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Abstract: The need for widespread structural safety checks represents a stimulus for the research
of advanced techniques for structural monitoring at the scale of single constructions or wide areas.
In this work, a strategy to preliminarily identify and rank possible critical constructions in a built
environment is presented, based on the joint exploitation of satellite radar remote sensing measure-
ments and artificial intelligence (AI) techniques. The satellite measurements are represented by the
displacement time series obtained through the Differential Synthetic Aperture Radar Interferometry
(DInSAR) technique known as full resolution Small BAseline Subset (SBAS) approach, while the
exploited AI technique is represented by the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) methodology. The DBSCAN technique is applied to the SBAS-DInSAR products
relevant to the achieved Persistent Scatterers (PSs), to identify clusters of pixels corresponding to
buildings within the investigated area. The analysis of the deformation evolution of each building
cluster is performed in terms of velocity rates and statistics on the DInSAR measurements. Syn-
thetic deformation maps of the areas are then retrieved to identify critical buildings. The proposed
methodology is applied to three areas within the city of Rome (Italy), imaged by the COSMO-SkyMed
SAR satellite constellation from ascending and descending orbits (in the time interval 2011–2019).
Starting from the DInSAR measurements, the DBSCAN algorithm provides the automatic clustering
of buildings within the three selected areas. Exploiting the derived deformation maps of each study
area, a preliminary identification and ranking of critical buildings is achieved, thus confirming the
validity of the proposed approach.

Keywords: remote sensing; artificial intelligence; DInSAR; deformation time series; DBSCAN;
structural monitoring; built-up environment

1. Introduction

The need for widespread structural safety checks, dictated by the high vulnerability
of the built heritage in different countries of the world, constitutes a stimulus for the
research of advanced techniques for structural monitoring in a built environment. In the
last decades, the satellite measurements obtained by applying the Differential Synthetic
Aperture Radar (SAR) Interferometry (DInSAR) technique have given a great impulse
to detect superficial deformations, also in the field of the structural engineering. The
processing of satellite SAR data permits to obtain ground deformation measurements and
thus to detect superficial deformations caused by slow-moving displacement phenomena
(on the order of some cm/year), of both natural (e.g., subsidence [1,2], landslides [3–8],
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ground consolidation [9]) and anthropic (e.g., excavations [10], raw materials extraction [11])
origin. These data can be also used to evaluate the vulnerability of systems of constructions
under different hypotheses [12,13]. We remark that the DInSAR technique has been widely
used for the large-scale analysis of deformation phenomena [14–18]. More recently, the
possibility of its application in the field of structural monitoring and assessment has
been exploited [1–3,5–9,19,20], thanks to the increasing number of Earth Observation (EO)
satellites in the orbit and to the high frequency of their data sampling. Note that, compared
to the traditional monitoring techniques, satellite DInSAR allows covering much larger
areas over a longer time span and without the need to install ground instrumentation,
resulting in limited costs. Moreover, the possibility to carry out retrospective analyses to
investigate the deformative evolution of an area of interest through the generation of time
series, by accessing to satellite data acquired down to 1992, enriches the potentialities of
this methodology.

The management and elaboration of satellite data require the use of advanced and
effective processing tools, because of their huge volumes and dynamism, continuously
increasing in time. In this scenario, machine learning techniques can be implemented for
the extraction of information related to the temporal evolution of the measurement points,
for their clustering and the generation of the corresponding deformation maps. It is worth
noting that the worldwide literature regarding the combined use of satellite SAR data and
artificial intelligence (AI) techniques, aimed at structural monitoring, is very scarce. Despite
this, the intuition of applying machine learning techniques is supported by successful
applications in the research field of the automatic extraction of building footprints in urban
areas from point clouds. Indeed, Zhang et al. [21] presented an algorithm for the extraction
of building footprints from LIDAR measurements, focusing more on two-dimensional (2-D)
footprint extraction than 3-D building models. Then, the majority of the existing approaches
derives from largescale airborne laser scanning point clouds. Aljumaily et al. [22] extracted
the urban objects from a digital surface model created from aerial laser scanning data, with
a fully automatic approach that takes raw 3D points and converts them into sets of clusters
through Density-based Spatial Clustering of Applications with Noise (DBSCAN), where
each cluster represents an object, such as a building or a portion of a ground surface. Zhang
and Zhang [23] proposed a deep learning-based classification algorithm that integrates
different neural networks to classify the point clouds into categories of interest, including
trees, buildings, and ground. More recent works propose automatic feature extraction
methods using remote-sensing-derived products. Guo et al. [24] proposed a point cloud
extraction method based on the DBSCAN algorithm, using Tomographic Synthetic Aperture
Radar (TomoSAR) point clouds. Finally, Rahimzad et al. [25] proposed an application to
multi-sensor remote-sensing images with a new unsupervised feature learning method for
efficient urban image clustering.

Within the described research scenario, this work presents a methodology for the
extraction of cloud points (representing the buildings of the area) from datasets of satellite
DInSAR deformation time series relative to a chosen area, by applying the AI techniques
referred to as clustering methods, allowing to identify groups of similar instances in
a multivariate dataset (the so-called “clusters”). Then, the retrieved deformations are
processed and exploited for the identification of critical constructions of an investigated
area that could need further and more in-depth investigations.

In particular, the implemented methodology is applied to three different areas in the
city of Rome (Italy), imaged by the X-band COSMO-SkyMed SAR satellite constellation.
The generated DInSAR products (deformation time series and mean displacement velocity
maps relevant to the coherent points, referred to as Persistent Scatterers—PS) are used
as input data, and the DBSCAN clustering method is applied in order to identify the
buildings existing in the areas. In this context, an attempt to properly set the DBSCAN
hyper-parameters and to integrate the clustering method by means of additional steps that
take into account the real distribution of the measuring points, is presented. Then, for each
cluster, the deformation condition in the monitored period is analyzed and plotted in maps.
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This is very useful for the identification of the relative stability among the buildings in
the area.

The results of the experiments show that the clusters (buildings) are successfully
detected through the proposed approach, and the achieved deformation maps of the areas
are effective for the identification of the critical buildings needing further and in-depth in-
vestigations. Thereafter, a more advanced structural monitoring for the buildings in critical
situations is suggested. For example, in situ inspections and traditional monitoring could
be carried out, and on-site information could be integrated with DInSAR measurements.

The paper is organized as follows. Section 2 describes the materials and the methods
of the proposed methodology. In particular, Sections 2.1 and 2.2 highlight, respectively, the
key aspects of the DInSAR and DBSCAN techniques and their specific features for civil en-
gineering applications; moreover, Section 2.3 is devoted to the description of the proposed
methodology for the preliminary identification and ranking of the critical constructions
in urban areas, based on the joint exploitation of the satellite DInSAR measurements and
DBSCAN-based techniques. In Section 3, the application of the proposed methodology
to three different study areas relevant to the city of Rome (Italy), imaged by the COSMO-
SkyMed SAR constellation from ascending and descending orbits during the 2011–2019
time interval, is presented, deeply discussed, and validated. Section 4 contains the discus-
sions on potential and limits of the proposed methodology, whereas Section 5 reports the
conclusive remarks.

2. Materials and Methods

In this section, materials and methods used in this work are presented. The materials
are analyzed in Sections 2.1 and 2.2. In particular, Section 2.1 presents the key aspects
of the exploited advanced DInSAR technique for the generation of deformation time
series, with a focus on the satellite data features most meaningful for civil engineering
applications. In Section 2.2, instead, an overview of the DBSCAN clustering algorithm is
presented. Finally, Section 2.3 explains all the steps of the proposed methodology for the
buildings clustering through the DBSCAN-based algorithm and the preliminary structural
monitoring of predefined areas, to identify and make a ranking of the critical constructions.

2.1. DInSAR Technique

DInSAR is one of the most used remote sensing techniques. It is based on the pro-
cessing of high-resolution radar image pairs acquired through the Synthetic Aperture
Radar (SAR) system [26] over an area of interest and allows to derive the magnitude of
the displacement component projected along the sensor line of sight (LOS). The effects of
additional phase components (e.g., related to changes in the electromagnetic characteristics
of the targets on the ground in the time interval of observation, to geometric distortions,
to the orbital information inaccuracy, or to changes in atmospheric conditions between
the acquisitions) are minimized by taking advantage from the use of the Multi-Temporal
DInSAR techniques, such as the Small BAseline Subset (SBAS) approach [27] that, starting
from the appropriate processing of a large number of interferometric SAR data pairs, allows
to generate mean deformation velocity maps extended over several hundred thousand
of km2 and, for each coherent point [28], provides the temporal evolution of the displace-
ments occurred in the period of interest by means of the deformation time series. The SBAS
technique is able to perform deformation analyses at different spatial resolution scales,
producing displacement time series and velocity maps at both regional and local resolution
scales [28–30]. In particular, when operating at local scale, e.g., for the monitoring of
buildings and infrastructures, full resolution differential interferograms generated from the
single-look SAR data (characterized by a spatial resolution of the SAR sensor ranging from
3 to 10 m), are employed.

Generally, the SBAS-DInSAR products have an accuracy of 1–2 mm/year on the mea-
surement of the mean displacement velocity, and of 5–10 mm on the single measurement
of displacement [31–34]. The full resolution SBAS-DInSAR technique provides a large set
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of measuring points for the investigated area, called Persistent Scatterers (PSs), each of
which representative of a portion of surface. The interferometric measurements are always
calculated with respect to a defined reference point, whose displacement value directly
impacts all the points of the dataset.

For each PS, a set of information is provided, made of geographical coordinates (lat-
itude and longitude), height with respect to a global reference system, LOS directional
cosines, LOS mean deformation velocity in the overall acquisition period, and LOS dis-
placement measures in each acquisition time. Moreover, the quality of the results from an
interferometric point of view is estimated through the temporal coherence value ([28,35]).

The accuracy in the planimetric geolocation of the PSs is related to the estimation of
residual topography compared to the Digital Elevation Model (DEM) used in the interfero-
metric processing.

For the same area, ascending (ASC) and descending (DES) measurements may be
generally available, with the satellite moving along the acquisition orbits from South
to North, or from North to South, respectively. The two datasets can be combined to
obtain the deformation components along global directions, commonly East-West (EW)
and vertical (z) [36]. It is worth specifying that the deformation along the North-South (NS)
direction can be overlooked, accepting a limited error, since the sensor is not quite sensitive
to the measurement of the components along this direction. This is because of the lateral
view and of the near polar orbit trajectories of the satellite system. Indicating the mean
yearly deformation velocity with V, the following system can be written:{

VASC ∼= VEW ·nEW,ASC + VV ·nz,ASC
VDES ∼= VEW ·nEW,DES + VV ·nz,DES

, (1)

where nEW,ASC/DES and nz,ASC/DES are the directional cosines of the sensor LOS. The
system (1) is a simplification of the complete system that is composed by a number of
unknown elements (VEW, VNS, and Vz) greater than the number of Equation (2), taking
into account also the NS component. Equation (1) should be applied to pairs of spatially
coincident ASC and DES points. The spatial coincidence of ASC and DES PSs is almost
impossible, but the composition can be also performed using pairs of points that can
be considered representative of the same reflective target, contemplating a very limited
positioning error. For practical purposes, the interferometric products are usually returned
as structured ASCII files that can be easily managed in a code language such as python.

The satellite data used in this work, acquired through the standard Stripmap mode,
derive from the Italian COSMO-SkyMed (CSK) X-band satellite constellation. For the CSK
Stripmap mode data, on average, the portion of surface has a full spatial resolution of
about 3 m × 3 m. For a CSK dataset composed by over 100 images, processed at full spatial
resolution and with a mean look angle of about 33◦, the precision values corresponding to
one standard deviation (1σ) are the following: about 1–2 m, 2–3 m, and 1–2 m in the N-S, in
the E-W and in the vertical directions, respectively.

2.2. DBSCAN Technique

Clustering methods are AI techniques aimed to identify groups of similar instances
in a multivariate dataset: the so-called clusters. Among the different approaches existing
in the literature, the density-based clustering methods perform the cluster identification
by exploiting the idea that a cluster is a contiguous region of high point density in a data
space, whereas low density regions represent noise.

One of the most powerful density-based clustering methods is surely the abovemen-
tioned Density-based Spatial Clustering of Applications with Noise (DBSCAN) introduced
by Ester et al. [37] in 1996. In short, the DBSCAN algorithm works by considering three
types of points: core points, density-reachable points and outliers. In detail, a point in some
space to be clustered can be identified as core point if it is characterized by at least a mini-
mum number of points (minPoints) within a selected distance (eps). As for density-reachable
points, they are points reachable from a core point through a path, such as p1, p2, . . . , pn,
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where p1 is a core point and pn is the density-reachable point. A point that is not reachable
from any other point is classified as outlier, i.e., it represents noise.

The workflow of the DBSCAN is presented below. DBSCAN starts with randomly
selecting a point B. Then, it collects all the points within a space with center B and radius eps.
This space is referred as to the neighborhood of the point B. If the neighborhood of the point
B does not contain a number of points equal to minPoints, the point B is marked as an outlier.
Otherwise, the algorithm creates a first cluster containing B and all points density-reachable
from it. In turn, the new points are marked as core points if their eps-neighborhood contains
at least a minPoints number of points, and the points density-reachable from them are
added to the cluster. In brief, the cluster is built, incrementally, by adding all the points
density-reachable from a core point already present in the cluster. The cluster is complete
when there are no other points that can be added. This occurs when the new added points
are not core points. Once a cluster is completed, the DBSCAN algorithm selects a new
random point out of the already completed clusters and repeats the process. It is worth
noting that a point recognized as outlier can be found in the neighborhood of a different
point and can be introduced in the cluster of this point. Therefore, only at the end of
the algorithm process, it is possible to definitely mark a point as outlier. By analyzing
how DBSCAN works, there is a clear need to opportunely set two hyper-parameters: the
radius of the neighborhood, eps, and the minimum number of points required inside of a
cluster, minPoints. Figure 1 reports an example to clarify the functioning of the DBSCAN
algorithm [38].
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is 4, and the eps radius is indicated by the circles. N is a noise point, A is a core point, and points B
and C are density-reachable from A.

DBSCAN algorithm is one of the most cited density-based clustering methods in the
literature. It has been successfully used in several domains, such as urban planning, traffic
congestion management and anomaly detection [39]. In the context of spatially extended
data, DBSCAN has been already used for dealing with LiDAR data [40,41] and Terrestrial
Laser Scanning Data [42]. The main advantage of this clustering algorithm is the ability to
discover clusters of arbitrary shapes in spaces of any dimension and effectively identify
noise points. Starting from this analysis, DBSCAN seems a suitable approach for achieving
one of the goals of this paper, that is, the identification of buildings by exploiting data
acquired by means of the SBAS-DInSAR technique, without knowing a priori the number
of buildings in the area, their shape, and the dimension of the initial dataset.

2.3. Proposed Methodology

This section presents the proposed methodology for a preliminary identification and
ranking of the critical constructions in urban areas, based on the joint exploitation of satellite
DInSAR measurements and DBSCAN-based techniques.

The flowchart of the methodology, shown in Figure 2, is composed of three elements:

â The first one (green box) regards the acquisition and the processing of the SAR images
relevant to the analyzed area, in the period of interest (in this case, CSK images in
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the period 2011–2019). The images are processed through a multi-temporal DInSAR
technique (in this case, the well-known full resolution SBAS-DInSAR algorithm), in
order to obtain spatially dense maps of coherent measurement points (referred to
as PSs);

â The second one (red box) regards the clustering operation performed by using the
DBSCAN algorithm. The identified clusters represent the different buildings of the
investigated area;

â The third one (blue box) regards the analysis of the deformation evolution of each
building in the observation period, by analyzing the velocity trends and statistics
of the PSs belonging to the cluster-identified buildings. This allows, through the
retrieval of synthetic deformation maps of the investigated area (with focus on the
buildings), to carry on a preliminary identification and ranking of critical buildings to
be further investigated.
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The main characteristics of the satellite input data relevant to the first step of the
proposed methodology, i.e., the DInSAR products obtained through the exploited full
resolution SBAS technique, have been already explained in detail in Section 2.1. The other
two main blocks of the procedure sketched in Figure 2 are described in detail hereafter.

2.3.1. Buildings Identification through DBSCAN Algorithm

This section explains how the existing buildings can be identified starting from the
ascending and descending datasets of PSs (merged in order to maximize the PSs density), by
means of an AI algorithm based on DBSCAN and improved through additional conditions
derived by engineering considerations.

Other than isolated buildings, in urbanized areas, it is very common to find two or
more buildings, with a common wall or separated by a seismic joint, only. It is worth
noting that the proposed approach does not allow to distinguish single units but, in the
abovementioned cases, the structural aggregate is considered as a single “building”.

The flowchart presented in Figure 3 describes the building identification through the
DBSCAN algorithm.

With respect to the flowchart shown in Figure 3, the first step of the procedure regards
the selection of the PSs by topography (red continue box). It is worth noting that the PSs
distribution is usually very heterogeneous in an urban zone: the buildings generally have
good reflective properties, so it is very common to detect a density of PSs falling on them.
In the areas between buildings, indeed, the PSs are most likely relative to the ground, so, for
the purposes of this work, they represent noise and have to be neglected. For this reason,
particular attention has to be given to the height of the PSs, δ. The value of δ under which
all the PSs are considered to be on the ground surface, is estimated. For the choice of this
value, the distribution of the frequency of δ for the dataset of the examined area is observed.
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In particular, attention is paid on the δ value that shows a first decrease of frequency with
respect to the previous one. All the PSs, which have δ values less than the value identified
as the upper limit, are supposed to be at the ground level and shall be discarded. The
ground level is considered to have a topography given by the δ mean value of all the
discarded PSs. An additional vertical error of ± 2 m is considered, corresponding to about
one standard deviation, as specified in Section 2.1. The latter, summed to δ associated to the
ground PSs, led to the definition of the value under which all the PSs are neglected for the
clustering. Moreover, since the one-floor point positioning can show an overlap with the
ground points (because of the mentioned possible errors of positioning), an additional δ can
be considered, equal to the height of the one-floor buildings (e.g., 3.00–3.50 m, based on the
engineering judgment of the user). This limit of the approach will be discussed in Section 4.
The clusters constituted by the one-floor buildings could be identified by implementing a
second cluster after the first above-described one, by opportunely setting the cut on δ and
the other parameters described herein.
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Once the first noise cut is done through the topographic considerations, the clustering
algorithm DBSCAN can be implemented (red dashed box of the flowchart in Figure 3).
As described in Section 2.2, the DBSCAN needs the setting of the two hyperparameters:
eps distance and minPoints. The optimal value for neighborhood radius eps is generally
determined through an approach consisting in plotting the mean of the distances between
each point and its kth nearest neighbor, sorted in ascending order, where k is generally equal
to minPoints [43,44]. Then, the optimal value for eps corresponds to the point of maximum
curvature of the obtained graph. In this work, to have a better estimation based on the
observation of the domain, eps has been evaluated for different values of k, ranging in the
interval [kinf; ksup], where the boundaries are related to the PSs density of the examined area,
obtained by dividing the number of PSs for the corresponding area occupied by buildings.
In particular, kinf has been obtained by multiplying the number of PSs in a m2 for the
minimum unity surface. The parameter ksup, instead, has been obtained by multiplying the
number of PSs in a m2 for a mean area of the buildings in the area. Then, for each value
of k included in the interval [kinf; ksup], a curve can be drawn, and the point of maximum
curvature can be found. Finally, the mean of the ordinates of the retrieved points gives the
optimal value for eps. Anyway, the value of eps shall be greater than the minimum distance
between the buildings of the area (known or estimated). With respect to the minPoints,
instead, according to Ester et al. [34], the DBSCAN default value is 4 for 2-dimensional
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data. For data with more than 2 dimensions, according to Sander et al. [45], minPoints is
computed as: minPoints = 2*dim, where dim is the dimension of the dataset.

At the end of the clustering operations, a plot of the cluster results with building
identification is created (red dotted box of the flowchart in Figure 3). As additional check
to remove unexpected noise, the users can choose to reject the clusters with less than a
minimum area (for example, the minimum unity surface of the building according to local
regulations). Each cluster is framed by a rectangle, to delimit the boundary between one
cluster and another.

2.3.2. Preliminary Identification and Ranking of Critical Constructions

In this section, the third part of the methodology is described. The flowchart shown in
Figure 4 describes the procedure for the preliminary structural monitoring and ranking of
the critical constructions in a built environment.
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The first two boxes of the flowchart in Figure 4, bounded by solid blue lines, represent
the initial steps of the proposed preliminary structural monitoring procedure. For each
building, each cluster is sub-divided into two sub-groups, according to the fundamental
features (ASC and DES orbits). The relative distances between all the ASC and DES PSs of
each cluster are analyzed. Only the couples of points constituted by one ASC and one DES
PS, having planimetric and altimetric distances less than the values of error reported in
Section 2.1, at once, are considered for the next steps. For the selected couples, the values of
the velocity components VV and VE-W are calculated according to Section 2.1 and plotted
using a symbology with graduated colors. The values of VV and VE-W are associated to
a new point, spatially located in a mean position with respect the original PSs forming
the pair.

Then, the second step regards the analysis of the deformation evolution in the mon-
itored period by using the velocity components of the selected couples with the goal of
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providing a preliminary structural monitoring through the ranking of the criticalities (blue
dashed box of the flowchart in Figure 4). In this phase, some statistical values of the
velocity components are recognized in each cluster: the maximum (VV,max, VEW,max), the
minimum (VV,min, VEW,min), and the mean velocity weighted on the values of the temporal
coherence. Moreover, the maximum (VV,max, VEW,max) and the minimum (VV,min, VEW,min)
values allow to understand if the building is interested by differential displacements, and
to estimate the differential velocity amount in the considered direction. The resulting
component maps are a very useful tool to easily identify the buildings most affected by
displacements, and to identify critical situations, if existing. The definition of a critical
building such as the actions to be taken when this condition is present will be discussed in
Section 4, since they are out of the scope of this paper. Generally, once the most exposed
buildings are identified, the third phase can be activated for them (blue dotted box of the
flowchart in Figure 4). In this phase, it is important to combine on-site information for the
single critical building or for the entire area (traditional measurements and geometrical
and structural relief of the buildings) with more building-specific DInSAR measurements.

3. Results

The proposed approach has been applied to three macro-areas, as shown in this
section. To implement the proposed approach, python code-language has been used,
and the available libraries have been exploited to speed-up the process and reduce the
possible errors.

3.1. Case Study Areas

The case study areas are part of the municipality of Rome (Italy) which is entirely
interested by an extensive multi-temporal interferometric processing [2,20,36,46–49]. In
particular, with reference to the whole urban area, the full resolution SBAS-DInSAR ap-
proach ([28,30]) has been applied to two sets of SAR images collected from 2011 to 2019,
from ASC and DES CSK orbits. The three areas differ for many characteristics: width (m2),
number of buildings, planimetric shape, and number of floors of the buildings (Figure 5).

3.2. Algorithm Application and Clustering Results
3.2.1. Selection of PSs by Topography

The distributions of the frequency of all the PSs δ for the three areas are shown in
Figure 6. In this work, a reasonable value of 30% has been set as limit of frequency variation.
For Areas 1 and 3, a decrease of frequency larger than 30% can be observed between 2–4 m
and 4–6 m, while for Area 2, it occurs between 4–6 m and 6–8 m. A detail of the topography
values considered for each area is reported in Table 1. With the δ limit, it is indicated
the value under which the PSs are neglected for the clustering, obtained by summing the
standard deviation (σ = ±2 m) and the supposed height of 1-floor buildings (3.50 m) to the
ground level measure δ.
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Table 1. Topography ground level δ and δ limit values.

Area Number [-] Ground Level δ [m] δ Limit [m]

1 2.59 8.09
2 2.78 8.28
3 2.64 8.14

3.2.2. Selection of DBSCAN Hyper-Parameters

For all the areas, the minimum samples value minPoints has been set at 4, since the
dataset used in this work has 2 dimensions. As regards eps, the approach mentioned in
Section 3.1 has been implemented for the three areas. The results are shown in Figure 7,
both in terms of plots of the mean of the distances between each point and its kth nearest
neighbor, sorted in ascending order, and reporting the information needed to find the
eps: the numbers of ASC and DES PSs, and their sum (tot. PSs), the area, the PSs density
(PSs/m2), the boundaries kinf and ksup, and, finally, the optimal value for neighborhood
radius eps. The latter has been estimated as the mean of the ordinates of the maximum
curvature points (represented with red circular markers) referred to each curve, given by
a value of k included in the interval [kinf; ksup]. According to Section 2.3.1, the ends of
this interval are estimated based on a PSs density obtained by dividing the number of
PSs for the area occupied by buildings, approximately the 50% of the total area for the
case study areas. Then, kinf has been obtained by multiplying the number of PSs in a m2

for the minimum unity surface, set at 28 m2 in this case, according to the Italian D.M.
05/07/1975 [50]. The value of ksup, indeed, has been evaluated taking into account that the
greater distribution is generally on the roof, and other PSs can be found on the facades, so
herein, a mean area of the buildings is estimated to be 250 m2.

The optimal values obtained for eps are very similar for the three areas. These values
are very close to the minimum distance between the buildings. Then, in absence of such
analysis, for urban areas with similar features, an eps value between 6 and 7 m could
be suggested.

3.2.3. Clustering Results

In Figures 8–10, the comparisons between the original PSs dataset distribution in the
three areas and the clustering results, are proposed. In Figures 8a, 9a and 10a, the buildings’
footprints are clearly marked with a black shape. There are 19 buildings in Area 1, 12
buildings in Area 2 and 20 buildings in Area 3. Moreover, the PSs, distributed all over the
areas, marked with red circles for ascending PSs and green circles for descending PSs, are
shown. In Figures 8b, 9b and 10b, the results of the clustering are reported, where each
cluster has been delimited by a rectangle. The clustering results have highlighted that the
procedure is very performant. Each building having more than one floor is identified by
a cluster. The only exception is represented by the one-floor manufact of Area 2, that is
not included in the clustering results due to the additional δ considered for the height cut,
aimed to avoid noise PSs (belonging to the ground), as previously exposed in Section 2.3.1.
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3.3. Potential Application for Structural Monitoring

The procedure described in Section 2.3.2 has allowed to identify all the couples of
PSs respecting the criteria to be combined. The velocity components VV and VEW have
been estimated for each couple, by implementing Equation (1) presented in Section 2.1.
In Figures 11–13, the maps of VV and VEW are shown. The symbology has graduated
colors ranging from dark red (downwards and west-directed displacements, respectively)
to dark blue (upwards and East-directed displacements, respectively). The green points are
representative of stable areas, not affected by displacements.
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Figure 13. Area no. 3: mean velocity vertical component VV (a) and mean velocity East-West
component VEW (b) for the combinable pairs of PSs.

Synthetic maps have been created from the previous ones, showing for each cluster the
significative values of the velocity components. In Figures 14a, 15a and 16a, for the Areas
1, 2 and 3, respectively, the following information is graphically represented: VV,max and
VV,min, with a star marker, placed in their current position; VV,mean with a circular marker,
placed in the middle of the cluster; the values of VV,mean ± 1σ, with triangular markers,
on the two sides of VV,mean. Analogous maps are represented for the EW components of
velocity, in Figures 14b, 15b and 16b.
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In Area 1, an ongoing deformation phenomenon can be observed (Figure 14). In
particular, the vertical component is prevailing, showing downward movements. The
vertical velocity increases from the top left zone to the bottom right zone. Differential
displacements can also be observed in the same building. It is even more evident looking
at the summary maps. For example, the last building of the third “row” has a VV,min value
in the yellow range ([−0.3–−0.1] cm/y) and a VV,max one in the orange range ([−0.3–−0.5]
cm/y). In the EW direction, the velocity maps show lower velocity values.

Moreover, in Area 2, an even clearer ongoing deformation phenomenon can be ob-
served (Figure 15). The vertical component is the prevailing one, with downward move-
ments, but the EW component is not negligible in some buildings. The buildings most
affected by the vertical deformation phenomenon are those of the southern zone, that reach
values of VV also lower than −0.7 cm/y. Significant displacements can also be observed
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on some buildings. For example, in the second building on the right, starting from the
bottom, the vertical component increases from north to south, while, on the contrary, the
EW component decreases from north to south. It is even more evident looking at the
summary maps. The examined building, in fact, presents a VV,min value within the green
range ([−0.1–+0.1] cm/y) on the North-East side, and a VV,max one in the dark red range
([<−0.7] cm/y) on the south side. In the EW direction, it presents a VEW,min value in the
orange range ([−0.5–+0.3] cm/y) on the North-East side, and a VEW,max one in the green
range ([−0.1–+0.1] cm/y) on the south-west side.

Finally, Area 3 presents the worst vertical ongoing deformation behavior among the
three areas, while the EW component is quite negligible (Figure 16). Among each building,
the velocity components are quite homogeneous, so they are not supposed to suffer from
differential deformations.

The prevailing vertical velocity trend detected in the three areas is imputable, probably,
due to subsidence or consolidation phenomena [47].

3.4. Validation of the Results

The validation of the results obtained through the proposed methodology has been
performed with respect to the clustering that represents the novelty of the work. In detail,
the performed validation consists of comparing the clustering results, obtained as described
in Section 3.2.3 thanks to DBSCAN algorithm, to the point cloud identified, for the same
buildings through a detailed analysis of the PSs. Unfortunately, we do not have the ground
truth for the considered areas, i.e., the real match between the points and the clusters,
and, in general, it is difficult to find datasets with this information. For this reason, in
order to carry out our validation, a ground truth has been built by applying a controlled
procedure, performed without the aid of AI algorithms. In detail, the performed procedure
is characterized by the following steps: (i) the schematic volumes of the building, obtained
from the open-source Regional Technical Numerical Map (CTR) of Lazio Region [51], are
reconstructed; (ii) all the PSs intersecting the volumes themselves are selected, considering
a buffer of 2.5 m around; (iii) as proposed in Section 3.2.1, the PSs having a δ under the δ
limit used in Area 1 (see Table 1) are neglected. The procedure is schematically represented
in Figure 17, with reference to the building 14 of Area 1 (see Figure 18). The grey volume
shows the step (i) of the procedure; then, all the PSs in a buffer of 2.5 m from the edges
of the building are considered, according to step (ii); finally, the PSs under a red line at δ
height used in Area 1 (see Table 1) are neglected (step (iii)).
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Figure 18. Clustering result from the validation procedure for the sample Area 1.

Due to the effort related to this procedure, it has been repeated only for the buildings
in Area 1. A spatial check has been done, as shown in Figure 18 where the floor plan view
of the buildings and the selected PSs are represented. Moreover, the rectangles delimiting
the clusters obtained through DBSCAN are also reproposed to highlight, on one side, that
there is a general good agreement between the buildings’ plans geometries (from CTR) and
the rectangles delimiting the previous clusters, and, on the other side, that almost in every
case, the PSs by the validation procedure are included in them. Only in one case, this is
not verified: for building no. 9; in fact, 4 PSs are external to the corresponding rectangle.
This means that the proposed algorithm had excluded them from the cluster, while the
built ground truth includes them. Moreover, the building footprints under the clusters
allow observing that some PSs belonging to building no. 7 were included in the cluster of
building 11 since the 11th rectangle extends to the south side of building no. 7.

The comparison of the results has been done not only in spatial terms, but also in
terms of number of PSs included in each cluster. The number of ASC and DES PSs, and the
total number of PSs composing the 19 clusters of Area 1, are reported in Table 2 (results
from the proposed methodology) and Table 3 (results for the ground truth). There is a
good agreement between the clusters’ composition. Indeed, for 17 clusters out of 19, the
difference is contained in the 5%, for cluster no. 9 is 8% and for cluster no. 12 is 15%.

Table 2. Clustering results from the proposed methodology.

CLUSTER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ASC 75 41 93 124 69 63 43 100 38 65 80 55 63 81 51 70 88 129 63
DES 138 49 70 61 39 63 83 70 18 42 46 46 67 36 95 90 62 92 36

Tot. 213 90 163 185 108 126 126 170 56 107 126 101 130 117 146 160 150 221 99

Table 3. Clustering results from the validation procedure.

CLUSTER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ASC 69 47 88 119 66 61 43 97 42 67 81 47 60 81 50 70 89 125 65
DES 133 48 72 62 39 63 83 74 19 41 47 41 66 35 95 90 63 99 34

Tot. 202 95 160 181 105 124 126 171 61 108 128 88 126 116 145 160 152 224 99
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4. Discussion

The DInSAR displacement time series are clearly relevant to a defined time period,
which is generally a small portion of the entire lifetime of a construction. At the end
of the observation interval, the cumulative displacements can be estimated, and ground
settlement profiles referred to the sides of the building under investigation can be created.
Classical literature indications could be used to qualitatively evaluate the expected damage
caused by such detected displacements. Nevertheless, it is worth highlighting that the
latter are related only to the abovementioned satellite data observation period. Then,
a real correlation between the expected and the observed damages could be truthful
only for structures for which the satellite radar imaging has started at time “zero” of the
building construction.

For the purposes of this work, the main importance is given to the displacements’
trend, i.e., the mean velocity in the investigated time interval. The study of the deformation
velocity trends can be pursued at wide area or local scale. The trend analysis can support
the interpretation of the deformation evolution, giving qualitative information about the
movement patterns, aimed at the identification of critical areas or buildings in critical
situations, in terms of stability, as illustrated in Section 3.3.

The critical areas could be identified in a widely built environment by automating
the steps of the proposed methodology. This could concern two aspects: from one side,
a qualitative idea of the extension and entity of possible ongoing phenomena in the area
could be retrieved; on the other side, the structures exposed to the phenomena themselves
could be spatially bounded and posed under attention. The definition of the conditions
that make a building defined as critical can be related to several considerations correlated
to many factors of an investigated zone (e.g., geology of the area, ongoing deformation
phenomena in the entire area, widespread structural typologies, average construction age
of the buildings, etc.). However, exploiting the complete pattern of the deformation velocity
trends of all the buildings in the monitored area, differential “attention” thresholds could
be imposed regarding: (i) a building showing velocity values greater than those of the
buildings around; (ii) a change in the velocity trends of many parts of a building over the
observation period; (iii) building sides affected by differential displacements.

Then, once the most exposed buildings are identified, further and more in-depth
investigations should be performed. In particular, the satellite DInSAR measurements
could be used to perform a structural monitoring at the detail scale, distinguishing the
mean velocity values of points at different heights, and obtaining the ground displacement
profiles under the building sides or at different heights (e.g., at roof height). Classical
literature indications could be used to qualitatively define the expected damage which such
detected displacements may cause/have caused [2]. Moreover, these displacement profiles
can be applied at the ground level of the selected construction in a numerical model. Then,
a structural analysis can be conducted to predict the resulting behavior and to evaluate the
damage level in the single members at a local level and in the overall building at a global
level, according to the selected code requirements. Finally, in this phase, it is suggested to
combine on-site information (traditional measurements, such as GPS, topographic levelling
tools, crack meter instrumentation, strain gauges, multi-sensor nodes, and geometrical and
structural relief of the buildings) with DInSAR measurements.

Some considerations can be done on the different approaches that could be used to
elaborate the information derived from the PSs. In fact, once identified and well positioned
the PSs on the building volume, different techniques can be used to investigate the possible
displacements of the structure, based on the combination of the ASC and DES datasets
(discussed, e.g., in Di Carlo et al. [2] and Talledo et al. [36]), under the assumptions
explained in Section 2.1. For example, spatial interpolation techniques can be used for
mapping the mean velocity components, under specific hypotheses, to create preliminary
deformation maps (as alternative to the procedure performed in this work, based on the
selection of PSs couples, only if the PSs have a good spatial density).
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One of the limits of the proposed methodology is its inability to sharply distinguish
single buildings units, when they are built-in, as hinted in Section 2.3.1. Specifically, from
a structural point of view, if two buildings have a common wall, or common structural
foundations, they constitute a single structure. In this case, no approximation subsists in
the methodology. When two buildings are separated by a seismic joint, instead, they have
completely different structural behaviors and do not interact with each other. In this case,
it is not possible to distinguish buildings so close through the input satellite data, and an
approximation is done. So, if the output clusters are very large, it is suggested to focus on
them to understand if it is a single building, or an aggregate, or joined buildings, to make
appropriate considerations for the specific case.

Another limit of the proposed methodology is the difficulty in identifying the clusters
referred to one-floor buildings, since they are classified as noise in order to avoid the
creation of false clusters, as explained in Section 2.3.1. This assumption is necessary since it
strengthens the correct identification of the two-to-n floors buildings, by eliminating any
interaction with the ground points. Nevertheless, it eliminates the possibility to identify
one-floor buildings, and some very few points of the n-floors buildings’ facades. This limit
could be exceeded by integrating the proposed clustering algorithm with an additional
clustering, to execute by opportunely setting the cut on δ and the eps. For example, the
clustering could be repeated excluding only the PSs supposed to be on the ground. Then,
the new clusters, not overlapping those obtained through the first clustering, should be
added to the previous result. Maybe, in some cases, this second clustering could also
help in finding a more refined shape of the two-floor buildings, since some points can be
excluded in the initial cut, as consequence of the topographic error. More in-depth studies
are in progress to pursuit this scope. However, it is worth noting that it is very rare to find
one-floor buildings in very urbanized areas (in fact, as it has been shown in this work, only
one has been found in three areas). Then, neglecting them in a preliminary phase is not a
very strong limitation.

Finally, it is worth specifying that the clustering result is quite sensitive to small
hyper-parameters changes, so the latter should be set with attention.

5. Conclusions

The spread of the advanced DInSAR techniques for the generation of spatially dense
deformation time series has highly contributed to the development of several applications,
among which we underline those relevant to the structural stability assessment of buildings
and infrastructures. On the other hand, within this framework, the large data volumes of the
generated DInSAR products need to be properly accounted, when dealing with automatic
tools for the extraction of relevant information. In this context, a strong support may
derive from the exploitation of the AI techniques, which represent powerful instruments
for automatically extracting significant information associated to features. In this work,
a methodology, jointly exploiting satellite DInSAR measurements and DBSCAN-based
techniques, has been proposed for the preliminary identification and ranking of possible
critical constructions in a built-up environment. This methodology has been successfully
applied to CSK-based DInSAR time series relevant to three sample areas within the city of
Rome (Italy). In particular, the DBSCAN clustering algorithm has allowed the automatic
extraction of urban buildings from PSs clouds. Then, for each cluster, an elaboration of
the data has led to obtain the picture of the deformation condition in the investigated
period, for each considered area. Indeed, by studying the velocity trends and statistics of
the PSs belonging to the cluster-identified buildings, synthetic deformation maps of the
investigated area (with focus on the buildings) are retrieved, which allow to carry out a
preliminary identification and ranking of critical buildings to be further investigated.

Some proposals for future developments aimed to improve the presented methodology
are highlighted. The hyper-parameters of the DBSCAN will be refined, to detect the one-
floor buildings (that in this work have been neglected). Otherwise, further different
clustering algorithms, e.g., OPTICS [52], could be integrated in our methodology. Moreover,
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fitting methods could be implemented to fit the model through the original SAR images,
in order to extract information on buildings by overcoming the clustering step and refine
their identification. The clustering results could also be improved, to avoid the inclusion of
noise clusters that are not representative of a building but are referred to other elements
that reflect the signal emitted by the satellite. This could be accomplished by imposing
an additional condition: the clusters which occupy an area lower than a minimum value
(assuming a minimum dimensions of a building) could be classified as noise.

Finally, the temporal coherence of the PSs can be considered as a driven parameter
in two different ways: (a) a pre-selection on the PSs dataset could be done, considering
only the PSs characterized by values of temporal coherence greater than a certain threshold
(e.g., 0.6–0.7), to increase the reliability of the results; (b) a post-processing on the statistics
of the velocity values can be implemented by weighting the single value for their relative
temporal coherence.

The presented approach could give a decisive impulse to the automation of the pre-
liminary structural monitoring of a built environment at a large spatial scale, beyond the
specific structural typologies. In particular, the resulting maps could provide support in
decisional phases, as well as to the organization of preventive measures to reduce the
risks for the built environment associated to the measured deformations. Therefore, the
possibility to automatize the imposition of trigger alarms for the areas under investigation
through the joint exploitation of satellite and AI techniques could represent a very relevant
prevention tool.

The code developed to implement the methodology is available under request, by
contacting the authors.
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