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Traveling wave solutions to the Allen–Cahn equation

Chao-Nien Chen and Vittorio Coti Zelati

Abstract. For the Allen–Cahn equation, it is well known that there is a monotone standing wave
joining the balanced wells of the potential. In this paper we study the existence of traveling wave
solutions for the Allen–Cahn equation on an infinite channel. Such traveling wave solutions possess
a large number of oscillations and they are obtained with the aid of variational arguments.

1. Introduction

Let .�; y/ 2� WD R1 ��y , a cylinder with cross section�y . Here�y is a bounded open
set in RN�1 with C 2;˛ boundary @�, ˛ 2 .0; 1/. We are concerned with solutions for the
Allen–Cahn equation ´

ut D u�� C�yuC u.1 � u
2/;

uj@� D 0:
(1.1)

To be specific, we investigate the existence of traveling wave solutions, i.e. solutions of
the form u.t; �; y/ D v.� � ct; y/ with speed c ¤ 0.

The Allen–Cahn equation and related problems have attracted a lot of attention from
different fields in mathematics (see e.g. [17, 30, 35] and the references therein). In partic-
ular, this nonlinear PDE serves as a model ([1, 4, 39]) in studying phase transition theory.

Traveling waves play an important role in understanding the dynamics of evolution
systems ([3, 5, 6, 13, 14, 19, 20, 23, 31, 43]). There are many interesting results ([8, 21,
27–29, 36–38, 41, 42]) for the traveling wave solutions of

ut D u�� C�yuC g.u/; .�; y/ 2 �; t > 0: (1.2)

Particular examples include g.u/D u.1� u/ in the KPP equation and g.u/D u.1� u/�
.u � ˇ/ with ˇ 2 .0; 1/ in the Nagumo equation.

When a traveling wave solution is of the form u.t; �; y/ D v.� � ct/, in which the
wave profile does not depend on y, it is called a planar traveling wave. In the reference
frame moving with speed c, a planar traveling wave is a solution of an ordinary differential
equation. Such wave solutions have been successfully investigated by the shooting method
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([3, 19]). A traveling wave with zero speed is referred to as a standing wave. It is known
that (1.1) possesses a planar standing wave joining 1 and �1, the two global minima of
the potential F.s/ WD

R s
0
g.t/ dt D � s

2

2
C

s4

4
.

For (1.1) we will prove existence of traveling wave solutions that possess a large num-
ber of oscillations. Due to the Dirichlet boundary condition uj@� D 0, such traveling wave
solutions cannot be planar. Our proof is based on variational methods, and our minimax
argument relies on the Ljusternik–Schnirelman theory.

In the one-dimensional case (or under Neumann boundary conditions) one can apply
the same methods we use here to prove existence of an infinite number of planar traveling
front solutions for (1.1) which satisfy limt!�1 u.� � ct/D 0 and limt!1 u.� � ct/D 1

or �1. In such cases, since the equation reduces to an ordinary differential equation, one
can deduce the result also by phase plane analysis.

We next present – as motivation and illustration of our result – the phase plane analysis
for one example of such planar traveling front solutions.

For a traveling wave of the form u.t; x/ D v.x � ct/, the function v satisfies

v00 D �cv0 � v.1 � v2/:

Here v D 0, p D v0 D 0 is an attracting focus if c 2 .0; 2/ (repelling if c 2 .�2; 0/). A
quite detailed phase plane analysis of the equation for the case jcj > 2 can be found in
[3, 19]. See Figure 1 for a description of the vector field of the corresponding system´

v0 D p;

p0 D �cp � v.1 � v2/;

when c D 0:1, the trajectory of the solution of the initial value problem v.0/ D 0:999,
p.0/ D 0 and the graph of the solution v.t/. One can show that for all 0 < c < 1, there
are solutions which oscillate around zero (as t !C1) infinitely many times.

To show a nonplanar traveling wave solution with oscillating behavior, we now intro-
duce a variational argument. Following the ansatz proposed in [27], if u.c.� � ct/; y/
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(a) The vector field and the trajectory
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(b) The solution v.t/

Figure 1. The vector field .p;�cp � v.1� v2//, the trajectory of .v.t/; p.t// and the solution v.t/
when c D 0:1.
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satisfies (1.1) then ´
c2.uxx C ux/C�yuC u.1 � u

2/ D 0;

uj@� D 0;
(1.3)

where x D c.� � ct/. Denote by Lpw the Banach space of functions in Lploc.�/ equipped
with the norm

kuk
p

L
p
w
D

Z
�

exjujp dx dy:

The appearance of weight function ex is due to the first-order derivative term ux in (1.3).
Given u 2H 1

loc.�/ let kuk2E D kuk
2
L2w
C kuk2

L4w
C kuxk

2
L2w
C kryuk

2
L2w

. The set of func-
tions with kukE <1 is denoted by E, while E0 is the completion of C10 .�/ under the
norm k�kE.

Define

ˆc Œw� WD
c2

2

Z
�

exw2x dx dy C

Z
�

ex
�1
2
jrywj

2
C F.w/

�
dx dy: (1.4)

By the standard theory of calculus of variations, a critical point of ˆc in E0 is a solution
of (1.3) (see for example [33,40] and, for a more closely related setting, [23]). We remark
that the choice of the ansatz u.c.� � ct/; y/ instead of u.� � ct; y/ seems to be more con-
venient. It allows us to deal with ˆc on function spaces with a fixed weight, for instance
in studying the continuous dependence on c.

Consider a cross section �y and the boundary value problem´
�yuC u.1 � u

2/ D 0;

uj@�y D 0:
(1.5)

The existence of multiple solutions to (1.5) has been established by variational methods.
These solutions are the critical points of the functional J WH 1

0 .�y/! R defined by

J Œv� WD

Z
�y

�1
2
jryvj

2
C F.v/

�
dy: (1.6)

Denote by �1 < �2 � �3 � � � � the eigenvalues of´
�y C � D 0;

 j@�y D 0:
(1.7)

Clearly u� 0 is a trivial solution of (1.5) and J Œ0�D 0. If �1 < 1, it is known ([9,25,32])
that there is a unique positive solution uC for (1.5) and J ŒuC�D infv2H1

0 .�y/
J Œv� < 0 (see

Proposition 2.2). Moreover, both variational arguments and bifurcation results ([9,24–26])
show that if �k < 1 then (1.5) has at least 2k nontrivial solutions with negative critical
values.

For (1.1), it is known that the one with lower energy acts as an invader in the traveling
wave while the other is being displaced through the flow (see also (4.12)). With the ansatz
we are using, the results in the next theorem depend on c2 only; thus we may take c > 0.
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Theorem 1.1. Let �y be a C 2;˛ bounded domain and �j be the eigenvalues of (1.7).
Assume that �1 < 1.

(i) If 1 � �2, then for every c 2 .0; 2
p
.1 � �1//, there is a function u.x; y/ such

that w.t; �; y/D u.c.� � ct/; y/ is a traveling wave solution of (1.1) with wave
speed c. Moreover, u.x;y/! 0 as x!C1 and u.x;y/!uC.y/ as x!�1.

(ii) If J has a finite number of critical points in H 1
0 .�y/, then for every c 2

.0; 2
p
.1 � �1//, there is a function u.x; y/ such that w.t; �; y/ D u.c.� �

ct/; y/ is a traveling wave solution of (1.1) with wave speed c. Moreover,
u.x; y/! u�.y/ as x ! C1 and u.x; y/! u�.y/ as x ! �1, where u�,
u� are two critical points of J such that J Œu�� < J Œu��.

(iii) Also w.t; �; y/ D �u.c.� � ct/; y/ is a traveling wave solution of (1.1), con-
necting 0 to �uC.y/ in case (i), connecting �u� to �u� in case (ii).

Remark 1.2. (a) The functional J has a finite number of critical points in H 1
0 .�y/

if �y is an interval. Indeed by [10, 11] there are 2k C 1 critical points for J if
�k < 1 � �kC1.

(b) We believe that our existence result can be extended with similar techniques – at
least when the nonlinearity is an odd function – to more general nonlinearities
and boundary conditions .

For the scalar reaction–diffusion equation (1.2), the ordered method has been devel-
oped to show the existence of traveling waves on the cylindrical domain ([8, 42]). As a
consequence of the maximum principle ([22]), such traveling front solutions possess cer-
tain monotonicity properties. For instance, let vC.y/ and v�.y/ be the stable solutions of´

vt D �yv C g.v/;

vj@�y D 0:
(1.8)

If
vC.y/ > v�.y/ for all y 2 �y ;

Vega ([42]) proved for (1.2) the existence of a traveling front solution w.� � ct; y/ which
satisfies

vC.y/ > w.x; y/ > v�.y/ for all .x; y/ 2 R ��y : (1.9)

Moreover, the method of moving planes and the sliding method ([7]) show that such a
wave is strictly monotone in the x-direction. Based on an extension of the comparison
technique, the ordered method has been generalized to studying traveling front solutions
in monotone systems ([43]). In an earlier work ([21]), Gardner considered a discretiza-
tion of (1.2) and applied the Conley index to establish an existence result similar to [42].
The monotonicity properties for traveling waves in combustion models have been studied
in [6].

More recently, variational methods have been employed to investigate the traveling
wave solutions for reaction–diffusion equations with Ginzburg–Landau or bistable-type
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nonlinearities. In [27–29], the authors proved existence of traveling waves via constrained
minimization in a weighted Sobolev space like E0. This constrained minimization requires
the traveling front solution to stay in the weighted Sobolev space and leads the solution to
have certain monotonicity properties. Let us mention also [23], where existence has been
proved via a renormalization of the associated functional.

The remainder of this paper is organized as follows. Section 2 begins with some known
results as a preliminary. For the traveling wave solution with a given speed c, a variational
formulation is introduced in Section 3 to establish a sequence of approximated solutions
through a minimax scheme based on the Krasnosel’skii genus. Since the genus is increas-
ing to infinity along this sequence of approximated solutions, it is expected ([24–26]) that
the limit traveling wave solution possesses a large number of oscillations.

In using the variational approach to study traveling wave solutions, a commonly used
weighted Sobolev space ([27–29]) is the Hilbert space H or H0 equipped with the norm
k�kH, where kuk2H D kuk

2
L2w
C kuxk

2
L2w
C kryuk

2
L2w

. Choosing the space E0 enables us to
work out the boundedness of the solutions and the compactness of Palais–Smale sequences
in dealing with the minimax argument. Then in Section 4, utilizing a suitable limit proce-
dure, we establish the traveling wave solutions. Moreover, as stated in Theorem 1.1, there
are an infinite number of traveling wave solutions which are distinguished by their speed.
To the best of our knowledge, using the minimax method to establish traveling wave solu-
tions seems to be new and such a class of traveling front solutions have not been studied
before.

We point out that in the existence results stated in Theorem 1.1, all the traveling front
solutions do not belong to E0 or H0. Because of this fact, we need a delicate procedure
in passing to the limit from the approximated solutions; however, this procedure does not
keep track of the number of oscillations. It is not clear to us whether a direct argument is
available for the proof of our result. A normalization technique has frequently been used
in proving existence of heteroclinic orbits ([15, 16, 23, 34, 35]). In [23], with a different
type of nonlinearity, the authors employed unconstrained minimization, after they worked
out a normalization process with the aid of a supersolution and a subsolution. To adapt
this approach to the minimax setting seems to be very difficult.

2. Preliminary

We state some useful inequalities whose proofs can be found in [29, 31].

Lemma 2.1. If w.x; y/ is such that kwk2
L2w
C kwxk

2
L2w
C krywk

2
L2w

< C1, thenZ C1
r

Z
�y

exw2 dy dx � 4

Z C1
r

Z
�y

exw2x dy dx; (2.1)Z
�y

w2.r; y/ dy � e�r
Z C1
r

Z
�y

exw2x dy dx; (2.2)
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for any r 2 R; in particular,Z
�

exw2 dx dy � 4

Z
�

exw2x dx dy: (2.3)

For the nontrivial solutions of (1.5), some existence and uniqueness results can be
found in [10, 11, 24, 26, 32]. Some of these results are stated in the next proposition.

Proposition 2.2. Let �y be a bounded open set in Rn and �i the eigenvalues of (1.7).

(a) If �1 < 1 then there is a unique positive solution uC for (1.5) and J ŒuC� D
infv2H1

0 .�y/
J Œv� < 0.

(b) If �1 < 1 � �2 then uC and �uC are the only nontrivial solutions of (1.5).

3. Variational framework

In this section, a variational framework will be used to construct an approximation to a
traveling wave solution of (1.1). We will always assume �1 < 1 and 0 < c < 2

p
1 � �1

without further comment.
Some of the results in this section, in particular Proposition 3.2 and Lemmas 3.11

and 3.12, can be found in [29]; see also [12] for the FitzHugh–Nagumo system. We include
the proofs for completeness.

Let �� WD .�1; 0/ ��y and consider the following boundary value problem:´
c2.uxx C ux/C�yuC u.1 � u

2/ D 0 in ��;

uj@�� D 0:
(3.1)

Let E� be the closure of C10 .��/ in E and, for all u 2 E�,

Ic Œu� WD

Z 0

�1

Z
�y

�c2
2
u2x C

1

2
jryuj

2
�
1

2
u2 C

1

4
u4
�
ex dx dy: (3.2)

Proposition 3.1. The functional Ic 2 C 1.E�IR/ and is bounded from below.

The proof is standard (e.g. [33]). We omit it.

Proposition 3.2. Suppose that u 2 E� is a critical point of Ic , with kuk1 < 1. Then
u 2 C 2;˛.��/\C

1;˛.x��/ and satisfies (3.1). Moreover, kukC 1;˛..�1;0��x�y/ is bounded;
in particular, ux and ryu are uniformly continuous in ��.

Proof. A critical point u satisfies

0 D I 0c Œu�� D

Z 0

�1

Z
�y

.c2ux�x Cryu � ry� � u� C u
3�/ex dx dy

for � 2 E�� (the dual of E�), in particular for all � 2 C10 .��/. Since u is bounded by
assumption and ex is bounded on bounded subsets of ��, it immediately follows that
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u 2H 2
loc.��/ (see for example [18, §6.3.1]). Then standard regularity theory ([22]) shows

that u 2 C 2;˛.��/ \ C 1;˛.x��/, and thus it is a classical solution of (3.1).

Lemma 3.3. If u 2 E� and Ic Œu� � 0 thenZ
��

exu4 dx dy � 4

Z
��

ex dx dy D 4j�y j; (3.3)Z
��

exu2 dx dy � 2

Z
��

ex dx dy D 2j�y j; (3.4)Z
��

exu2x dx dy �
2

c2

Z
��

ex dx dy D
2

c2
j�y j (3.5)

and Z
��

exjryuj
2 dx dy � 2

Z
��

ex dx dy: (3.6)

In particular,

kukL4w �
p
2j�y j

1=4 for all u 2 E� such that Ic Œu� � 0: (3.7)

Proof. By the Hölder inequality,Z
��

exu2 dx dy �

�Z
��

ex dx dy

� 1
2
�Z

��

exu4 dx dy

� 1
2

: (3.8)

Clearly Ic Œu� � 0 implies thatZ
��

�c2
2
u2x dx dy C

1

2
jryuj

2
C
1

4
u4
�
ex dx dy �

Z
��

1

2
exu2 dx dy: (3.9)

This together with (3.8) yields (3.3). Substituting (3.3) into (3.8) gives (3.4). Then (3.5)
and (3.6) easily follow from (3.9).

Lemma 3.4. Assume that un2E� is a sequence such that Ic Œun��0 and kunkL6w .��/�C .
Then there exists a subsequence unk which converges weakly in E� and strongly in

L
p
w.��/ for all p 2 Œ2; 4� to a function Nu 2 E�.

Proof. It immediately follows from Lemma 3.3 that un is bounded in E�. From the bound-
edness of un, there exists a subsequence unk which converges weakly to some Nu 2 E� and
strongly in L2.Œ�L; 0� ��y/ for all L > 0.

We next show that unk! Nu inLpw.��/ if p 2 Œ2;4�. Let us first remark that Lemma 3.3
implies that Z

��

exjunk j
p dx dy � C

for 2 � p � 4, and the same inequality holds for Nu, with a constant C not depending on k.
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Given " > 0, sinceZ �L
�1

Z
�y

exjunk � Nuj
2 dy dx

�

�Z �L
�1

Z
�y

ex dy dx

�1=2�Z �L
�1

Z
�y

exjunk � Nuj
4 dy dx

�1=2
� j�y j

1=2e�L=2
�Z 0

�1

Z
�y

exjunk � Nuj
4 dy dx

�1=2
� zCe�L=2;

we take L > 0 such thatZ �L
�1

Z
�y

exjunk � Nuj
2 dy dx � zCe�L=2 <

"2

2

and then k0 2 N such thatZ 0

�L

Z
�y

exjunk � Nuj
2 dy dx �

"2

2
for all k � k0:

Then for all k � k0,

kunk � Nuk
2
L2w .��/

D

Z 0

�1

Z
�y

exjunk � Nuj
2 dy dx

D

Z �L
�1

Z
�y

exjunk � Nuj
2 dy dx

C

Z 0

�L

Z
�y

exjunk � Nuj
2 dy dx < "2

and kunk � Nuk
2
L2w .��/

! 0.
Observe that

kunk � Nuk
4
L4w .��/

D

Z 0

�1

Z
�y

exjunk � Nuj
4 dy dx

�

�Z
��

exjunk � Nuj
2 dy dx

�1=2�Z
��

exjunk � Nuj
6 dy dx

�1=2
� Ckunk � NukL2w .��/

by the boundedness of unk in L6w.��/. Now the lemma follows.

The following lemma states the compactness condition – essentially the Palais–Smale
condition – which will be used via the minimax procedure to find the solutions on the
half-cylinder ��.
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Lemma 3.5. Assume that un 2 E� is a sequence such that kunkL6w � C , Ic Œun�! b � 0

and I 0c Œun�! 0.
Then there exists a subsequence unk such that unk ! Nu 2E�, Ic Œ Nu�D b and I 0c Œ Nu�D 0.

Proof. Lemma 3.4 implies that there is a subsequence unk which converges weakly in E�
and strongly in L2w.��/ to a function Nu 2 E�. ThenZ

��

Œc2j.unk /x � Nuxj
2
C jryunk � ry Nuj

2�ex dx dy

D

Z
��

Œc2.unk /x..unk /x � Nux/Cryunk .ryunk � ry Nu/�e
x dx dy

�

Z
��

Œc2 Nux..unk /x � Nux/Cry Nu.ryunk � ry Nu/�e
x dx dy

D hI 0c Œunk �; unk � Nui C

Z
��

Œunk .unk � Nu/ � u
3
nk
.unk � Nu/�e

x dx dy

�

Z
��

Œc2 Nux..unk /x � Nux/Cry Nu.ryunk � ry Nu/�e
x dx dy;

which converges to zero since unk � Nu is bounded, converges weakly in E�, strongly in
L2w.��/ to 0, while unk is bounded in L6w.��/. This immediately implies that I 0c Œ Nu� D 0
and Ic Œ Nu� D b.

Lemma 3.6. There exists L� > 0 such that

kI 0c Œu� � I
0
c Œv�kE��

� L�ku � vkE�

if u; v 2 E�, Ic Œu� � 0 and Ic Œv� � 0.

Proof. Suppose that u, v 2E� and Ic Œu�� 0, Ic Œv�� 0. Set hD u� v; then for all � 2E�,

.I 0c Œu� � I
0
c Œv�/Œ�� D

Z
��

.c2hx�x Cryh � ry� � h� C .u
3
� v3/�/ex dx dy:

By (3.7) and the Hölder inequality,Z
��

..u3 � v3/�/ex dx dy

D

Z
��

..u � v/.u2 C uv C v2/�/ex dx dy

� ku � vkL4w .kuk
2
L4w
C kukL4wkvkL4w C kvk

2
L4w
/k�kL4w

� Cku � vkL4wk�kL4w ;

with the constant C not depending on u or v. Thus the proof is complete.
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To introduce a minimax procedure, we recall the definition of the Krasnosel’skii genus.
Details can be found in [2, 33, 40].

Let A � E� n ¹0º, A is closed in E� and A D �A. The genus of A is defined as

.A/ D inf
®
n 2 N j 9� 2 C.A;Rn n ¹0º/; � odd

¯
:

If such a � does not exist we define .A/ D C1, while .;/ D 0.
We now introduce the minimax classes

�k D
®
A � E� n ¹0º j A closed, A D �A and .A/ � k

¯
and

y�k D
®
A 2 �k j ku.x; y/kL1.��/ � 1 for all u 2 A

¯
:

The minimax levels corresponding to �k and y�k are defined as

ck D inf
A2�k

sup
u2A

Ic Œu�; Ock D inf
A2y�k

sup
u2A

Ic Œu�:

Proposition 3.7. For all k 2 N,
ck D Ock < 0: (3.10)

Proof. Take L > 0 (to be fixed later) and consider the linear problem´
�c2.uxx C ux/ ��yu � u D �1u in �L D Œ�L; 0� ��y ;

u D 0 on @�L;

where �1 is the first eigenvalue of (1.7) and 'C the corresponding eigenfunction. Set

�k.x; y/ D e
�x=2 sin

�k�
L
x
�
'C.y/:

Notice that �k.x; y/ D 0 for .x; y/ 2 @�L and it is a solution of

� c2.�xx C �x/ ��y� � � D
h
c2
�1
4
C
k2�2

L2

�
C .�1 � 1/

i
�: (3.11)

Multiplying (3.11) by �ex and integrating it, we obtainZ 0

�L

Z
�y

Œ�c2.�xx C �x/ ��y� � ���e
x dy dx

D

h
c2
�1
4
C
k2�2

L2

�
C .�1 � 1/

i Z 0

�L

Z
�y

�2ex dy dx:

Set

QLŒ�� D
1

2

Z 0

�L

Z
�y

Œc2�2x C jry�j
2
� �2�ex dy dx:
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Since

2QLŒ�� D

Z 0

�L

Z
�y

Œ�c2..�x�e
x/x � �

2
xe
x/C jry�j

2ex � �2ex � dy dx

D

Z 0

�L

Z
�y

Œ�c2.�xx C �x/ ��y� � ���e
x dy dx;

it follows that QLŒ�k � < 0 if

c2
�1
4
C
k2�2

L2

�
C .�1 � 1/ < 0:

In fact, for every given k 2 N, if L is large enough thenQLŒ�k � < 0, because �1 < 1 and
c < 2

p
.1 � �1/. Clearly,

QLŒ˛i�i C j̨�j � D ˛
2
i QLŒ�i �C ˛

2
jQLŒ�j �:

We now extend the functions �i .x; y/ to be defined on �� by setting �i .x; y/ D 0 for all
x < �L.

Denoting by Sk the unit sphere in Rk , we consider an odd map

�WSk ! E�; �.˛1; ˛2; : : : ; ˛k/ D "

kX
iD1

˛i�i :

By direct calculation,

Ic Œ"�.˛1; : : : ; ˛k/� D "
2

kX
iD1

˛2i QLŒ�i �C "
4

Z 0

�L

Z
�y

j
Pk
iD1 ˛i�i j

4

4
ex dx dy;

which is negative for all .˛1; : : : ; ˛k/ 2 Sk , provided that we pick L to be large enough
and " small enough. Then for such an L and ", set A D �.Sk/ � E� n ¹0º. It is clear that
A D �A. Since any odd map hWA ! Rm n ¹0º gives rise to an odd map h ı �W Sk !
Rm n ¹0º, and .Sk/ D k, we conclude that

.A/ � k and A 2 �k :

Consequently,
ck D inf

A2�k
sup
u2A

Ic Œu� < 0

for all k 2 N.
Recall that

Ock D inf
A2y�k

sup
u2A

Ic Œu�;

which implies ck � Ock . Setting a truncated function Ou from u to

Ou.x; y/ D

8̂<̂
:
u.x; y/ if ju.x; y/j � 1;

u.x; y/

ju.x; y/j
if ju.x; y/j > 1;
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yields Ic Œ Ou� � Ic Œu� for all u 2 E�. Given an A 2 �k , define

yA D
®
Ou j u 2 A

¯
:

Since the map u 7! Ou is continuous in E�, we conclude that yA 2 y�k and ck D Ock . The
proof of (3.10) is complete.

Proposition 3.8. For k 2 N, let yAn 2 y�k be such that

ck � sup
u2 yAn

Ic Œu� � ck C
1

n
< 0:

Then there is un 2 yAn such that

ck �
2

n
� Ic Œun� � ck C

1

n
; kI 0c Œun�kE��

� 8

r
L�

n
;

where L� is given by Lemma 3.6.

Proof. The proof is based on the deformation theory. Suppose the assertion is false; then

kI 0c Œv�kE��
> 8

r
L�

n

for all v 2 yAn such that ck � 2
n
� Ic Œv�� ck C

1
n

. Let ıD 2p
nL�

. If Ic Œu�2 Œck � 2
n
; ck C

2
n
�

and ku � vkE� < 2ı, invoking Lemma 3.6 yields

kI 0c Œu�kE��
� kI 0c Œv�kE��

� kI 0c Œv� � I
0
c Œu�kE��

� 8

r
L�

n
� 2L�ı D 4

r
L�

n
:

We can then apply [44, Lemmas 2.3, 3.1] with S D yAk and " D 1
n

, since

8"

ı
D
8

n

p
nL�

2
D 4

r
L�

n
:

A consequence of the above lemmas provides a deformation �W Œ0; 1� � E� ! E�, odd in
the second variable, and satisfying

Ic Œu� < ck �
1

n
for all u 2 �.1; yAn/:

Now we have reached a contradiction, since � is odd in the second variable shows
�.1; yAn/ 2 �k .

The following result follows from an application of the Ljusternik–Schnirelman the-
ory. We refer to [26, 33, 44] for related applications to differential equations.
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Proposition 3.9. Let �1 < 1 and c < 2
p
.1 � �1/. Then there exist a sequence of critical

points ¹ Oukº of Ic such that Ic Œ Ouk � � Ic Œ OukC1� < 0, j Ou.x; y/j � 1 for all .x; y/ 2 ��,

lim
k!C1

Ic Œ Ouk � D 0 (3.12)

and Z 0

�1

Z
�y

ex. Ouk/
2
x dx dy > 0: (3.13)

Proof. It has been shown that Ock D ck is a critical level. Following from Proposition 3.8,
we can find a Palais–Smale sequence vn at level ck such that jvn.x;y/j � 1 for all .x;y/ 2
��. By Lemma 3.5 we deduce that vn converge to a critical point Ouk at level ck such that
j Ouk.x; y/j � 1 for all .x; y/ 2 ��. Thus we get a sequence of critical points ¹ Oukº such
that Ic Œ Ouk � D ck .

If
R 0
�1

R
�y
ex. Ouk/

2
x dx dy D 0 for some k 2 N, then Ouk � 0; however, this would

violate Ic Œ Ouk � < 0, thus (3.13) must hold.
To show (3.12), we can follow a variant of a rather standard procedure (see e.g. [2,

Theorem 10.10]). Let

BC D
®
u 2 E� j kukL6w � C

¯
and I dc D

®
u 2 E� j Ic Œu� < d

¯
:

Notice that if u 2 E� and kukL1.��/ � 1 then kukL6w � j�y j
1=6. Since ju.x; y/j � 1

implies u 2BC for all C � xC D j�y j1=6, we can, for each k 2N, find a setA�BC \ I
0
c

with genus k.
Suppose that

lim
k!C1

Ic Œ Ouk � D lim
k!C1

ck D � < 0:

Then .I�C"c \B xC / D C1 for all " > 0 such that �C " < 0. Since the set

yZ� D
®
u 2 E� j Ic Œu� D � and I 0c Œu� D 0 and kukL6w .��/ �

xC
¯

is compact in E�, using a property of genus, we can find a neighborhood U of yZ� which
has finite genus, say .U / D k0 < C1. Let A D I

�C"
c \ B xC . As in proving Proposi-

tion 3.8, since the Palais–Smale condition holds in A, when " is small enough we can find
a deformation � such that

�.1;A n U/ 2 I��"c :

This implies that
.A n U/ � .�.1;A n U// D k1 < C1:

Then A D .A n U/ [ .A \ U/ gives

.A/ � .A n U/C .A \ U/ � k1 C k0 < C1;

which leads to a contradiction.
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Lemma 3.10. If ¹ Oukº is the sequence of critical points obtained by Proposition 3.9, then

lim
k!C1

Z
��

ex Ou4k dx dy D 0; (3.14)

lim
k!C1

Z
��

ex Ou2k dx dy D 0; (3.15)

lim
k!C1

Z
��

ex. Ouk/
2
x dx dy D 0; (3.16)

lim
k!C1

Z
��

exjry Oukj
2 dx dy D 0: (3.17)

Proof. SinceZ
��

.c2. Ouk/
2
x dx dy C jry Oukj

2
� F 0. Ouk/uk/e

x dx dy D hI 0c Œ Ouk �; Ouki D 0;

it follows that

0 D lim
k!C1

Ic Œ Ouk �

D lim
k!C1

Z
��

�c2
2
. Ouk/

2
x dx dy C

1

2
jry Oukj

2
C F. Ouk/

�
ex dx dy

D lim
k!C1

�
1

4

Z
��

ex Ou4k dx dy: (3.18)

This together with (3.8) yields

lim
k!C1

Z
��

ex Ou2k dx dy D 0:

Combining with (3.18) completes the proof.

Lemma 3.11. If u 2 E� is a bounded critical point of Ic then ux 2 L2.��/ and

lim
x!�1

ux.x; y/ D 0 (3.19)

uniformly in y.

Proof. Multiplying (1.3) by ux and integrating by parts, we get

c2
Z 0

xn

Z
�y

u2x dy dx D �

Z
�y

�c2
2
u2x �

1

2
jryuj

2
� F.u/

�
dy

ˇ̌̌xD0
xDxn

�

Z
@�y

Z 0

xn

ux
@u

@�y
dx d�y ; (3.20)
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where �y is a normal vector to @�y on which d�y is a surface element. The last term of
(3.20) vanishes since ux � 0 on @�y due to the boundary conditions and hence

c2
Z 0

xn

Z
�y

u2x dy dx D �

Z
�y

�1
2
jryu.xn; y/j

2
C F.u.xn; y//

�
dy

C
c2

2

Z
�y

.u2x.xn; y/ � u
2
x.0; y// dy: (3.21)

Using the facts that u and ru are uniformly bounded, we arrive atZ 0

xn

Z
�y

u2x dx dy � C (3.22)

with C being a constant independent of n. Passing to the limit as n! 1 yields ux 2
L2.��/. Then (3.19) follows, since ux is uniformly continuous in ��.

Lemma 3.12. Suppose that J has only isolated critical points in H 1
0 .�y/ and u is a

nonconstant critical point of Ic obtained by Proposition 3.9. Then

lim
x!�1

u.x; y/ D v.y/ uniformly in y (3.23)

and v is a critical point of J with J Œv� < 0. Furthermore, if �1 < 1 � �2 then v D uC
or �uC.

Proof. We first show that for any sequence xn ! �1 there exist a subsequence xnk and
a critical point v.y/ of J such that

u.xnk ; y/! v.y/ in C 1.x�0/;

where �0 D .�1; 0/ ��y .
Take any sequence xn!�1. By Proposition 3.2, for all n2N, ku.xCxn;y/kC 1;˛.x�0/

are uniformly bounded. Hence along a subsequence xnk ,

u.x C xnk ; y/! v.x; y/ in C 1.x�0/: (3.24)

It follows from (3.19) that vx.x; y/ � 0; thus v 2 C 1.x�y/, a function which depends on
y only.

Let � 2 H 1
0 .�y/. Multiplying (1.3) by � and integrating over �0, we get

c2
Z
�y

.ux.x C xnk ; y/C u.x C xnk ; y// � �.y/ dy
ˇ̌xD1
xD0

�

Z
�0

Œryu.x C xnk ; y/ � ry�.y/ � f .u.x C xnk ; y//�.y/� dy dx D 0:

Passing to the limit as k !1, we use (3.19) and (3.24) to obtainZ
�0

Œryv.y/ � ry�.y/ � f .v.y//�.y/� dx dy D 0:
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Then Z
�y

Œryv � ry� � f .v/�� dy D 0;

which shows v is a critical point of J and our claim holds. Invoking (3.19) and letting
k !1 in (3.20), we also get

J Œv� D

Z
�y

h1
2
jryvj

2
C F.v/

i
dy

D �c2
Z
��

u2x dy dx �
c2

2

Z
�y

u2x.0; y/ dy < 0: (3.25)

From the above equality we deduce that, while v in principle depends on the sequence
¹xnº and its subsequence nk , the critical value J Œv� does not.

To show (3.23), we claim

u.x C xn; y/! v.y/ in C 1.x�y/ along any sequence xn ! �1:

For otherwise, there exists a decreasing sequence xn ! �1 such that

u.x C xn; y/! Qv.y/ if n is odd; u.x C xn; y/! v.y/ if n is even (3.26)

and
� WD k Qv � vkC.x�y/ > 0:

It follows from (3.25) that
E.v/ D E. Qv/:

(i) Suppose that there exists a decreasing sequence xn ! �1 such that (3.26) holds and
jxnC1 � xnj �M for all n 2 N. If n is large then there exist y 2 �y and �n 2 .xnC1; xn/
such that

jux.�n; y/j D
ju.xn; y/ � u.xnC1; y/j

jxn � xnC1j
�

�

3M
:

This contradicts (3.19).

(ii) It remains to treat the case of jxnC1 � xnj ! 1, ku.x C xn; y/ � Qv.y/kC 1.x�y/ ! 0

and ku.x C xnC1; y/ � v.y/kC 1.x�y/ ! 0 as n!1. From Lemma 3.11, we know ux 2

L2.��/. Hence there exists a sequence ¹�nº with limn!1 �n D 0 such that

ku.x C xn; y/ � Qv.y/kC.x�0/ < �n;

ku.x C xnC1; y/ � v.y/kC.x�0/ < �n

and Z xnC1

xn

Z
�y

jux.x; y/j
2 dy dx < �n:

Since J has only isolated critical points in H 1
0 .�y/, there exist �1; �2 2 .0; �/ such that

w is not a critical point of J if �1 � kw � vkC.x�y/ � �2. Since ku.x C �; y/kC.x�0/ is
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continuous with respect to �, there exists N�n 2 .xnC1; xn/ such that ku.x C N�n; y/ �
vkC.x�0/ D

�1C�2
2

. Arguing like in (i), we see that j N�n � xnj ! 1 and j N�n � xnC1j ! 1
as n!1. Set Vn.x; y/ D u.x C N�n; y/. We then know that, along a subsequence, still
denoted by ¹Vnº, we have that Vn.x; y/! V.y/ in C 1.x�0/ with V.y/ a critical point
of J . This is not possible since

kV.y/ � v.y/kC.x�y/ D lim
n!�1

ku.x C N�n; y/ � v.y/kC.x�0/ D
�1 C �2

2
:

The last assertion follows from Proposition 2.2. Now the proof is complete.

In the one-dimensional case, Heinz ([25,26]) obtained the variational characterizations
which link the critical levels ¹ckº to the nodal properties of ¹ Oukº.

4. Passing to the limit from approximate solutions

Let ¹ Oukº be a sequence of solutions obtained in Section 3. First we consider the case that
�1 < 1 � �2. Then along a subsequence

lim
x!�1

Ouk.x; y/ D uC.y/ (4.1)

or

lim
x!�1

Ouk.x; y/ D �uC.y/:

We may assume (4.1) holds, for otherwise taking �Ouk will do.
By (3.16) and Proposition 3.9,

Ic Œ Ouk � � Ic Œ OukC1� < 0; (4.2)

lim
k!C1

Ic Œ Ouk � D 0; (4.3)

lim
k!C1

Z
��

ex. Ouk/
2
x dx dy D 0; (4.4)

while from (3.5) and (2.3) we deduce

0 <

Z
��

ex. Ouk/
2
x dx dy �

2

c2

Z
��

ex dx dy; (4.5)Z
��

ex Ou2k dx dy � 4

Z
��

ex. Ouk/
2
x dx dy: (4.6)

Furthermore, using (3.9) yieldsZ
��

ex Ou4k dx dy � 2

Z
��

ex Ou2k dx dy; (4.7)Z
��

exjry Oukj
2 dx dy �

Z
��

ex Ou2k dx dy: (4.8)
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Proof of Theorem 1.1. We prove (i) first. Let � D kvCkH1
0 .�y/

and xk be the largest real
number Nx satisfyingZ Nx

Nx�1

Z
�y

.jry Ouk.x; y/ � ryvC.y/j
2
C j Ouk.x; y/ � vC.y/j

2/ dy dx D
�

8
(4.9)

and Z z

z�1

Z
�y

.jry Ouk.x; y/ � ryvC.y/j
2
C j Ouk.x; y/ � vC.y/j

2/ dy dx <
�

8

if z < Nx. From (4.4), (4.6), (4.7) and (4.8), we deduce that for all z < 0,Z z

z�1

Z
�y

.jry Ouk.x; y/j
2
C j Ouk.x; y/j

2/ dy dx ! 0

as k !C1. This implies xk ! �1. Define

wk.x; y/ D

´
Ouk.x C xk ; y/ if x � �xk ;

0 if x > �xk :
(4.10)

It is clear that wk.x; y/! vC.y/ as x ! �1 and wk.x; y/! 0 as x !C1. Along a
subsequence wk.x; y/! U.x; y/ in C 2loc, and U is a bounded solution of (1.3). By (4.9),Z 0

�1

Z
�y

.jryU.x; y/ � ryvC.y/j
2
C jU.x; y/ � vC.y/j

2/ dy dx D
�

8
;

which ensures that U.x;y/ is a nontrivial solution of (1.3). We remark that for all a; b 2R
and a < b, Z b

a

Z
�y

U 2x .x; y/ dx dy � lim
k!C1

Z b

a

Z
�y

.wk/
2
x.x; y/ dx dy:

From the proof of (3.22), we knowZ 0

�1

Z
�y

. Ouk/
2
x dx dy

is bounded. HenceUx 2L2.�/ andUx.x;y/! 0 as x!˙1. Arguing like Lemma 3.12,
we deduce that

v�1.y/ D lim
x!�1

U.x; y/; v1.y/ D lim
x!C1

U.x; y/;

where v�1 and v1 are the solutions of (1.5).
As in the proof of (3.21), we have

c2
Z b

a

Z
�y

U 2x dy dx D �

Z
�y

�1
2
jryU.b; y/j

2
C F.U.b; y//

�
dy

C

Z
�y

�1
2
jryU.a; y/j

2
C F.U.a; y//

�
dy

C
c2

2

Z
�y

.U 2x .a; y/ � U
2
x .b; y// dy: (4.11)
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Letting a! �1 and b !C1 gives

� J Œv�1�C J Œv1� D c
2

Z 1
�1

Z
�y

U 2x dy dx > 0: (4.12)

This implies v�1 D uC and v1 D 0, which completes the proof of (i).
The proof of (iii) is trivial. It remains to show (ii). Since J has a finite number of

critical points in H 1
0 .�y/, there is a subsequence of ¹ Oukº, still denoted by ¹ Oukº, such that

lim
x!�1

Ouk.x; y/ D u�.y/

and u� is a solution of (1.5). With a slight modification, we obtain a bounded nontrivial
solution U.x; y/ of (1.3) and (4.12) holds. Clearly v�1 D u�. Then setting v1 D u�

completes the proof.
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