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Abstract 
Soil moisture (SM) is a connective hydrological variable between the Earth’s 

surface and atmosphere and affects various climatological processes. Surface soil 
moisture (SSM) is a key component for addressing energy and water exchanges and can 
be estimated using different techniques, such as in situ and remote sensing (RS) 
measurements. Discrete, costly and prolonged, in situ measurements are rarely 
capable in demonstration of moisture fluctuations. On the other hand, current high 
spatial resolution satellite sensors lack the spectral resolution required for many 
quantitative RS applications, which is critical for heterogeneous covers. RS-based 
unmanned aerial systems (UASs) represent an option to fill the gap between these 
techniques, providing low-cost approaches to meet the critical requirements of spatial, 
spectral and temporal resolutions. In the present study, SM was estimated through a 
UAS equipped with a thermal imaging sensor. To this aim, in October 2018, two 
airborne campaigns during day and night were carried out with the thermal sensor for 
the estimation of the apparent thermal inertia (ATI) over an agricultural field in Iran. 
Simultaneously, SM measurements were obtained in 40 sample points in the different 
parts of the study area. Results showed a good correlation (R2=0.81) between the 
estimated and observed SM in the field. This study demonstrates the potential of UASs 
in providing high-resolution thermal imagery with the aim to monitor SM over bare and 
scarcely vegetated soils. A case study based in a wide agricultural field in Iran was 
considered, where SM monitoring is even more critical due to the arid and semi-arid 
climate, the lack of adequate SM measuring stations, and the poor quality of the 
available data. 
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INTRODUCTION 
Soil water content is one of the most essential environmental variables due to its key 

role in water and energy balances at the land-atmosphere interface (Lu et al., 2018). Surface 
soil moisture (SSM) is highly varied in space and time and across different scales; therefore, 
detailed information on soil water content is of practical importance, especially over arid and 
semi-arid regions, which aims at improving water resources utilization efficiency, food 
productivity, irrigation planning and achieving sustainable water resources management 
(Engman, 1991; Bolten et al., 2010; Robinson et al., 2008). 

Direct in situ observations of SSM are prolonged, labor-intensive, costly, and limited to 
discrete measurements in point scale, which precludes the spatial distribution of SSM due to 
its temporal and spatial variability (Crow et al., 2012). An alternative to measure and monitor 
large-scale SSM is the application of remotely-sensed (RS) products (Wang and Qu, 2009). Soil 
surface reflectance is the basis of SM monitoring through visible radiation methods, while 
thermal infrared radiation (TIR) methods function on the sensitivity of land surface 
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temperature (LST) to SSM (Petropoulos et al., 2015). RS methods based on microwave 
radiation functions relied on the high level of difference between the soil and water dielectric 
constants (Jackson, 1993). 

SM estimations at coarse spatial resolution have been provided from several satellite 
missions including soil moisture and ocean salinity (SMOS) (Kerr et al., 2001), soil moisture 
active and passive (SMAP) (Entekhabi et al., 2010), and advanced scatterometer (ASCAT) 
(Wagner et al., 2013). However, SM spatial-temporal variability (Brocca et al., 2010) creates 
challenges in accurately estimating soil water content even through the current high-
resolution satellite sensors and despite the recent advances in RS methods (El Hajj et al., 2017; 
Kim and Lakshmi, 2018). 

In the last decade, with the increasing developments in Unmanned Aerial Systems 
(UASs), they have been promoted as a suitable alternative for precise monitoring due to their 
high versatility, flexibility, and the ability to operate rapidly without necessarily planned 
scheduling. UASs represent major advantages against conventional platforms that have been 
broadly used over the years due to the ability to acquire near real-time ultra-high spatial and 
temporal resolution aerial maps with low operational costs (Pajares, 2015; Manfreda et al., 
2018; Tmusic et al., 2020). 

Rapid signs of progress in the use of TIR techniques for soil moisture investigations have 
been made since 1974 (Pratt and Ellyett, 1979). The thermal RS methods estimate SM based 
on soil thermal properties or LST measurements at the TIR wavelengths (3 to 14 μm). 
Vegetation indices affected by climate conditions are included in the latter empirical methods 
(Lu et al., 2018). However, the former approach relates SM to soil Thermal Inertia (TI), an 
intrinsic property that represents the ability of surface soil to resist temperature change. High 
TI values indicate small changes in temperature, while the reverse is true for low TI values 
(Pratt and Ellyett, 1979). Heat capacity and thermal conductivity as the two elements 
governing the TI, increase as SM increases; thus, SM can be inversely determined using TI if a 
relationship between these parameters is obtained in advance (Matsushima et al., 2011). 

An algorithm was first developed by (Price, 1980, 1985) to measure TI through satellite 
measurements of surface temperature by deriving an analytical expression that illustrates the 
satellite-based retrieved relation between bare soil temperature, mean evaporation and TI. 
Due to the requirements of a large number of observed ground data for model calibration in 
the TI-based empirical equations proposed by (Verstraeten et al., 2006; Matsushima et al., 
2011), these approaches are unavailable for many regions. Soil texture and porosity have been 
applied in models that relate TI to SM by Minacapilli et al. (2012), Lu et al. (2018), Paruta et 
al. (2020). 

Only a few studies have monitored SM through RS in Iran despite the importance of 
water in this arid and semi-arid region (Rahmani et al., 2016; Fakharizadehshirazi et al., 2019; 
Gheybi et al., 2019); on the other hand, the thermal inertia approach for SM estimation and 
UAS application have never been tested in this region. The present study gives a description 
on generating high-resolution SM products through applying a TI approach in this poorly 
monitored area by the application of drone-based thermal imagery. 

MATERIALS AND METHODS 

Study area 
The experimental site, selected for the execution of field and aerial surveys, was located 

10 km from the Municipality of Neishabour, Iran (Figure 1), which comprises a total area of 2 
ha. From the climatic point of view, the territory is part of the Eutemperate region with the 
biotope of the semi-desert. The annual average precipitation and potential evapotranspiration 
in this basin are 247.4 and 2335 mm, respectively. The highest and lowest monthly-averaged 
precipitations fall in March and August with values of 51 and 0.16 mm, respectively. The land 
use is characterized by bare soils and heterogeneous low vegetated agricultural fields. The 
main type of crop occurring at the aerial imagery acquisition day was wheat; although, some 
parts of the area were irrigated for saffron cultivation. 
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Figure 1. Location of the study area (A) Triband orthomosaic over study site overlapped with 
observed SM data (red symbols), (B) and (C) Field survey performed on 17 October 
2018. 

Thermal data 
On 17 October 2018, two flight campaigns were carried out over the study area with a 

FLIR Tau2 336 thermal sensor (FLIR Systems, Inc. Wilsonville, Oregon, USA) installed onboard 
a quadcopter DJI Phantom 3 Pro (SZ DJI Technology Co., Ltd. Shenzhen, Guangdong, China), 
which was equipped with an RGB color filter array camera of FC 300X. 

The first aerial survey was carried out around 11:30 in the morning UTC in order to 
evaluate the daily increase in surface soil temperature, while the second one was conducted 
on the same day at 20:00 UTC to estimate the soil temperature in the absence of solar load. 
Both surveys were performed in clear sky conditions. Flight height was set according to a 
ground sampling distance (GSD) of 19 and 4.6 cm for thermal and RGB images, respectively, 
and the flight plan applied a cross pattern with 90% side lap and 90% forward overlap. The 
radiometric solution produces thermographic IR video files in “.TMC” format, which were 
visualized, processed, and radiometrically corrected with ThermoViewer Software to extract 
426 and 476 thermal images during day and nighttime, respectively. The procedure of 
georeferencing the thermal images was conducted in Geosetter Software in order to assign 
geographical data to each image metadata, and the final thermal orthomosaics were obtained 
in Pix4D Mapper Software. Afterward, ground control points (GCPs) obtained on the field 
were assigned to the thermal and RGB orthomosaics to ensure a proper overlap. A total of 184 
RGB images were acquired to build the triband orthomosaic (Figure 1), which was further 
applied to extract the normalized green red difference index (NGRDI). 

In situ data 
Simultaneously with the acquisition of the thermal images, a ground campaign was 

carried out to collect soil samples at 40 locations. The sampling was carried out on bare soil, 
which were further analyzed using the method of hydrometer in the laboratory to obtain the 
amount of each particle fraction from the United States Department of Agriculture (USDA) soil 
texture triangle. In particular, SM in 40 points was measured at a depth of 10-15 cm from a 
FieldScout TDR300 Soil Moisture Meter (by Spectrum Technologies, Inc.), which was applied 
to measure soil volumetric water content and were further analyzed in the validation 
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procedures of the SM map. This portable device consists of a probe with 0.15 m long steel rods 
and is characterized by a soil moisture resolution of 0.1%. Table 1 shows the characteristics 
of the observed SM data. 

Table 1. Soil moisture of soil samples collected on 17 October 2018. 
Soil 
sample 

Latitude 
(°N) 

Longitude 
(°E) 

Soil moisture 
(%) 

Soil 
sample 

Latitude 
(°N) 

Longitude 
(°E) 

Soil moisture 
(%) 

1 36°8’9.76” 58°51’39.10” 10.4 21 36°8’11.23” 58°51’35.19” 8.4 
2 36°8’10.23” 58°51’38.55” 4.4 22 36°8’11.68” 58°51’35.78” 8.3 
3 36°8’10.70” 58°51’38.00” 3.1 23 36°8’10.81” 58°51’33.48” 5.8 
4 36°8’11.18” 58°51’37.45” 4.6 24 36°8’10.37” 58°51’32.89” 5.7 
5 36°8’11.65” 58°51’36.90” 5.5 25 36°8’9.93” 58°51’32.31” 5.6 
6 36°8’11.20” 58°51’36.32” 5.6 26 36°8’9.3” 58°51’32.86” 6 
7 36°8’10.74” 58°51’36.87” 6.5 27 36°8’9.8” 58°51’33.44” 5.4 
8 36°8’10.26” 58°51’37.42” 8.3 28 36°8’10.35” 58°51’34.03” 6.6 
9 36°8’9.79” 58°51’37.97” 6.8 29 36°8’10.32” 58°51’35.16” 8 
10 36°8’9.32” 58°51’38.52” 11.6 30 36°8’9.87” 58°51’34.58” 8.3 
11 36°8’9.35” 58°51’37.39” 13.6 31 36°8’9.42” 58°51’33.99” 5.5 
12 36°8’9.82” 58°51’36.84” 22.2 32 36°8’8.98” 58°51’33.41” 6.1 
13 36°8’10.29” 58°51’36.29” 5.2 33 36°8’8.95” 58°51’34.54” 50.3 
14 36°8’10.76” 58°51’35.74” 5.2 34 36°8’9.39” 58°51’35.12” 51.4 
15 36°8’12.12” 58°51’36.35” 5.8 35 36°8’8.92” 58°51’35.67” 55.2 
16 36°8’12.60” 58°51’35.81” 7.2 36 36°8’8.49” 58°51’35.10” 57.1 
17 36°8’12.16” 58°51’35.23” 7.1 37 36°8’8.45” 58°51’36.22” 11.3 
18 36°8’11.71” 58°51’34.64” 8.1 38 36°8’8.43” 58°51’37.36” 9.6 
19 36°8’11.27” 58°51’34.07” 7.6 39 36°8’8.90” 58°51’36.81” 12.3 
20 36°8’10.79” 58°51’34.61” 7.8 40 36°8’8.87” 58°51’37.94” 12.1 

Thermal inertia and soil moisture 
The temperature of the soil’s surface is influenced by many physical parameters, and 

the trends in temperature fluctuations of soil depend on its different thermal properties 
(Cheruy et al., 2017). The method applied in this study is to derive SM distribution based on 
TI, which describes the impedance of soil to temperature variations (Kahle et al., 1976). TI (J 
m-2 K-1 s-1/2) is determined by volumetric heat capacity (c, J m-3 K-1) and thermal conductivity 
(k, W m-1 K-1) of the surface layer: 

𝑇𝑇𝑇𝑇 = √𝑐𝑐 × 𝑘𝑘  (1) 

Variations in temperature that occur during a diurnal solar cycle are caused by 
variations of TI. High TI indicates a high resistance to temperature change, resulting in a low 
difference in temperature (e.g., wet soils). The opposite happens to surfaces characterized by 
low TI (e.g., dry soils). Therefore, SM can be estimated from the differences in soil 
temperatures during the day (Price, 1980). TI cannot be derived directly due to dependency 
on factors that cannot be retrieved from remote observations (c and k can only be measured 
in situ); therefore, (Price, 1985) simplified the estimation of TI through application of 
apparent thermal inertia (ATI). 

𝐴𝐴𝑇𝑇𝑇𝑇 = 1 − 𝛼𝛼 ∆𝑇𝑇⁄   (2) 

where α is the surface albedo and ΔT (K) is the difference between the maximum and 
minimum soil surface temperatures during a diurnal solar cycle. 

The procedure followed, as shown in Figure 2, included the derivation of ATI map using 
the FLIR Tau2 sensor (for diurnal ΔT estimation) and the grayscale reflection map from RGB 
sensor (for albedo estimation). In order obtain a good relationship between ATI and SM, the 
TI method must be applied over bare or scarcely vegetated soils (Jackson, 1993); therefore, 
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the RGB orthomosaic was firstly applied to create a mask of bare soils and separate the 
vegetated pixels using the NGRDI index (Yang, 2018). The common range for green vegetation 
is 0.1-0.8. The NGRDI threshold for separation of green vegetation from bare soils in the 
selected study area was 0.15. Once removing the vegetated pixels from the thermal map, it is 
necessary also to remove the shadow of vegetation. In this regard, while investigating the 
histogram of the ATI map masked by NGRDI index, a bi-modal distribution was observed. The 
first peak with lower temperature values characterizes the shadowed pixels and the second 
peak with higher temperatures corresponds to wet and dry soil pixels. The minimum between 
these two peaks was chosen as a threshold to remove the vegetated pixels. ATI is dependent 
on boundary conditions; therefore, a normalization analogous has to be performed 
(Minacapilli et al., 2012): 

𝐾𝐾𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑
𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠−𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑

  (3) 

where ATIdry (K-1) is ATI of dry soils, and ATIsat (K-1) represents the ATI of saturated soils, which 
are the minimum and maximum values of ATI spatial distributions during a time series, 
respectively. Considering the normalized value of ATI and soil porosity, the SM spatial 
distribution was derived from the equation below. 

𝜃𝜃 = 𝛷𝛷 �1 − 𝑙𝑙𝑙𝑙𝐾𝐾𝐴𝐴𝐴𝐴𝐴𝐴
𝜀𝜀

�
(1 −𝜇𝜇⁄ )

  (4) 

where Φ is the soil porosity, ε and μ are two empirical parameters equal to 0.6 and 0.71 for 
fine-textured soils, respectively, whereas for coarse-textured soils these values are 2.95 and 
0.16, respectively (Minacapilli et al., 2012). 

 

Figure 2. Flowchart of the applied methodology. 

RESULTS AND DISCUSSION 
In this study, the spatial distribution of SM was derived through a remotely sensed ATI 

map. In the following sections, we present the temperature, ATI, and SM maps. 

Temperature and ATI maps 
Two temperature maps were obtained from the FLIR Tau2 sensor after the stitching and 
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radiometrically correction of the imageries. The retrieved temperature maps are shown in 
Figure 3. In particular, Figure 3A shows the temperature map of the morning flight, ranging 
from 287 to 332 K; while, the temperature map of the nighttime flight, which varies between 
273 and 286 K is shown in Figure 3B. Cai et al. (2007) illustrated that a temperature variation 
of the order of 10 K is sufficient for an accurate estimation of SM, which is in concordance with 
the obtained temperature range. 

 

Figure 3. Soil surface temperatures obtained from the thermal camera (A) during maximum 
solar load; (B) at night. 

The ATI map obtained from the temperature variations of the study field after 
separating the vegetation and its shadow is illustrated in Figure 4A. After this step, a 
resampling method was applied over the ATI map to perform an averaging of 1 m over the 
pixels due to the ultra-high resolution of pixels. 

 

Figure 4. (A) ATI map of the bare soils of the study area. The ATI values in the map are 
expressed in K-1 units; (B) Map of SM derived from FLIR thermal camera onboard 
the UAS expressed in m3 m-3. 

Soil moisture map 
The laboratory analyses’ results of the collected soil samples in the study area 
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highlighted that all of our samples are almost homogeneous in terms of texture and 
recommended clay loam as the main soil texture in different parts of the field; thus, the 
parameters of Φ, ε, and μ were considered equal to 0.50, 0.6 and 0.71, respectively (Minacapilli 
et al., 2012). SM spatial distribution corresponding to the 40 sample points was obtained by 
using Equation (4). Calculated SM values were compared with the measured ones (Figure 5A). 
The R2=0.81 and RMSE=0.03 were obtained, which are in full agreement with (Palombo et al., 
2019). 

 

Figure 5. (A) Scatterplot of estimated vs. observed SM; (B) Relative errors observed in each 
sample point vs. the observed SM values. 

Other studies have also demonstrated a good relationship between ATI over bare soils 
and SM values, as verified in our research (Verstraeten et al., 2006; Minacapilli et al., 2012). 
Visual examination of SM (Figure 4B) indicates spatial trends of soil water content for bare 
and low vegetated soils in the study area, including observation of the lowest SM values 
identified in the northwest side of the acquired imagery; while, high SM values were 
recognized along the central section of the study area that is characterized by the irrigation 
performed for saffron cultivation. 

As shown in Figure 5B, the TI method applied on the thermal imagery obtained from 
the UAS estimated SM accurately in the medium range of its values from 8 up to 30% and 
showed the minimum relative error (100×|measured SM – observed SM |)/observed SM) values 
up to 30%. However, in the southwestern part of the field covered with the driest soils with 
less than 8% of water content, and in the middle-irrigated zone that water content was 
recorded by TDR up to 50%, this method was not able to estimate the SM values very precisely, 
and the errors obtained from the model results show higher error values. Based on similar 
results obtained by (Minacapilli et al., 2012), it can be concluded that the applied method 
overestimated the values corresponding to soil water contents <0.05 m3 m-3. The errors 
observed in value ranges higher than 30% could be due to a different porosity value over this 
zone, which will affect the SM results greatly since one porosity value for all parts of the field 
was applied. Another possible source of underestimations in this zone lies in the albedo 
calculations. Due to lack of multispectral sensor onboard the UAS, the albedo map was 
obtained from the grayscale reflection imagery and by comparing the maximum reflection 
amount from a total white pixel with the value of 255 with all the desired pixels throughout 
the field and by considering the known albedo value of the white surface. The albedo values 
over the irrigated area are lower than the dry soil due to lower reflections from the wet 
surface. Since the albedo calculation procedure was not from a multispectral camera, the 
albedo values over the irrigated area and the driest part of the field were overestimated, which 
affected the final SM results. Moreover, it should be considered that in the process of extracting 
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vegetation from bare soil pixels, there were some vegetated pixels that were not precisely 
extracted due to the fact that separating 100% pixels of vegetation is nearly impossible since 
the resolution of thermal and RGB sensors are different. More importantly, we applied an RGB 
index instead of the most commonly used NDVI to separate vegetation from soil, which 
distinguishes vegetation from soil so much better. Therefore, by applying an RGB index, 
separating the exact pixels of vegetation from soil cannot be done due to the almost similar 
reflection from red, greed, and blue bands rather than NIR, which is applied in NDVI. 
Consequently, applying a multispectral sensor and calculating NDVI is suggested in future 
studies. 

CONCLUSIONS 
In this study, a TI approach was applied to retrieve SM for bare and scarcely vegetated 

soils by integrating high spatial resolution thermal imagery onboard a UAS regarding the fact 
that diurnal thermal behavior of soil surface temperature is affected by fluctuations in SSM. 
For this purpose, ground soil sampling was carried out in the study area in order to determine 
the top soil moisture content and the composition of the soil samples. These data were used 
to validate the SM obtained on the basis of two different airborne thermal surveys. The results 
obtained with an R2=0.81 show a satisfactory relation between in situ observations and the 
estimated SM values obtained from integration of soil texture properties and surface 
temperature with an accuracy that can be considered satisfactory for practical purposes. The 
potential of UASs in acquiring high-resolution thermal data was evaluated in this study, 
suggesting that these instruments represent a fast, reliable, and cost-effective resource in 
measuring crop biophysical variables in precision farming applications as well as soil water 
content as an aid for sustainable water management in the agricultural domain over arid and 
semi-arid regions. The authors are currently working with a larger data set, including a wider 
range of soil moisture conditions, to generalize this methodology. 
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