, 2016). Standard values of thermal con
ductivity for C2 sample have to be intended as cross-class concrete value 
between “aerated concrete units” and “other aggregates concrete unit” 
as reported in standard (UNI EN 1745, 2020). 

By experimental results analysis (Table 6) is evident that LS1 and LS2 
concretes show typical features of lightweight structural concretes as 
indicated by standard definition (UNI EN 206, 2016) and in literature 
(Pacenti, 1980) (Mass volume between 1400 and 2000 kg/m3 and 
compressive strength, for structural purposes, substantially higher than 
20 MPa). 

Thermal insulation represents the main field of application for 
cellular concretes, for this reason is very important to achieve values of 
thermal conductivity similar to those of commonly used foamed con
cretes, usually these values range from about 0.14 to 0.24 W/(m K) 
(Bumanis et al., 2013; UNI EN 1745, 2020), lower is the value better is 
the insulation. 

From comparison between C1 (assumed as reference) and C2 is 
possible to notice that experimental specimen (C2) seems to improve the 
insulating properties of a “regular” foamed concrete (C1) showing a 
measured thermal conductivity value of 0.18 W/(m K). 

Comparing experimental results with literature data (Samson et al., 
2017) (along with references therein) (Fig. 6 a,b) is clearly visible that 
innovative concretes produced in this work and containing waste-based 
aggregates can be considered as trend-followers of other, commercial or 
not, products. 

4. Conclusions 

A proof-of-concept of lightweight concrete manufacturing by using 
waste-based lightweight aggregates was demonstrated all along the 
production chain. 

As a case that has received less attention, we tested possibility to go 
further the state of the art for glass waste recycling, using this secondary 
raw material in LEA-based concretes. 

Novelty of this work can be summarized as follows:  

- PC-TV screen waste glass and ceramic polishing sludge are suitable 
secondary raw materials to achieve the desired bloating under in
dustrial production conditions. An optimal ratio was found as a 
compromise between the 40 wt% of ceramic tile polishing sludge and 
TV and the 60 wt% of PC screen glass waste.  

- The selected formulation allows to produce LEA with physical and 
mechanical properties fully comparable with commercial aggre
gates. This paves the way to bending the LEA supply chain towards a 
circular array by replacing to a large extent ordinary expanded clay 
with waste-based aggregates.  

- Both lightweight structural and cellular concretes manufactured 
with waste-based LEA exhibit a technological behavior fully 
complying with the performances required by regulations in the 
building sector. 

The achieved results disclose interesting opportunities for waste 
application in LEA production and related lightweight concrete formu
lation, rising the circular economy quote in the building sector. This 
possibility becomes even more appealing considering the growing de
mand for sustainable building products. 

Next steps will be focused on both the life cycle assessment of the 
waste-based LEA production and the evaluation of hazardous elements 
stabilization. Further improvements concern a widening of the waste Fig. 5. Particle size distribution of Mix1L.  
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compositional range and solutions to lower the firing temperature to 
approach that applied in the manufacturing of expanded clay. 
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