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Abstract

Does the level of deposits matter for bank fragility and efficiency? In a banking
model with endogenous bank runs and a consumption-saving decision, we show that
the level of deposits has opposite effects on bank fragility depending on the nature of
bank runs. In an economy with panic-driven runs, higher deposits make banks less
fragile, while the opposite is true when runs are only driven by fundamentals. The
effect of deposits is not internalized by depositors. A saving externality arises, leading
to excessive fragility and insufficient liquidity provision. The economy features under-
saving when runs are panic driven, and over-saving when fundamental driven.

JEL codes: G01, G21, G28

Keywords: endogenous bank runs, liquidity provision, fundamental runs, panic runs,
saving externality.
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Non-technical summary

Is financial intermediation excessive? Does the level of deposits matter for stability and
efficiency? If so, do depositors correctly internalize these effects when deciding how much
to save? In light of the dramatic increase in bank deposits in both USA and euro area at
the start of the COVID-19 crisis, answering these questions is of primary importance.

This paper studies the level of deposits as a source of bank fragility and its implica-
tions for efficiency through the lenses of a standard bank-run model augmented with a
consumption-saving decision. We show that the level of deposits matters for bank fragility
and highlight the existence of a saving externality leading to excessively high bank fragility
and inefficiently low liquidity provision.

In our framework, depositors choose how much to deposit in a bank in exchange for
a demandable deposit contract. This contract allows them to access risky but profitable
long-term investment opportunities, while still being able to obtain liquidity when needed.
The resulting maturity mismatch exposes banks to run risk of two kinds. On the one
hand, banks may suffer a run when depositors are concerned about a bad realization of
the bank’s investment project (fundamental runs). On the other hand, runs may take
place because depositors fear that other depositors will withdraw and deplete the bank’s
resources (panic runs). The probability of both fundamental and panic runs is endogenous
and depends on the terms of the deposit contract as well as on the level of deposits.

The nature of bank runs, i.e. whether they are fundamental- or panic-driven, crucially
matters for the effect of the level of deposits on bank fragility. In particular, more deposits
make banks more fragile when runs are only driven by fundamentals, while they make
them more stable when runs are driven by panics.

While the social planner internalizes the effect of deposits on the incentive to run,
individual depositors do not. Banks pool depositors’ resources to provide liquidity. Hence,
the resources available to service a depositor’s withdrawal crucially depend on the run
behavior of others and not just on the individual’s level of deposits. This weakens depos-
itors’ incentives to internalize the effect of their saving decision on financial fragility. So,
endogenous runs imply an externality in the saving behavior that in equilibrium leads to
excessive financial fragility, too little bank liquidity provision and inefficient bank size. In
particular, when runs are only driven by fundamentals, the decentralized economy fea-
tures over-saving with respect to the constrained efficient benchmark. In contrast, in the
presence of panic runs the decentralized economy features under-saving.

The saving externality represents a novel motive for public intervention. In this regard,
we find that, while taxes on deposits are an effective tool to reduce inefficiently high levels
of savings in an economy without panics, on the contrary a subsidy is the optimal policy
in the presence of panic runs.
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1 Introduction

Banks and their health are important for economic outcomes and have attracted a great
deal of attention in policy and academic debates over the years. Bank’s reliance on short-
term debt as a source of funding has been considered a key source of fragility (e.g.,
Diamond and Dybvig, 1983; Allen and Gale, 2004; Brunnermeier and Oehmke, 2013;
Krishnamurthy, 2010). Noteworthy is the unprecedented increase in total deposits that
banks experienced at the start of the COVID-19 crisis (see Li et al., 2020; Levine et al.,
2021). Figure 1 illustrates the evolution of total bank deposits in the last years for the
U.S. and the Euro Area. They experienced a remarkable jump in the first months of 2020.
From January to May 2020, bank deposits increased by around $2 trillion in the U.S.
and e1.5 trillion in the Euro Area. In light of this fact, two questions naturally arise. Do
more deposits affect bank fragility? If so, do agents correctly internalize this effect when
deciding how much to save?

In this paper, we address these two questions through the lens of a bank-run model
augmented with a consumption-saving decision. First, we show that the level of deposits
has an effect on the probability of a bank run. Moreover, the sign of this effect depends
on the nature of the run.

More deposits make banks more stable when runs are only driven by panics. On the
contrary, they may make them more fragile when runs are driven by low fundamentals.
Second, we characterize the existence of a saving externality : Individual depositors fail
to fully internalize the impact of their saving decision on the probability of a bank run.
As a result, the allocation is inefficient. The economy features excessive financial fragility,
too little bank liquidity provision and an inefficient bank size. In particular, the saving
externality leads to under-saving and excessively small banks when runs are panic-driven,
while over-saving and excessively large banks may emerge when runs are fundamental
driven.

To carry out this analysis, we build a model in which the bank-run probability is
endogenous and, as in Goldstein and Pauzner (2005), it is uniquely determined using
the global-game methodology. Moreover, the run probability depends on the terms of
the deposit contract. We extend this framework by adding an initial consumption-saving
decision. This allows us to endogenize the level of deposits and study its implications for
banks’ fragility and the welfare properties of the decentralized equilibrium.

To the best of our knowledge, this is the first attempt to study the interaction between
consumption-saving decisions and endogenous bank runs. In the bank-run literature it is
standard to take as given the amount of deposits and therefore the funds intermediated
by banks (e.g. Diamond and Dybvig, 1983; Goldstein and Pauzner, 2005). We show that
this apparently innocuous assumption has important implications for the efficiency of the
equilibrium. While in standard bank-run frameworks banks issuing demandable deposit
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(b) Euro Area

16000

17000

18000

19000

20000

21000

22000

23000

1/
1/
20

14

5/
1/
20

14

9/
1/
20

14

1/
1/
20

15

5/
1/
20

15

9/
1/
20

15

1/
1/
20

16

5/
1/
20

16

9/
1/
20

16

1/
1/
20

17

5/
1/
20

17

9/
1/
20

17

1/
1/
20

18

5/
1/
20

18

9/
1/
20

18

1/
1/
20

19

5/
1/
20

19

9/
1/
20

19

1/
1/
20

20

5/
1/
20

20

9/
1/
20

20

1/
1/
20

21

Figure 1: Total deposits in commercial banks, in billions of U.S. dollars in Panel (a) and
billions of euros in Panel (b).

contracts can achieve the constrained efficient allocation despite a positive probability
of runs, this is not true in our framework. The allocation is inefficient because financial
fragility is endogenous to the level of savings and depositors do not fully internalize
the effect of their individual saving decisions. This provides a novel rationale for policy
intervention.

The model features three dates. At the initial date, ex-ante identical risk-averse agents
decide how much to consume and how much to deposit in the banking sector. Aggregate
deposits fully determine bank size. Competitive banks issue demand deposits and invest
them in a profitable risky project whose returns at the final date depend on the fundamen-
tal of the economy. In exchange for the funds provided to banks, depositors are promised
a positive deposit rate if they withdraw at an interim date (run) and a higher one if they
withdraw at the final date and the bank’s investment project is successful. Banks meet
early withdrawals by liquidating a share of their long-term investment and, in case they
fail to repay the promised deposit rate, depositors receive a pro-rata share of the available
resources. Depositors take their individual withdrawal decisions at the interim date on
the basis of an imperfect signal on the realization of the economy’s fundamental. The
signal provides information about both the fundamental and the proportion of depositors
running. Depositors run if the fundamental of the economy falls below a unique threshold,
which is a function of the terms of the deposit contract and the level of deposits. We can
distinguish two types of runs: panic- and fundamental-driven. The former are the result
of a coordination failure. Depositors run out of fear that others will do the same and there
will not be enough resources left in the bank to repay those who wait. In contrast, the
latter are only due to low realizations of the fundamental of the economy.

Our analysis provides novel insights about the sources of financial fragility and the
efficiency of the decentralized allocation. First, depositors’ incentives to run are a function
of the level of deposits. In the presence of panic runs, the run behavior of each individual
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depositor depends on how many other depositors she expects to run. In particular, when
calculating the expected value of waiting, each depositor assigns a positive probability to
the event that almost all other depositors run. In this case, banks liquidate almost all
their investment at date 1. Hence, the resources left for the depositors that wait are low,
as well as their consumption level. Since, due to high risk aversion, depositors value more
the increase in savings at the date in which consumption is lower, higher savings increase
by more the incentives to wait than the incentives to run. Hence, the probability of a
panic run is decreasing in the level of deposits.

When runs are only driven by fundamentals, the probability of a bank run is instead
increasing in the level of deposits. A larger amount of deposits increases the payoffs both
at date 1 and 2. Since depositors are risk averse, the increase in the level of deposits is
again more valuable at the date in which their level of consumption is lower. Therefore,
as the deposit rate at date 1 is lower than at date 2, higher savings increase the incentives
to run more than the incentives to wait.

Second, the economy exhibits a saving externality. While the social planner internalizes
the effect of deposits on the incentive to run, individual depositors do not. In the decentral-
ized economy, banks pool depositors’ resources to provide liquidity. Hence, the resources
available to service a depositor’s withdrawal depend on total savings. This weakens depos-
itors’ incentives to internalize the effects of their saving decision on financial fragility. The
saving externality leads to an excessively high probability of bank runs, too little liquidity
provision and an inefficient bank size. Crucially, the implications of the saving externality
for efficiency depend on the nature of bank runs. When runs are only driven by panics,
since the depositors do not internalize that the probability of a panic run is decreasing in
the level of deposits, the decentralized economy features under-saving with respect to the
constrained efficient benchmark. In contrast, in the presence of fundamental-driven runs
the depositors do not internalize that the probability of a panic run is increasing in the
level of deposits, hence the decentralized economy features over-saving.

This last result brings about a novel motive for public intervention. Since the ineffi-
ciency is rooted in the consumption-saving decision, subsidizing deposits is an effective
tool to reduce the inefficiently low levels of savings in the decentralized equilibrium with
panic runs. By increasing aggregate savings ex-ante, a social planner can increase the
payoff at the interim date, and in turn the incentives to run. On the contrary, a tax would
be optimal in the presence of fundamental-driven runs.

According to Kashyap and Stein (2012) banks that perform maturity transformation
and are subject to runs should always be taxed. We complement their findings by showing
that in the presence of a saving externality a tax on financial intermediation is indeed
optimal only under fundamental-driven runs. However, incentivizing deposits via a subsidy
is desirable in the presence of panic runs. Overall, our analysis highlights that the nature of
bank runs – whether they are due to low fundamentals or panics – is crucial to understand
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the inefficiencies associated with the saving externality and the design of optimal policy.

Literature Review. Our paper contributes to three strands of the literature. Our anal-
ysis takes a step forward in understanding the trade-offs associated with the role of banks
as liquidity providers (e.g. Diamond and Dybvig, 1983; Goldstein and Pauzner, 2005;
Ennis and Keister, 2009). The novelty of our paper is to endogenize consumers’ saving
decision and study its implication for fragility and efficiency. While in previous contri-
butions financial intermediation is constrained efficient, the saving externality that arises
from the depositors’ saving decisions leads to an inefficiency which justifies government
intervention. Hence, our paper also connects to the literature that studies the efficiency
of decentralized banking economies (e.g. Allen and Gale, 2004; Allen et al., 2014).

More closely related to our paper is Peck and Setayesh (2019). In a Diamond-Dybvig
framework, they find that a reduction in the share of savings intermediated by banks
leads to more financial instability, although the equilibrium allocation remains constrained
efficient. Their result differs from ours because they assume a fixed quantity of aggregate
savings. Furthermore, an important difference is that our analysis relies on a model of
endogenous runs, which allows us to capture both panic- and fundamental-driven runs
and their different implications for financial fragility and bank size.

The ability to endogenize the probability of a run relies on the use of global games
techniques (e.g., Carlsson and van Damme, 1993; Morris and Shin, 2011). We share with a
growing number of papers (e.g. Choi, 2014; Vives, 2014; Eisenbach, 2017; Allen et al., 2018;
Ahnert et al., 2019) the use of global games to highlight the inefficiencies associated with
the role of banks as financial intermediaries and the desirability of policy intervention.

Second, our analysis is strictly related to the literature that studies the constrained
efficiency of decentralized economies in the presence of externalities. Several papers build
on financial frictions as the source of externalities (Hart, 1975; Stiglitz, 1982). The re-
sulting constrained inefficient allocations can be improved upon by policy interventions
in financial markets (Geanakoplos and Polemarchakis, 1985). Recent papers have studied
the role of pecuniary externalities (Caballero and Krishnamurthy, 2001; Lorenzoni, 2008;
Davila and Korinek, 2018), aggregate-demand externalities (Farhi and Werning, 2016; Ca-
ballero and Simsek, 2019) and run externalities (Gertler et al., 2020). Still missing from
the current debate is an exploration of the role of savers’ decisions for fragility and the
efficiency of market outcomes. Our work complements existing papers by filling this gap.1

We share the focus on the role of consumption-saving decisions for the efficiency of
decentralized equilibria with Davila et al. (2012). They show that in an economy with id-
iosyncratic risk and incomplete markets the competitive equilibrium is inefficient because

1Savers’ decisions are a key determinant of the size of financial intermediation. In fact, in the period
1896-2012, deposits have represented on average around 80 per cent of U.S. banks’ liabilities (Hanson
et al., 2015). Savers’ demand for money-like assets has also been recognized as a driver of financial crises
and macroeconomic activity (Gorton et al., 2012; Dang et al., 2017).
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the agents do not internalize the effect of their saving choices on the return from capital.
We, instead, analyze an economy in which a mechanism to insure against idiosyncratic
shocks (i.e. banks) is readily available, but does not ensure the efficiency of the competitive
equilibrium. In fact, idiosyncratic-risk pooling brings about the saving externality.

Third, our paper also connects to the literature on the saving glut and financial
fragility. Excessive savings around the world bring about excessive leverage, bubbles in
asset markets, and other imbalances (Kindleberger and Aliber, 1978; Bernanke, 2005;
Caballero and Krishnamurthy, 2009). A handful of papers link over-saving to finan-
cial fragility through lower bank incentives to monitor borrowers (Bolton et al., 2016;
Martinez-Miera and Repullo, 2017). In our framework, it is instead the nature of bank
runs that determines whether higher financial fragility is associated with over- or under-
saving. This has important implications for the design of policies.

Paper outline. The paper proceeds as follows. Section 2 describes the baseline model.
Section 3 considers the equilibrium in the economy with panic runs. We characterize
the decentralized economy and then solve for the constrained efficient allocation in order
to identify the inefficiency. In Section 4, we follow the same structure and present the
economy with fundamental runs only. Section 5 characterizes the optimal policy in the
economy with panic- and fundamental-driven runs, while Section 6 illustrates the main
results through a numerical example. Finally, Section 7 concludes. All proofs are in the
Appendix.

2 The baseline model

Our model builds on Goldstein and Pauzner (2005), augmented to include a consumption-
saving decision. There are three dates (t = 0, 1, 2) and a single good that can be used
for consumption and saving. The economy is populated by a continuum of measure one
of banks, operating in a competitive market with free entry, and a continuum of measure
one of depositors for each bank.

Consumers. Consumers have a unitary endowment of the good at date 0 and nothing
thereafter. They can consume at date 0, 1 or 2. At date 1, they face an idiosyncratic
liquidity shock. Each of them has a probability λ of being an early consumer (impatient)
and a probability 1 − λ of being a late consumer (patient). Consumers learn their own
realization of the shock privately. The law of large numbers holds, so λ and 1−λ are also
the fraction of consumers who turn out to be early and late, respectively. Early consumers
only want to consume at date 1, while late consumers are indifferent between consuming
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at date 1 or 2. The expected utility of a consumer i is given by:

U(c0i, c1i, c2i) = u (c0i) + λu(c1i) + (1− λ)u(c1i + c2i), (1)

where the utility function is continuous and satisfies u′(c) > 0, u′′(c) < 0, and u(0) = 0.
The coefficient of relative risk aversion −cu′′(c)/u′(c) is greater than 1 for any c > 0.
Moreover, limc→0 u

′(c) = h, with h arbitrarily large but finite.2

At date 0, each consumer i takes a consumption-saving decision subject to the budget
constraint c0i + di = 1, where c0i is date-0 consumption, and di the amount that she de-
posits in a bank. In line with the literature, the relationship between banks and depositors
is exclusive, in the sense that a depositor only has one bank. In exchange for the funds
deposited, each bank promises a gross fixed deposit rate r1 if the consumer withdraws at
date 1, and r2 > r1 if she withdraws at date 2 and the bank’s project is successful. Banks
offers deposit contracts competitively. Thus, they maximize depositors’ expected welfare,
subject to the budget constraint. This implies that depositors are residual claimants of
banks’ available resources at date 2, and the repayment r2 is equal to the return of the
non-liquidated units of the bank investment.

Banks. At date 0, banks use total collected deposits D to make an investment I in a
productive investment technology, with I = D.3 For each unit invested at date 0, the
investment returns 1 if liquidated at date 1 and a stochastic return R̃ at date 2 given by:

R̃ =

{
R > 1 with prob. p(θ),

0 with prob. 1− p(θ).
(2)

The variable θ represents the fundamental of the economy and is uniformly distributed
over the interval [0, 1]. We assume that p(θ) = θ and E[θ]R > 1, which implies that the
expected long-term return of the investment is higher than its short-term return.4 Banks
satisfy withdrawal demand at date 1 by liquidating the productive investment. So, the
per-unit promised repayment at date 2 is a function of the deposit rate r1, and is given
by r2 = R 1−λr1

1−λ . Finally, if the liquidation proceeds are not enough to repay the promised
deposit rate r1 to all the withdrawing depositors, a bank liquidates all its investment and
distributes the proceeds pro-rata to all the withdrawing depositors at date 1.

2This resembles the standard Inada condition that several models assume, including the original work
by Diamond and Dybvig (1983). It ensures that consuming a small but positive amount brings about an
extremely large gain in marginal utility that makes depositors willing to always avoid zero consumption.
However, the Inada condition limc→0 u

′(c) = +∞ is not consistent with u(0) = 0. In the numerical
analysis, we provide an example of utility function that satisfies all the aforementioned hypotheses.

3Lower case letters indicate individual variables, and upper case ones aggregate variables.
4The assumption of uniform distribution of fundamentals comes at no loss of generality. As argued by

Goldstein and Pauzner (2005), results would hold for any function p(θ), as long as it is strictly increasing
in θ. Under this condition, the probability of obtaining R can take any form.
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Information. The fundamental of the economy θ is realized at the beginning of date
1, but publicly revealed only at date 2. At date 1, early depositors withdraw to satisfy
their consumption needs. Late depositors instead receive a private signal xi about the
fundamental of the economy. The private signal xi is of the form:

xi = θ + ηi, (3)

where ηi are small error terms, indistinguishable from the true value of the fundamental θ
and independently and uniformly distributed over the interval [−ε,+ε]. A late depositor
uses her signal to infer both the fundamental of the economy and the withdrawal behavior
of the others. On this basis, late depositors decide whether to withdraw at date 1 (“run”)
or wait until date 2. As we will show in detail below, depositors run if the fundamental
of the economy θ falls below a unique threshold. In the region in which runs occur, they
can be classified either as fundamental driven, meaning that they are only due to a low
realization of θ, or panic driven, meaning that depositors run lest others do the same. In
this case, there will be no resources left for a bank to repay those who decided to wait.

Timing. At date 0, consumers choose how to allocate their unitary endowment between
consumption c0i and deposits di, and banks set the deposit rate r1. At date 1, after
receiving idiosyncratic liquidity shocks and private signals about the fundamental of the
economy θ, early depositors withdraw and late depositors decide whether to withdraw
or wait until date 2. At date 2, the banks’ investment return is realized and those late
depositors who have not withdrawn at date 1 get an equal share of the available resources.

Discussion of the assumptions. As standard in the banking literature, the deposit
rate r1 that banks pay at date 1 depends neither on the fundamental nor on the realization
of a bank run. Equally, the deposit rate is not a function of the individual amount of
deposits. It is conceivable that the repayment offered to depositors could be a function of
the amount deposited. For instance, the deposit contract could take the form of a schedule,
in which depositors accrue a positive repayment until a certain amount deposited and
nothing thereafter. While possible, a non-linear deposit contract r1(d) is inconsistent with
the assumption of a competitive banking sector. Such repayment schedule would create a
supply of deposits that are not served. Other banks could attract these with the offer of
a lower but positive repayment, thus making strictly positive profits.

In our framework, savings are fully intermediated by banks. Alternatively, one could
let consumers invest their savings directly into storage or in the investment technology. In
this case, our results would still hold. This is due to the fact that banks provide liquidity
insurance. Hence, these alternative investments would be dominated by depositing into a
bank.
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More generally, as long as we interpret the undeposited endowment as date-0 consump-
tion, it is natural to assume that consumers enjoy a separable utility from it. Alternatively,
we could interpret the undeposited endowment as being invested in a different asset. In
this case, all our results would still hold as long as utility is separable in bank deposits.
This would be akin to modeling deposits in the utility function (e.g. Van Den Heuvel,
2008), and could be rationalized by depositors’ preference for liquidity. Introducing non-
separable utility would instead require depositors to solve a more involved portfolio choice.
This would considerably complicate the analysis without affecting its main qualitative in-
sights.5

3 The economy with panic runs

In this section, we start by characterizing the decentralized equilibrium of an economy
in which late depositors may run because they expect all the other depositors to do the
same, i.e. there is a panic-driven run. In this economy, banks choose the deposit contract,
all consumers take the consumption-saving decision, and late ones, based on their signals,
decide when to withdraw following the threshold strategy:6

ai(xi) =

withdraw at date 1 if xi ≤ x∗i ,

withdraw at date 2 if xi > x∗i .
(4)

We solve the model by backward induction, and characterize a symmetric equilibrium so
that we can focus our attention on the behavior of a representative bank. The definition
of equilibrium is as follows:

Definition 1. A decentralized equilibrium with panic runs consists of a set of withdrawal
strategies {ai}i∈[0,1], vectors of quantities {c0i, di}i∈[0,1] and {D, I} and a deposit rate r1
such that:

• For a given deposit rate r1 and deposits {di}i∈[0,1], upon receiving the signal xi,
depositors’ beliefs about early withdrawals are updated according to the Bayes rule,
and the withdrawal strategies {ai}i∈[0,1] are chosen optimally;

• For given {di}i∈[0,1], the deposit rate r1 maximizes the depositors’ expected utility at
date 1, subject to the budget constraint D = I;

• The consumption-saving choices {c0i, di}i∈[0,1] maximize depositors’ expected utility
at date 0, subject to the budget constraint c0i + di = 1;

5Deidda and Panetti (2017) formally show that introducing a portfolio problem in the Goldstein-
Pauzner framework does not alter the results in a crucial way.

6Selecting threshold strategies comes at no loss of generality, as Goldstein and Pauzner (2005) show
in a similar environment that every equilibrium strategy is a threshold strategy.
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• The deposit market clears: D =
∫
i
didi.

3.1 Depositors’ withdrawal decision

We analyze depositors’ withdrawal decisions at date 1 for a given deposit rate r1 and
amount deposited di. Early depositors always withdraw at date 1 to satisfy their con-
sumption needs. In contrast, late depositors decide whether to withdraw at date 1 based
on the signal xi that they receive, since this provides information on both the fundamental
θ and other depositors’ actions. Upon receiving a high signal, a late depositor attributes
a high posterior probability to a positive bank project return R at date 2, and infers that
the other late depositors have also received a high signal. This lowers her belief about
the likelihood of a run and thus her own incentive to withdraw at date 1. Conversely,
when the signal is low, the opposite happens and a late depositor has a high incentive to
withdraw early. This suggests that late depositors withdraw at date 1 when the signal is
sufficiently low, and wait until date 2 when the signal is sufficiently high.

To show this formally, we first examine two regions of extremely bad and extremely
good fundamentals, where each late consumer’s action is based on the realization of the
fundamental irrespective of beliefs about other agents’ behavior.

Lower dominance region. The lower dominance region of θ corresponds to the range
[0, θ] in which fundamentals are so bad that running is a dominant strategy. Upon re-
ceiving a signal indicating that the fundamentals are in the lower dominance region, a
late consumer is certain that the expected utility from waiting until date 2 is lower than
that from withdrawing at date 1, even if only λ early depositors were to withdraw. The
expected utility from waiting equals θu

(
R 1−λr1

1−λ di
)
, given that R(1−λr1)

1−λ is the per-unit re-
turn of deposit when only λ depositors withdraw. The expected utility from withdrawing
at date 1 instead equals u(r1di). Then, we denote by θ(r1, di) the value of θ that solves:

u(r1di) = θu

(
R

1− λr1
1− λ

di

)
, (5)

that is:
θ(r1, di) =

u(r1di)

u
(
R 1−λr1

1−λ di
) . (6)

We refer to the interval [0, θ(r1, di)] as the lower dominance region, where runs are only
driven by bad fundamentals.7

7For the lower dominance region to exist for any r1 ≥ 1, there must be feasible values of θ for which
all late depositors receive signals that assure them to be in this region. Since the noise contained in
the signal xi is at most ε, each late depositor withdraws at date 1 if she observes xi < θ(r1, di) − ε. It
follows that all depositors receive signals that assure them that θ is in the lower dominance region when
θ < θ(r1, di)− 2ε. Given that θ is increasing in r1, the condition for the lower dominance region to exist
is satisfied for any r1 ≥ 1 if θ (1, di) > 2ε.

ECB Working Paper Series No 2636 / January 2022 11

Electronic copy available at: https://ssrn.com/abstract=4006854



Upper dominance region. The upper dominance region of θ corresponds to the range(
θ, 1
]
in which fundamentals are so good that waiting is a dominant strategy for all late

depositors. As in Goldstein and Pauzner (2005), we construct this region by assuming
that in the range (θ, 1] the investment is safe, i.e. θ = 1, and yields the same return R > 1

at dates 1 and 2. This means that, given that n depositors run, a late depositor expects
to receive a repayment R−nr1

1−n di > r1di since R − r1 > 0 is required for the contract to
be incentive compatible (i.e. R − r1 > 0 is implied by r1 < r2 ≡ R(1−λr1)

1−λ ). Then, upon
observing a signal indicating that the fundamentals θ are in the upper dominance region,
a late consumer is certain to receive her payment R(1−λr1)

1−λ di at date 2, irrespective of
her beliefs about other depositors’ actions, and thus she has no incentives to run. As
before, the upper dominance region exists if there are feasible values of θ for which all
late depositors receive signals that assure them to be in this range. This is the case if
θ < 1− 2ε.

The intermediate region. The existence of the lower and upper dominance region
guarantees the existence of a threshold θ∗ in the intermediate region (θ(r1, di), θ], in which
a depositor’s decision to withdraw early depends on the realization of θ as well as on her
beliefs regarding other late depositors’ actions.

The characterization of the equilibrium run threshold θ∗ consists of two steps. First,
we show that no depositor has an incentive to deviate from the run strategy of all the
others. Second, we characterize the run threshold θ∗. We have the following lemma.

Lemma 1. Assume all depositors −i run when their signals x−i ≤ x∗−i. Then, a depositor
i follows the same withdrawal strategy, i.e. she withdraws if xi ≤ x∗−i.

The above lemma shows that, from the point of view of a single depositor i, when
the fundamental lies in the intermediate region, it is optimal to follow the withdrawal
strategy x∗−i of all the other depositors −i. It follows that all depositors withdraw if their
signals are lower than a common threshold x∗−i which everyone takes as given. This result
hinges on two arguments. First, large withdrawals of deposits at date 1 force the bank to
liquidate its assets prematurely, leaving no resources for those who wait and thus bringing
about strategic complementarities between depositors’ actions. Second, being in the region
above the fundamental run threshold implies that it is never optimal for a depositor to
run when she expects all other late depositors to withdraw at date 2.

Having established that the relevant run threshold is x∗−i, we now compute it. We start
by specifying the utility differential between withdrawing at date 2 and at date 1 for a
representative late consumer with deposit d−i. This is given by:

V−i(θ, n) =

θu
(
R 1−nr1

1−n d−i
)
− u(r1d−i) if λ ≤ n ≤ n,

0− u(d−i
n

) if n ≤ n ≤ 1,
(7)
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where n represents the proportion of depositors withdrawing at date 1 and n = 1/r1 is
the value of n at which the bank exhausts its resources if it pays r1 > 1 to all withdrawing
depositors. For n ≤ n, a depositor who waits obtains R(1−nr1)

1−n with probability θ for each
unit d−i deposited, while an early withdrawer obtains r1. By contrast, for n ≥ n the bank
liquidates its entire investment at date 1. Late depositors receive either nothing if they
wait until date 2 or the pro-rata share d−i

n
if they withdraw early.

The function V−i(θ, n) decreases in n for n ≤ n and increases in it afterwards, crossing
zero once for n ≤ n and remaining always below afterwards. Thus, the model exhibits the
property of one-sided strategic complementarity and there exists a unique equilibrium in
which a late depositor −i runs if and only if her signal is below the threshold x∗(r1, d−i).
At this signal value, a late depositor is indifferent between withdrawing at date 1 and
waiting until date 2. The following proposition holds.

Proposition 1. In the economy with panic runs, each late depositor i runs if she observes
a signal below the threshold x∗(r1, d−i) and does not run above. At the limit, as the error
term ε→ 0, the threshold x∗(r1, d−i) simplifies to:

θ∗(r1, d−i) =

∫ n

λ

u(r1d−i)dn+

∫ 1

n

u
(
d−i
n

)
dn∫ n

λ

u
(
R 1−nr1

1−n d−i
)
dn

. (8)

The threshold θ∗(r1, d−i) is increasing in r1 and decreasing in d−i.

The proposition states that in the intermediate region a late depositor’s action de-
pends uniquely on the signal that she receives, as this provides information both on the
fundamental of the economy θ and on the other depositors’ actions. For θ in the inter-
val (θ(r1, d−i), θ

∗(r1, d−i)] there are strategic complementarities in depositors’ withdrawal
decisions. If r1 > 1, the bank has to liquidate more than one unit for each withdrawing
depositor, which implies that late depositors’ incentives to run increase with the propor-
tion n of depositors withdrawing early. In the limit case when ε → 0, all late depositors
behave alike as they receive approximately the same signal and take the same action. This
implies that only complete runs, where all late depositors withdraw at date 1, occur. In
what follows, we focus on this limit case, and so the run threshold θ∗ is the probability of
a run.8

In this economy, late depositors run because they fear that other depositors would
withdraw early, thus leaving no resources for the bank to pay them. Put differently, in
the intermediate region of fundamentals, runs are due to a coordination failure among
depositors, and thus we refer to them as “panic driven”.

8In the limit case ε → 0, the probability of a run is equal to the probability that θ falls below θ∗.
Since θ ∼ U [0, 1], then prob(θ ≤ θ∗) = θ∗.
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The run threshold θ∗(r1, d−i) increases with the deposit rate r1 offered by banks and
decreases with the size of deposit d−i. An increase in r1 increases depositors’ repayment
at date 1, while decreasing that at date 2. As a consequence, depositors’ incentive to run
becomes higher.

The effect of the size of the individual deposit d−i on the probability of a panic run is
more involved, as a rise in the deposited amount increases depositors’ repayment at both
date 1 and 2. As depositors are risk averse, the overall effect of a rise in d−i depends on
their expected level of consumption, in that they value an increase in consumption more
when they are poorer. In the context of panic runs, consumption levels vary both at date
1 and date 2 depending on the proportion of depositors withdrawing. In particular, while
a late depositor always expects to receive a positive consumption at date 1, she attaches
a positive probability to the possibility of receiving almost zero consumption at date 2, as
this occurs when the proportion of depositors withdrawing early approaches n = n and
the bank is forced to liquidate its project at date 1. In other words, as illustrated by (7),
a late depositor expects her date-2 consumption and utility to fall below those at date 1

when a large proportion of depositors runs. As a result, the marginal effect on the run
threshold of an increase in the amount deposited, as measured by u′(c)c, is high in such
states. Overall, since u′(c)c becomes very large as c approaches zero and depositors are
risk averse, the increase in deposit has a stronger marginal effect on the expected utility
of withdrawing at date 2 than at date 1, thus inducing late depositors to run less.

3.2 Decentralized economy: saving and deposit rate decisions

Having analyzed depositors’ decision to run, we now characterize the terms of the deposit
contract r1, and the consumption-saving decision at date 0.

Bank. Given the aggregate amount deposited and anticipating depositors’ withdrawal
decision, as summarized by the run threshold θ∗(r1, d−i), the bank chooses r1 to maximize
the expected utility of a representative depositor i by solving the following problem:

max
r1

∫ θ∗(r1,d−i)

0

u(di)dθ +

∫ 1

θ∗(r1,d−i)

[
λu(r1di) + (1− λ)θu

(
R

1− λr1
1− λ

di

)]
dθ. (9)

The first term represents the expected utility from depositing at a bank, when the fun-
damental of the economy lies below θ∗. In this case, all depositors run and receive back
their initial deposits di. The second term is the expected utility when θ is above θ∗. In
this case the bank continues operating until date 2, λ early depositors receive r1di, and
1− λ late depositors receive a pro-rata share of the residual resources with probability θ
and zero otherwise.
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Consumers. At date 0, each consumer i chooses the amount to deposit di and the
date-0 consumption c0i to maximize her utility by solving:

max
di,c0i

u(c0i) +

∫ θ∗(r1,d−i)

0

u(di)dθ +

∫ 1

θ∗(r1,d−i)

[
λu(r1di) + (1− λ)θu

(
R

1− λr1
1− λ

di

)]
dθ,

(10)
subject to the budget constraint di = 1− c0i. At date 0, higher di reduces the amount c0i
available for consumption. At date 1, if there is a run all consumers get back the deposit di.
If there is no run, impatient depositors get r1di at date 1, while patient depositors receive
a share of the residual banks’ resources at date 2. Notice that, as proved in Proposition
1, from the point of view of a single depositor i the run threshold is only a function of the
deposit rate r1 and of the deposit decisions d−i of everybody else, and not of the individual
amount deposited di. Therefore, when deciding how much to deposit, the consumer does
not internalize the impact of her own savings on the probability of a run.

Having described the bank’s and consumers’ problems, the following proposition char-
acterizes the decentralized equilibrium with panic runs.

Proposition 2. The decentralized equilibrium with panic runs is given by r1 > 1 and
d > 0 that solve:∫ 1

θ∗(r1,d)

[
u′(r1d)− θRu′

(
R

1− λr1
1− λ

d

)]
dθ − ∂θ∗(r1, d)

∂r1

∆

λd
= 0, (11)

u′(1− d) =

∫ θ∗(r1,d)

0

u′(d)dθ+

+

∫ 1

θ∗(r1,d)

[
λr1u

′(r1d) + θR(1− λr1)u′
(
R

1− λr1
1− λ

d

)]
dθ, (12)

respectively and
di = d−i = d = D, (13)

where ∆ = λu(r1d) + (1 − λ)θ∗u
(
R 1−λr1

1−λ d
)
− u(d), and θ∗(r1, d) comes from (8) when

d−i = d.

In choosing r1, the bank trades off its marginal benefit with its marginal cost. The
former, represented by the first term in (11), captures improved risk-sharing obtained
from the transfer of consumption from late to early depositors. The latter, represented by
the second term of (11), is the loss in expected utility ∆ due to the increased probability
of a run, as measured by the derivative of the panic-run threshold θ∗ with respect to r1.

The provision of bank liquidity insurance to depositors is captured by r1 > 1. As
in Diamond and Dybvig (1983) and subsequent papers, being risk averse and exposed
to the risk of being impatient, depositors value the possibility of obtaining an amount
of consumption higher than their original deposit at date 1, even if this implies a lower
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amount of consumption at date 2. Setting r1 = 1 would rule out panics (i.e., θ∗ = θ).
This implies the the utility loss of a run, as captured by ∆, becomes zero. However, the
marginal benefit of risk-sharing remains positive, so this cannot be an equilibrium.

In choosing the deposit d, a consumer again trades off marginal cost and marginal
benefit. The former comes from less consumption at time 0, as captured by the left-hand
side of (12). The latter comes from more consumption at date 1 and 2, as captured by
the right-hand side of (12).

We can substitute (13) and (11) into (12) and obtain an expression summarizing the
decentralized equilibrium:

u′(1−D) =

∫ θ∗(r1,D)

0

u′(D)dθ +

∫ 1

θ∗(r1,D)

u′(r1D)dθ − (1− λr1)
∆

λD

∂θ∗(r1, D)

∂r1
. (14)

The equation above resembles an Euler equation as typically used in dynamic macroeco-
nomic models: It determines the equilibrium level of savings as the quantity that equates
their marginal cost and benefit in terms of present vs. expected future consumption. In
the rest of the analysis, we use this equation to compare the decentralized equilibrium
with the constrained efficient allocation.

3.3 Constrained efficient allocation

In order to study the efficiency of the decentralized equilibrium, we characterize the
constrained-efficient benchmark. To do so, we consider a social planner who can only offer
demand-deposit contracts like banks. Hence, the planner is subject to panic runs in the
same way as banks, and takes as given depositors’ withdrawal strategies, as characterized
by the run threshold θ∗ in (8), evaluated at di = d−i = D.

At date 0, the planner allocates C0 = 1 − D resources to consumption, and uses all
deposits to finance investment. Since, as in the decentralized economy, the investment
technology yields a unitary return at date 1, all consumers receive Crun

1 = D if there is a
run at date 1. If there is no run, early consumers receive C1 = r1D, while late consumers
obtain C2 that clears the planner’s resource constraint:

λC1 + (1− λ)
C2

R
= 1− C0. (15)

The planner chooses r1 and D to maximize the economy’s expected aggregate welfare:

u(C0) +

∫ θ∗(r1,D)

0

u(Crun
1 )dθ +

∫ 1

θ∗(r1,D)

[λu(C1) + (1− λ)θu (C2)] dθ. (16)

The following lemma characterizes the constrained efficient allocation.

Lemma 2. The constrained-efficient equilibrium with panic runs is given by r1 > 1 and
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D > 0 that solve:∫ 1

θ∗(r1,D)

[
u′(r1D)− θRu′

(
R

1− λr1
1− λ

D

)]
dθ − ∂θ∗(r1, D)

∂r1

∆

λD
= 0, (17)

u′(1−D) =

∫ θ∗(r1,D)

0

u′(D)dθ+

+

∫ 1

θ∗(r1,D)

[
λr1u

′(r1D) + θR(1− λr1)u′
(
R

1− λr1
1− λ

D

)]
dθ − ∂θ∗(r1, D)

∂D
∆,

(18)

where ∆ = λu(r1D) + (1− λ)θ∗u
(
R 1−λr1

1−λ D
)
− u(D), and θ∗(r1, D) comes from (8).

The planner chooses the optimal level of liquidity insurance r1 in the same way as banks
in the decentralized economy. In doing so, it leaves the economy exposed to panic-driven
runs, i.e. r1 > 1, as this entails first-order benefits in terms of liquidity insurance. Regard-
ing the savings choice, the planner trades off its marginal cost, in terms of lower date-0
consumption, with its marginal benefit, in terms of higher date-1 and date-2 consumption.
However, unlike individual consumers in the decentralized economy, the planner takes into
account the effect of the level of deposits on the probability of a run. This is captured by
the last term on the right-hand side of (18). In other words, differently from the planner,
the decentralized economy exhibits a “saving externality” in the sense that depositors do
not internalize the effect of their consumption-saving decisions on the likelihood of panic
runs.

To ease the comparison with the decentralized economy, it is useful to substitute (17)
into (18) and obtain:

u′(1−D) =

∫ θ∗(r1,D)

0

u′(D)dθ+

+

∫ 1

θ∗(r1,D)

u′(r1D)dθ − (1− λr1)
∆

λD

∂θ∗(r1, D)

∂r1
− ∂θ∗(r1, D)

∂D
∆. (19)

The following proposition compares the social planner allocation with the decentralized
equilibrium. This boils down to the comparison between (19) and (14), as the other
equations that pin down the allocation are the same under the social planner as in the
decentralized economy.

Proposition 3. The decentralized equilibrium with panic runs is not constrained efficient.
It exhibits under-saving, excessive financial instability and an inefficient level of bank
liquidity insurance.

By internalizing the effects of savings on the likelihood of panic runs, the social planner
chooses a higher level of savings than in the decentralized equilibrium. Hence, in the
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decentralized equilibrium, there are too few deposits and runs are too frequent. This
result hinges directly on Proposition 2, which highlights that θ∗ is decreasing in the level
of deposits. In other words, the excessive fragility of the decentralized economy is not
driven by the bank’s distorted incentives, but rather relies on the saving externality: The
individual depositor fails to internalize the effect that her saving decision has on her own
and other depositors’ withdrawal decisions.

Interestingly, one implication of the comparison between the constrained efficient al-
location and the decentralized economy is that the level of bank liquidity insurance, as
measured by r1 > 1, is also constrained inefficient. As mentioned above, this is at odds
with the results in Goldstein and Pauzner (2005), and is due to the fact that banks in-
termediate an inefficient amount of deposits. For a given aggregate level of deposits, r1
is the same in the decentralized economy and in the constrained efficient one, since (11)
and (17) are identical. Thus, if depositors saved the constrained efficient amount, banks
would provide the constrained efficient level of liquidity insurance.

4 The economy with fundamental runs only

The analysis in the previous section highlighted the existence of a saving externality and
characterized its implications for efficiency. The saving externality emerges because each
late depositor finds it optimal to follow the withdrawal behavior of others and does not
take into account the effect of her deposits on banks’ exposure to panic runs. This may
suggest that eliminating panic runs could resolve the inefficiency. The aim of this section
is to show that this is not the case.

To study this, we consider an economy in which panic runs are ruled out. This could
by the case in the presence of prudential policies. In particular, consider an authority,
e.g. a central bank in its role as lender of last resort (LOLR) intervening to prevent the
occurrence of panic runs.9 In accordance with the existing literature and with principles
first laid out in Bagehot (1873), the LOLR aims to support illiquid but solvent banks, by
committing to transfer resources to banks at date 1 in case they face large withdrawals.
Within our model, such policy is implemented by the LOLR committing to intervene when
a run occurs and the realization of θ is larger than the equilibrium value of the threshold
for fundamental runs θ, described in equation (6) evaluated at di = d. The reason for
this is twofold. First, in line with financial support being only offered to solvent banks,
as described in Bagehot (1873), injections of liquidity below the threshold θ would not
be effective in preventing runs. Second, as panic runs entail the inefficient liquidation of
profitable investment projects, intervening at a cutoff of θ > θ and so allowing some panic

9Deposit insurance could be considered as an alternative prudential policy. As shown in (Allen et al.,
2018), since deposit insurance entails an actual disbursement by the government, it would not eliminate
panic runs completely. Hence, the same analysis as in Section 3 would apply. In contrast, as in Diamond
and Dybvig (1983) the LOLR has a pure announcement effect, without any disbursement.
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runs to occur, would not be optimal.
In the presence of a LOLR, depositors no longer need to use their signal to anticipate

the actions of the others since they are guaranteed to receive the promised repayment
irrespective of what others do as long as the fundamental is high enough. This implies
that panic runs are ruled out. Still, depositors use their signals to assess whether the
fundamental θ is so low that the LOLR does not intervene and their repayments are not
guaranteed. As we show in detail below, runs still occur in this setting when depositors
expect a low realization of the fundamental θ. We refer to these events as “fundamental-
driven runs”.

As in the previous section, we solve the model by backward induction, starting from
depositors’ withdrawing decisions at date 1 and then moving to a representative bank’s
choice of the deposit contract and to consumers’ consumption-saving decisions. Similarly
to Section 3, depositors’ run decision follows the threshold strategy:

ai(θi) =

withdraw at date 1 if θ ≤ θi,

withdraw at date 2 if θ > θi,
(20)

and the equilibrium is defined as follows:

Definition 2. A decentralized equilibrium with fundamental-driven runs consists of a set
of withdrawal strategies {ai}i∈[0,1], vectors of quantities {c0i, di}i∈[0,1] and {D, I}, and a
deposit rate r1 such that:

• For a given deposit rate r1 and deposits {di}i∈[0,1], the withdrawal strategies {ai}i∈[0,1]
are chosen optimally;

• For given {di}i∈[0,1], the deposit rate r1 maximizes the depositors’ expected utility at
date 1, subject to the budget constraint D = I;

• The consumption-saving decisions {c0i, di}i∈[0,1] maximize consumers’ expected util-
ity at date 0, subject to the budget constraint c0i + di = 1;

• The deposit market clears: D =
∫
i
didi.

4.1 Depositors’ withdrawal decisions

As in section 3.1, we analyze the withdrawal decision of a late depositor i who holds
deposit di. In doing this, the deposit rate r1 as well as the amount deposited by others
d−i are taken as given.

The following proposition characterizes a depositor i’s run decision.
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Figure 2: The withdrawal strategy of a late depositor i compared to all other depositors
−i in the economy with fundamental runs.

Proposition 4. In the economy with only fundamental runs, a late depositor i withdraws
at date 1 when θ falls below the threshold:

θi = max {θ(r1, d−i), θ(r1, di)} , (21)

with θ(r1, d−i) = u(r1d−i)

u(R 1−λr1
1−λ d−i)

and θ(r1, di) = u(r1di)

u(R 1−λr1
1−λ di)

. The run threshold θi is non-

decreasing in the amount deposited di, i.e.,
∂θi
∂di
≥ 0.

The proposition highlights two results. First, depositor i’s run decision is driven by the
run strategy θ(r1, d−i) of all other depositors. In other words, depositor i has an incentive
to run at least as often as others. If everybody else withdraws, depositor i is certain to
receive no repayment at date 2, because the bank liquidates all its assets prematurely
to serve the other depositors. This case is depicted in the top panel of Figure 2. If the
fundamental θ falls in the region [θi, θ−i], depositor i does not run while all other depositors
−i run. However, waiting until date 2 cannot be optimal since depositor i would be better
off by joining the run and withdrawing di at date 1. In contrast, depositor i might have
incentives to run more often than other depositors. When depositor i is the only late
depositor running, she is guaranteed to receive positive repayments both at date 1 and
2. As long as u(r1di) > u

(
R 1−λr1

1−λ di
)
, withdrawing at date 1 when all −i depositors wait

until date 2 is optimal. This case is depicted in the bottom panel of Figure 2. If the
fundamental θ falls in the region [θ−i, θi], the depositor i runs while all other depositors
−i do not.

The second result of the proposition is that the run threshold is non-decreasing in
the amount deposited. This is the opposite than what shown in Proposition 1. As in
the case of panic runs, a rise in the size of deposits increases both date-1 and date-2
consumption. Furthermore, as before, depositors are risk averse and value the increase in
consumption more in the state when they are poorer. However, with fundamental-diven
runs only, depositors expect to have a lower consumption level when they withdraw early,
as r1 < r2. Hence, higher deposits increase the incentives of running over waiting.
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4.2 Decentralized economy: saving and deposit rate decisions

Having characterized depositors’ withdrawal decisions at date 1, we now solve for the
bank’s and consumers’ decisions at date 0.

Bank. The bank chooses the deposit rate r1 to maximize the utility of a representative
depositor i. Thus, it solves the following problem:

max
r1

∫ θ(r1,d−i)

0

u(di)dθ +

∫ θ(r1,di)

θ(r1,d−i)

u(r1di)dθ+

+

∫ 1

θ(r1,di)

[
λu(r1di) + (1− λ)θu

(
R

1− λr1
1− λ

di

)]
dθ. (22)

The expression is similar to the one in Section 3.2. The first term represents depositor i’s
utility when all other depositors run, i.e., when θ ≤ θ(r1, d−i). In this case, the per-unit
liquidation value of the bank’s investment is 1 and each depositor receives a pro-rata share.
Hence, a depositor receives di. The second term represents depositor i’s utility when she
is the only one to run, i.e. when θ(r1, d−i) < θ ≤ θ(r1, di). In this case, she obtains r1di.
Finally, the third term captures the utility in the absence of runs. When no depositor runs,
i.e. for θ > θ(r1, di), a depositor i receives r1di if impatient, while if patient she receives a
share of bank’s available resources R 1−λr1

1−λ di with probability θ, and zero otherwise.

Consumers. At date 0, each consumer chooses di to maximize her utility by solving:

max
di

u(1− di) +

∫ θ(r1,d−i)

0

u(di)dθ +

∫ θ(r1,di)

θ(r1,d−i)

u(r1di)dθ+

+

∫ 1

θ(r1,di)

[
λu(r1di) + (1− λ)θu

(
R

1− λr1
1− λ

di

)]
dθ, (23)

subject to the budget constraint di = 1 − c0i, with θ(r1, d−i) and θ(r1, di) as specified in
Proposition 4. The following proposition characterizes the decentralized equilibrium with
fundamental runs.

Proposition 5. The decentralized equilibrium with fundamental-driven runs is given by
r1 > 1 and d > 0 that solve:∫ 1

θ(r1,d)

[
u′(r1d)− θRu′

(
R

1− λr1
1− λ

d

)]
dθ − ∂θ(r1, d)

∂r1

∆

λd
= 0, (24)

u′(1− d) =

∫ θ(r1,d)

0

u′(d)dθ+

+

∫ 1

θ(r1,d)

[
λr1u

′(r1d) + θR(1− λr1)u′
(
R

1− λr1
1− λ

d

)]
dθ, (25)
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di = d−i = d = D, (26)

where ∆ = λu(r1d) + (1 − λ)θ(r1, d)u
(
R 1−λr1

1−λ d
)
− u(d), and θ(r1, d) is as specified in

Proposition 4 and evaluated at d−i = di = d.

In choosing the deposit rate r1, the bank compares marginal benefit and marginal cost.
The marginal benefit, represented by the first term in (24), captures improved risk sharing
owing to the transfer of consumption from late to early depositors. Hence, the deposit
rate r1 can be interpreted as before as a measure of liquidity insurance. In equilibrium,
the bank finds it optimal to set r1 > 1, thus providing liquidity insurance to depositors.
The marginal cost, represented by the second term of (24), is instead the loss in expected
utility ∆ due to the increased probability of a run, as measured by the derivative of the
run threshold θ(r1, d) with respect to r1.

The choice of the deposit d again trades off marginal cost and marginal benefit. The
former comes from less consumption at time 0, as captured by the left-hand side of (25).
The latter comes from more consumption at date 1 and 2, as captured by the right-hand
side of (25). Importantly, as in the case of panic runs, in (25) there is no term capturing
the effect of the amount deposited di on the run threshold. The reason is twofold. First, the
individual depositor i cannot influence the threshold at which the bank runs out of funds,
as all other depositors find it optimal to run below θ(r1, d−i), i.e.,

∂θ(r1,d−i)
∂di

= 0. Second,
a depositor i can choose to run more often than all other depositors, with θ(di) being the
relevant run threshold. In this case, the amount deposited directly affects the threshold
as shown in Proposition 4. However, in this case the cost of the increased run probability
for the individual, in terms of lost expected utility, is zero. In other words, an individual
depositor does not perceive a marginal increase in the probability of withdrawing as costly
for her, because she is withdrawing optimally given the deposit rate r1. In summary, as
in Section 3, consumers do not internalize the effect of the quantity of deposits on the
probability of a run and the saving externality emerges.

We can substitute (26) and (24) into (25) and obtain an expression summarizing the
decentralized equilibrium with fundamental runs:

u′(1−D) =

∫ θ(r1,D)

0

u′(D)dθ +

∫ 1

θ(r1,D)

u′(r1D)dθ − (1− λr1)
∆

λD

∂θ(r1, D)

∂r1
. (27)

As in Section 3.2, this equation resembles an Euler equation and we use it to compare the
decentralized equilibrium with the constrained efficient allocation.

4.3 Constrained efficient allocation

In order to study the efficiency of the decentralized equilibrium with only fundamental
runs, we proceed as in Section 3 and characterize a constrained-efficient benchmark. As
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before, we consider a social planner who can only offer demand-deposit contracts like the
banks. As a consequence, the planner is subject to runs in the same way as banks: It
takes as given depositors’ withdrawal strategies, as characterized by the run threshold θi
in (21), when i = −i.

At date 0, the planner allocates C0 = 1−D resources to consumption, the remaining
D units to bank deposits and chooses the deposit rate r1 to maximize expected welfare,
which is given by the same expression as in (16) with the only difference that the relevant
threshold is now θ(r1, D) instead of θ∗(r1, D). The following lemma characterizes the
constrained-efficient allocation with only fundamental runs:

Lemma 3. The constrained-efficient equilibrium with fundamental runs is given by r1 > 1

and D > 0 that solve:∫ 1

θ(r1,D)

[
u′(r1D)− θRu′

(
R

1− λr1
1− λ

D

)]
dθ − ∂θ(r1, D)

∂r1

∆

λD
= 0, (28)

u′(1−D) =

∫ θ(r1,D)

0

u′(D) dθ+

+

∫ 1

θ(r1,D)

[
λr1u

′(r1D) + θR(1− λr1)u′
(
R

1− λr1
1− λ

D

)]
dθ − ∂θ(r1, D)

∂D
∆, (29)

where ∆ = λu (r1D) + (1− λ)θ(r1, D)u
(
R 1−λr1

1−λ D
)
− u(D)

The planner chooses the optimal deposit rate r1 > 1 in the same way as the bank.
In other words, for given amount of aggregate deposits D, liquidity insurance in the de-
centralized equilibrium is again constrained efficient. The constrained-efficient allocation
differs from the decentralized equilibrium only for the last term on the right-hand side
of (29). Relative to the decentralized economy, the social planner internalizes the saving
externality, accounting for the effect of deposits on the likelihood of fundamental runs and
the costs associated with it.

To ease the comparison with the decentralized economy, it is useful to substitute (28)
into (29) and obtain:

u′(1−D) =

∫ θ(r1,D)

0

u′(D)dθ+

∫ 1

θ(r1,D)

u′(r1D)dθ− (1− λr1)
∆

λD

∂θ(r1, D)

∂r1
− ∂θ(r1, D)

∂D
∆.

(30)
The following proposition compares the social planner allocation with the decentralized
equilibrium.

Proposition 6. The decentralized equilibrium with fundamental runs is not constrained
efficient. It exhibits over-saving, excessive financial instability and an inefficient level of
bank liquidity insurance.
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By internalizing the effects of aggregate savings D on financial fragility, the social
planner chooses a lower level of savings than in the decentralized equilibrium. In other
words, with fundamental-driven runs the saving externality exists as in the equilibrium
with panic runs. Yet, it has the opposite sign: Consumers save too much because they do
not internalize the adverse effect of their saving decisions on financial stability and runs are
too frequent.10 As discussed in Section 3.3, the inefficiency emerging in the decentralized
economy represents a novel result relative to the existing literature on bank runs. In
Diamond and Dybvig (1983) and subsequent related papers (e.g., Goldstein and Pauzner,
2005), banks achieve the constrained-efficient allocation by providing liquidity insurance
to risk-averse depositors. In our framework, banks still provide liquidity insurance to
depositors. However, the equilibrium level of insurance is not constrained efficient.

Proposition 6 and 3 present opposite results. This difference depends on the different
nature of the bank runs, and the resulting sign of the saving externality. In both cases,
depositors are risk averse and value higher savings more in the state in which they are
poorer. Proposition 1 shows that when panic runs are possible, depositors attach a positive
probability to the event that their date-2 consumption falls to zero. Proposition 4 instead
shows that with fundamental-driven runs, depositors know that their date-2 consump-
tion always stays positive and larger than date-1 consumption. Hence, in the economy
with panic-driven runs the decentralized equilibrium features under-saving, while in the
economy with fundamental-driven runs it exhibits over-saving.

5 Optimal policy

The previous sections have shown that the decentralized equilibrium features a saving
externality both with fundamental-driven and panic-driven runs. The resulting inefficiency
creates a motive for public intervention. The aim of this section is to show how the
constrained-efficient allocation can be implemented in the decentralized economy. To this
end, we introduce a policy-maker who can impose proportional taxes on deposit holdings τ .
The government collects taxes and rebates revenues to consumers as a lump-sum transfer
T to clear its budget constraint:

T = τD. (31)

The consumer’s date-0 budget constraint reads:

c0i + (1 + τ) di = 1 + T. (32)

With the exception of the above budget constraints, the economy is the same as
10The assumption that deposit contracts are exclusive is not key for this result to hold. In fact, the

only reason why depositors might want to divide their savings across multiple banks offering the same
deposit contract would be to curb financial fragility. Yet, since depositors do not internalize this effect,
they would not do that in equilibrium.
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described in Sections 3 and 4. Denote a general run threshold as θ̃(r1, d), with θ̃(r1, d) =

θ∗(r1, d) in the economy with panic runs and θ̃(r1, d) = θ(r1, d) in the economy with
fundamental runs. The following lemma characterizes the equilibrium conditions of the
economy with taxes.

Lemma 4. Given a tax on deposit holdings τ , the decentralized equilibrium is characterized
by: ∫ 1

θ̃(r1,d)

[
u′(r1d)− θRu′

(
R

1− λr1
1− λ

d

)]
dθ − ∂θ̃(r1, d)

∂r1

∆

λd
= 0, (33)

(1 + τ)u′ (1− d) =

∫ θ̃(r1,d)

0

u′ (d) dθ+

+

∫ 1

θ̃(r1,d)

[
λr1u

′(r1d) + θR(1− λr1)u′
(
R

1− λr1
1− λ

d

)]
dθ, (34)

di = d−i = d = D = I, (35)

where ∆ = λu(r1d) + (1− λ)θ̃(r1, d)u
(
R 1−λr1

1−λ d
)
− u(d).

The tax policy creates a wedge in the intertemporal consumption-savings decision,
thereby discouraging or encouraging savings. This can be seen by comparing (34) with
(12) and (25). Optimal taxation is characterized in the following proposition.

Proposition 7. The tax on deposit holdings that decentralizes the constrained efficient
allocation solves:

τ opt =
∆

u′(1− I)

∂θ̃(r1, D)

∂D
. (36)

It is negative in the economy with panic-driven runs and positive in the economy with
fundamental-driven runs.

The optimal wedge is increasing in the marginal effect of deposits on the run probability
∂θ̃(r1,D)
∂D

and the cost of bank runs ∆. The former indicates the strength of the saving
externality and the latter the benefit of reducing the probability of bank runs. The optimal
wedge is also decreasing in the marginal utility of date-0 consumption. This reflects a
wealth effect: The cost of reducing bank intermediation is larger in a poorer economy.
Hence, a benevolent policy-maker should intervene less.

As shown in Propositions 3 and 6, the sign of the saving externality is different in
the economy with panic-driven runs and in the economy with fundamental-driven runs.
This has interesting implications for the optimal policy: While panic-driven runs imply a
negative optimal wedge, in an economy with fundamental-driven runs the optimal wedge
is positive. Hence, in an economy with panic-driven runs a benevolent policy-maker should
subsidize deposits. On the contrary, in an economy with fundamental-driven runs deposits
should be taxed.
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6 A numerical illustration

In this section, we illustrate the properties of the model using a numerical example.
In particular, we study how the severity of the inefficiency stemming from the saving
externality and the optimal policy vary with R, i.e. the investment return in case of
success.

We assume the following functional form for the depositors’ utility function:

u(c) =

c if c ≤ c,

c1−σ−F
1−σ otherwise,

(37)

where c is a small positive constant. In this way, u(0) = 0 and the utility function exhibits
constant relative risk aversion σ for c > c.11 We set σ = 2 and the scale parameter F
to 2.8. The threshold of the upper dominance region is set to θ̄ = 1 and the probability
of being an early consumer λ to 0.02 as in Mattana and Panetti (2020). We provide
results for values of R ranging between 2.02 and 2.10, so that the expected net return
on the risky investment E[θ]R lies between 1 and 5 per cent. Table 1b and 1a provide
the characterization of the decentralized equilibrium of the economy with panic-driven
and fundamental-driven runs respectively, as depicted in Sections 3 and 4, as well as the
comparison with the relevant constrained efficient allocations.

In line with Propositions 2 and 5, the (gross) deposit rate r1 is larger than 1 in both
economies, as it captures the provision of liquidity insurance to the depositors. There
exists a positive relation between R and r1 (column 2), and a negative one between R

and d (column 3). The per-unit return on the productive asset R affects the intertemporal
allocation of resources in the decentralized equilibrium in a non-trivial way. At date 0, a
higher R triggers both an income and a substitution effect. On the one hand, through the
substitution effect, higher R induces consumers to deposit more in the bank and consume
less. On the other hand, through the income effect, a higher R leads to an increase in
date 0 consumption. At date 1, similar forces also affect the allocation of resources and,
in turn, consumption between date 1 and date 2 via a change in r1. In our numerical
illustration the income effect dominates the substitution effect both at date 0 and date 1,
for any value of R. Thus, higher R leads to higher r1 and lower d.

The relation between R and both the panic-run and the fundamental-run thresholds
θ∗ and θ (column 4) is negative, since the investment return in case of success R increases
late consumption, and thus lowers the incentives to withdraw early, as shown in equations
(8) and (21). Interestingly, comparing Table 1a and 1b, the deposit rate (column 2) is
more than five times larger in the economy with fundamental runs than in the economy

11Notice that the utility function u(c) = cα

α would not satisfy all assumptions. In fact, relative risk
aversion in that case would be 1− α, which is larger than 1 only for a α < 0. However, in that case the
utility would be decreasing in consumption, and u(0) would not be zero.
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Table 1: The decentralized equilibrium and the comparison with the constrained efficient
allocation for different values of E(R).

(a) Economy with panic-driven runs

E(R) r1(net, bps) d(%) θ∗ ∂θ∗/∂d ∆d(bps) ∆θ∗(bps) ∆r1(bps) τ(bps)

1.01 12.682 33.660 0.251 -0.114 -1.063 0.067 -0.005 -2.963
1.02 12.806 33.556 0.249 -0.095 -0.889 0.041 -0.004 -2.475
1.03 12.929 33.453 0.246 -0.077 -0.718 0.022 -0.004 -1.996
1.04 13.052 33.351 0.244 -0.059 -0.549 0.008 -0.004 -1.525
1.05 13.173 33.249 0.241 -0.041 -0.383 0.001 -0.002 -1.063

(b) Economy with fundamental-driven runs

E(R) r1(net, bps) d(%) θ ∂θ/∂d ∆d(bps) ∆θ(bps) ∆r1(bps) τ(bps)

1.01 66.230 42.855 0.333 5.747 175.699 625.156 -0.5022 288.120
1.02 67.352 42.700 0.328 5.840 190.610 699.494 -0.5485 300.432
1.03 68.462 42.544 0.322 5.936 207.473 786.512 -0.6011 313.168
1.04 69.560 42.386 0.316 6.033 226.765 889.829 -0.6616 326.355
1.05 70.647 42.226 0.310 6.132 249.178 1014.701 -0.7322 340.028

with panic runs. A consequence of this is that the run threshold in the economy with
fundamental runs is higher than in the economy with panic runs, despite the former
economy not suffering from coordination failures as the latter.

Table 1a reports the comparison between the decentralized equilibrium with panic
runs and the constrained efficient allocation. For a given value of R, the derivative of
θ∗ with respect to d is negative (column 5), as proved in Proposition 2. This confirms
that the decentralized equilibrium with panic runs exhibits under-saving (column 6) and
excessive financial fragility (column 7) with respect to the constrained efficient allocation.
Interestingly, compared to the decentralized equilibrium, a social planner commanding
higher savings not only brings about lower financial fragility, but is also able to pro-
vide higher liquidity insurance than the banks (column 8). Moreover, the distortion of
the decentralized equilibrium is decreasing in R. Therefore, the implementation of the
constrained efficient allocation in the decentralized economy is ensured by a subsidy to
deposits (column 9) that is also decreasing in R.

Column 5 of Table 1b instead highlights the existence of the positive saving external-
ity since, as shown in Proposition 4, the fundamental-run threshold is increasing in the
equilibrium deposit d. This implies that the decentralized equilibrium with fundamental
runs exhibits over-saving (column 6), excessive fragility (column 7) and low liquidity in-
surance (column 8). As the distortion of the decentralized equilibrium is increasing in R,
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an increasing tax on deposits of between 2.9 and 3.4 per cent is needed to correct the
inefficiency (column 9).

7 Conclusions

In this paper, we study a banking model with endogenous depositor runs and consumption-
saving decisions. Our contribution is twofold. First, we find that the probability of runs is
affected by the level of deposits in the economy. Second, we show that individual depositors
do not internalize the effect on fragility when choosing how much to deposit into a bank.
The resulting saving externality represents a novelty in the bank-run literature and has
important implications for the efficiency of the competitive equilibrium.

The inefficiency associated with the saving externality represents a rationale for public
intervention. Policy-makers should induce individual depositors to internalize the effect of
their consumption-saving decision on financial stability. The design of the optimal policy
depends on the nature of bank runs, namely on whether banks are subject to panic- or
fundamental-driven runs. In particular, the former leads to under-saving, which can be
corrected with a subsidy on deposits. The latter leads to over-saving, which requires a tax
on deposits.

Our results show that intermediaries that are not facing the risk of panic runs tend
to grow excessively large, provide an inefficient level of liquidity and are too fragile. This
further suggests that prudential policies should be complemented by other interventions
meant to reduce the incentives of depositors to over-save. In this respect, our paper high-
lights an additional potential drawback associated with bank guarantees. Besides the well-
known moral hazard problems on the side of the bank, deposit insurance and emergency
liquidity provision by central banks may also distort savers’ incentives, and translate into
an excessively large and fragile financial sector.
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A Proofs

Proof of Lemma 1. The proof is done by contradiction. Assume first that depositor i
finds it optimal not run when the other depositors run, i.e., x∗i < x∗−i. Then, depositor
i receives 0 in the range

(
x∗i , x

∗
−i
)
at date 2, while she could get di if joining the run.

Hence, x∗i < x∗−i cannot hold. Assume now that depositor i finds it optimal to run when
the others do not run, i.e., x∗i > x∗−i. Then, depositor i receives u(r1di) in the range
(x∗−i, x

∗
i ) when she runs, while she expects to receive u(r2di) = u

(
R 1−λr1

1−λ di
)
at date 2.

Yet, u(r1di)/u(r2di) = θ(r1, di) by definition, and θ(r1, di) < x∗i by construction. Hence,
x∗i > x∗−i cannot be optimal and the lemma follows.

Proof of Proposition 1. The proof follows closely the one in Goldstein and Pauzner
(2005) since our model also exhibits one-sided strategic complementarities.

The arguments in the proof in Goldstein and Pauzner (2005) establish that there is
a unique equilibrium in which depositors run if and only if the signal they receive is
below a common signal x∗. The number n of depositors withdrawing at date 1 is equal
to the probability of receiving a signal xi below x∗ and, given that depositors’ signals are
independent and uniformly distributed over the interval [θ − ε, θ + ε], it is:

n(θ, x∗) =


1 if θ ≤ x∗ − ε

λ+ (1− λ)
(
x∗−θ+ε

2ε

)
if x∗ − ε ≤ θ ≤ x∗ + ε

λ if θ ≥ x∗ + ε

(38)

When θ is below x∗−ε, all patient depositors receive a signal below x∗ and run. When
θ is above x∗+ε, all 1−λ late depositors wait until date 2 and only the λ early depositors
withdraw early. In the intermediate interval, when θ is between x∗ − ε and x∗ + ε, there
is a partial run as some of the late depositors run. The proportion of late depositors
withdrawing early decreases linearly with θ as fewer agents observe a signal below the
threshold.

Denote as ∆(xi, n(θ)) a depositor’s expected utility difference in utility between with-
drawing at date 2 and date 1 when he holds beliefs n(θ) regarding the number of depositors
running, which is given in (38) since for any realization of θ, the proportion of depositors
running is deterministic. The function ∆(xi, n(θ)) is equal to

∆(xi, n(θ)) =
1

2ε

∫ xi+ε

xi−ε
V(θ, n(θ))dθ, (39)

where V(θ, n(θ)) is given in (7) and n(θ) = n(θ, x∗) as given in (38). The function
∆(xi, n(θ)) is continuous in xi and increases continuously in positive shifts in the signal
xi and proportion of depositors running n(θ). The proof of the properties of ∆(xi, n(θ)),
as well as the rest of the proof follows closely Goldstein and Pauzner (2005), thus we omit
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it for brevity.
Having characterized the proportion of agents withdrawing for any possible value of

the fundamentals θ, we can now compute the threshold signal x∗−i. A patient depositor
−i who receives the signal x∗−i must be indifferent between withdrawing at date 1 and
at date 2. The threshold x∗−i can be then found by equalizing the following expression to
zero:

f(θ, r1, d−i) =

∫ 1
r1

λ

[
θu

(
R

1− nr1
1− n

d−i

)
− u(r1d−i)

]
dn+

∫ 1

1
r1

[
u(0)− u

(
d−i
n

)]
dn, (40)

where θ(n) = x∗−i + ε − 2ε (n−λ)
1−λ from (38). Equation (40) follows from (7) and requires

that a late depositor’s expected utility when he or she withdraws at date 1 is equal to
that when he or she waits until date 2. Note that in the limit, when ε→ 0, θ(n)→ x∗−i,
and we denote it as θ∗(r1, d−i).

To prove that θ∗(r1, d−i) is increasing in r1 and decreasing d−i, we use the implicit
function theorem on (40) and obtain:

∂θ∗(r1, d−i)

∂r1
= −

∂f(·)
∂r1
∂f(·)
∂θ∗

and
∂θ∗(r1, d−i)

∂d−i
= −

∂f(·)
∂d−i
∂f(·)
∂θ∗

. (41)

It is easy to see that ∂f(·)/∂θ > 0. Thus, the sign of ∂θ∗(r1, d−i)/∂r1 and ∂θ∗(r1, d−i)/∂d−i
are given by the opposite sign of ∂f(·)/∂r1 and ∂f(·)/∂d−i, respectively. The former is
given by:

∂f(·)
∂r1

= −d−i
∫ 1

r1

λ

[
u′(r1d−i) + θ∗

nR

1− n
u′
(
R

1− nr1
1− n

d−i

)]
dn < 0. (42)

The latter is equal to:

∂f(·)
∂d−i

=

∫ n

λ

[
θ∗u′

(
Rd−i

1− nr1
1− n

)
R

1− nr1
1− n

− u′(r1d−i)r1
]
dn−

∫ 1

n

u′
(
d−i
n

)
1

n
dn, (43)

where n = 1/r1. Multiply and divide everything by d−i to obtain:

∂f(·)
∂d−i

=
1

d−i

[∫ n

λ

[
θ∗u′

(
R

1− nr1
1− n

d−i

)
R

1− nr1
1− n

d−i − u′(r1d−i)r1d−i
]
dn+

−
∫ 1

n

u′
(
d−i
n

)
d−i
n
dn

]
, (44)

and denote c1 = r1d−i and c2(n) = R 1−nr1
1−n d−i. The expression above can be rewritten as:

∂f(·)
∂d−i

=
1

d−i

[∫ n

λ

[
θ∗u′ (c2(n)) c2(n)− u′(c1)c1

]
dn−

∫ 1

n

u′
(
d−i
n

)
d−i
n
dn

]
, (45)
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The sign of the derivative depends on that of the components inside the square brackets.
The second term is negative so we turn to study the sign of the first one.

Since u′(c)c is decreasing in c and c2(n) is decreasing in n, u′ (c2(n)) c2(n)−u′(c1)c1 is
increasing in n. Furthermore, when n = n, c2(n) = 0. As limc→0 u

′(c)c is arbitrarily large,
the first integral in (45) is positive and dominates the other. As a result, ∂f(.)

∂d−i
> 0 and

∂θ∗(r1,d−i)
∂d−i

< 0. Hence, the proposition follows.

Proof of Proposition 2. Differentiating the bank’s objective function in (9) with re-
spect to r1, we obtain (11). Similarly, differentiating (10) with respect to d yields (12).

To prove that r1 > 1, evaluate (11) at r1 = 1 using di = d−i = d = D = I. This leads
to:

λ

∫ 1

θ

[u′(d)d− θRdu′(Rd)] , (46)

since θ∗ → θ when r1 = 1, and ∆ = 0 by definition of θ in (6). This expression is positive
because relative risk aversion is larger than 1 for c > 0 and c < I. To see that, notice
that u′(d)d − θRdu′(Rd) > u′(d)d − Rdu′(Rd) and u′(c)c is decreasing in c. This follows
directly from −u′′(c)c/u′(c) > 1. Notice that the solution is an interior because for given
d, the equilibrium r1 must be consistent with runs not always occurring, i.e., with θ∗ < θ.
Choosing r1 such that θ∗ → θ → 1 would imply that depositors obtain u(d), which is even
lower than the utility that they could obtain by setting r1 = 1. The equilibrium size of
deposit d is also an interior solution for any r1, since by choosing d = 0 depositors would
accrue u(1), which is lower than what they could obtain by accessing liquidity insurance
provided by bank deposits. Thus, the proposition follows.

Proof of Lemma 2. The two conditions in the lemma are obtained by simply differ-
entiating (16) with respect to r1 and D. The proof of r1 > 1 is analogous to that of
Proposition 2.

Proof of Proposition 3. The proof follows directly from the comparison of (14) and
(19). When evaluating (14) at the optimal level of investment solving (19), (14) is positive
since the two first-order conditions only differs for the term ∂θ∗

∂D
∆, which is negative. This

implies that in the decentralized allocation the level of aggregate deposits D is lower than
that chosen by the planner. The results about the excessively high level of financial fragility
follows directly from the fact that the planner implements a higher level of aggregate
deposits than in the decentralized economy in order to limit runs given that ∂θ∗

∂D
∆ < 0.

Finally, the inefficient level of liquidity insurance provided by banks to consumers emerges
as the result of the fact that both the banks and the planner takes r1 as the solution to
(11). However, the level of deposits d is not the same in the decentralized allocation and
in the planner’s one, which determines a difference between the r1 set by banks in the
decentralized allocation and that set by the planner. Thus, the proposition follows.
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Proof of Proposition 4. We start by characterizing the level of fundamental θ at which
a bank runs out of funds. This corresponds to the region in which withdrawing at date 1

is a dominant action for each late depositor −i. This threshold is obtained by comparing
the expected utility at date 1 with that at date 2 under the assumption that only early
depositors withdraw at date 1. Hence, depositors −i withdraw when θ falls below the
threshold θ(r1, d−i) that solves:

u(r1d−i) = θu

(
R

1− λr1
1− λ

d−i

)
,

and so equals:

θ(r1, d−i) =
u(r1d−i)

u
(
R 1−λr1

1−λ d−i
) .

Denote as v (θ, θ(r1, d−i)) the net benefit of waiting until period 2 as a function of the
economy’s fundamental θ and of the fraction of depositors −i who withdraw at date 1:

v (θ, θ(r1, d−i)) =

θu
(
R 1−λr1

1−λ di
)
− u(r1di) if θ > θ(r1, d−i),

0− u (di) if θ ≤ θ(r1, d−i).
(47)

If θ > θ(r1, d−i), all −i depositors do not run and depositor i expects to receive the
promised repayment at either dates. If θ ≤ θ(r1, d−i), all −i depositors run, the bank is
forced to liquidate its investment at date 1, and so depositor i expects to receive noth-
ing if she withdraw at date 2. If she withdraws at date 1, instead, depositor i receives
back her deposit di. The threshold in the proposition follows directly from the function
v(θ, θ(r1, d−i). When θ ≤ θ(r1, d−i), depositor i is better off withdrawing and the propo-
sition follows. When θ > θ(r1, d−i), it is optimal for depositor i to withdraw as long
as

θu

(
R

1− λr1
1− λ

di

)
< u(r1di), (48)

which is the case for any θ < θ(r1, di) = u(r1di)

u(R 1−λr1
1−λ di)

.

For the second part of the proof, taking the derivative of θ(di) with respect to di, we
obtain:

∂θ(di)

∂di
=

1

u
(
R 1−λr1

1−λ di
) [u′(r1di)r1 − θ(di)u′(R1− λr1

1− λ
di

)
R

1− λr1
1− λ

]
, (49)

Multiply and divide by di and collect u(r1di) to obtain:

∂θ(di)

∂di
=

u(r1di)

u
(
R 1−λr1

1−λ di
)
di

[
u′(r1di)r1di
u(r1di)

−
u′
(
R 1−λr1

1−λ di
)
R 1−λr1

1−λ di

u
(
R 1−λr1

1−λ di
) ]

. (50)

The expression in the square brackets is positive if u′(c)c/u(c) (i.e. the semi-elasticity of
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consumption) is decreasing in c, that is:

[u′′(c)c+ u′(c)]u(c)− [u′(c)]2c

[u(c)]2
< 0. (51)

A sufficient condition for this to be true is that the coefficient of relative risk aversion
RRA = −u′′(c)c/u′(c) is larger than 1, as assumed. Hence, the proposition follows.

Proof of Proposition 5. Taking the derivative of (22) with respect to r1 and substi-
tuting di = d−i = d we obtain expression (24) as in the proposition. The condition that
pins down the equilibrium amount of deposits is obtained similarly by differentiating (23)
with respect to di and evaluating it at di = d−i = d. Thus, we obtain:

u′(1− d) =∫ θ(r1,d)

0

u′(d) dθ +

∫ 1

θ(r1,d)

[
λr1u

′(r1d) + θR(1− λr1)u′
(
R

1− λr1
1− λ

d

)]
dθ − ∂θ(r1, di)

∂di
∆,

(52)

where ∆ = (1−λ)θ(r1, d)
[
u
(
R 1−λr1

1−λ d
)
− u(r1d)

]
= 0 because of the definition of θ(r1, di).

Hence, we obtain the same expression as in (23). Finally, we prove that r1 > 1 by con-
tradiction. Assume that r1 = 1. When this is the case, the right-hand side of (24) is zero
as ∆ = 0, while the left-hand side of (24) is positive as u′(d) > Ru′(Rd). Hence, since r1
is an interior solution, it follows that r1 > 1 holds in equilibrium and this completes the
proof.

Proof of Lemma 3. The two conditions in the lemma are obtained by simply differen-
tiating expected welfare (the same expression as (16) with θ(r1, D) instead of θ∗(r1, D))
with respect to both r1 and D. The proof of r1 > 1 is analogous to the one in Proposition
5. Hence, the lemma follows.

Proof of Proposition 6. For given d = D, the deposit rate chosen by banks is the same
as the one chosen by the planner, as it can be easily seen by comparing (24) with (28).
Hence, the comparison between the decentralized and the constrained efficient allocation
boils down to the comparison of (27) with (30). It is easy to see that the former is
larger than the latter since ∂θ(r1,d)

∂d
> 0 as shown in Proposition 4. Hence, it follows that

the quantity of deposit D in the decentralized allocation is larger than the constrained
efficient one and the proposition follows.

Proof of Lemma 4. The derivation follows the steps of the proof of Proposition 2. The
tax only affects the consumer’s problem. For a general run threshold θ̃, the problem

ECB Working Paper Series No 2636 / January 2022 36

Electronic copy available at: https://ssrn.com/abstract=4006854



becomes:

max
d

u [1− (1 + τ)d+ T ] +

∫ θ̃(r1,d)

0

u (d) dθ+

+

∫ 1

θ̃(r1,d)

[
λu(r1d) + (1− λ)θu

(
R

1− λr1
1− λ

d

)]
dθ. (53)

Given that consumers behave symmetrically, we can write the associated first-order con-
dition as

(1 + τ)u′ (1− d) =

∫ θ̃(r1,d)

0

u′ (d) dθ+

+

∫ 1

θ̃(r1,d)

[
λr1u

′(r1d) + θR(1− λr1)u′
(
R

1− λr1
1− λ

d

)]
dθ. (54)

Hence, the lemma follows.

Proof of Proposition 7. Constrained efficiency in the case with panic- and fundamental
runs is determined by Lemmas 2 and 3, respectively. By simple substitution, we find
that the expression in the lemma makes the decentralized equilibrium identical to the
constrained efficient one. The sign of the optimal tax is determined by the sensitivity of the
threshold with respect to the quantity deposited. This property is verified in Propositions
1 and 4. Hence, the proposition follows.
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