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Abstract

Background: Meloidae (blister beetles) are known to synthetize cantharidin (CA), a toxic and defensive terpene
mainly stored in male accessory glands (MAG) and emitted outward through reflex-bleeding. Recent progresses in
understanding CA biosynthesis and production organ(s) in Meloidae have been made, but the way in which self-
protection is achieved from the hazardous accumulation and release of CA in blister beetles has been
experimentally neglected. To provide hints on this pending question, a comparative de novo assembly
transcriptomic approach was performed by targeting two tissues where CA is largely accumulated and regularly
circulates in Meloidae: the male reproductive tract (MRT) and the haemolymph. Differential gene expression profiles
in these tissues were examined in two blister beetle species, Lydus trimaculatus (Fabricius, 1775) (tribe Lyttini) and
Mylabris variabilis (Pallas, 1781) (tribe Mylabrini). Upregulated transcripts were compared between the two species
to identify conserved genes possibly involved in CA detoxification and transport.

Results: Based on our results, we hypothesize that, to avoid auto-intoxication, ABC, MFS or other solute transporters
might sequester purported glycosylated CA precursors into MAG, and lipocalins could bind CA and mitigate its
reactivity when released into the haemolymph during the autohaemorrhaging response. We also found an over-
representation in haemolymph of protein-domains related to coagulation and integument repairing mechanisms
that likely reflects the need to limit fluid loss during reflex-bleeding.
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Conclusions: The de novo assembled transcriptomes of L. trimaculatus and M. variabilis here provided represent
valuable genetic resources to further explore the mechanisms employed to cope with toxicity of CA in blister
beetle tissues. These, if revealed, might help conceiving safe and effective drug-delivery approaches to enhance the
use of CA in medicine.

Keywords: Cantharidin, Blister beetle, Toxic terpene, Reflex-bleeding, Autohaemorrhaging, Clotting, Detoxification,
Defensive behaviour, Drug-delivery

Background
Insects use a wide array of defensive toxic compounds
which may be produced autogenously by de novo syn-
thesis or acquired by dietary sequestration of secondary
compounds derived from plants, ingested prey, parental
transfer, or endosymbionts. The strategy for using these
toxins greatly differs among insects. ‘Reflex bleeding’ or
‘autohaemorrhaging’ [1] is the release of toxin-
containing haemolymph from integumental ruptures
when individuals are threatened or exposed to direct
physical attack. Among all defensive strategies, this is
probably the most physiologically costly and extreme to
serve a harmful compound to a predator [2–4]. Among
insects, Plecoptera, Orthoptera and Hemiptera include
some taxa exhibiting reflex-bleeding defensive mecha-
nisms [5]. In contrast, autohaemorrhaging is common in
several species from different families of Coleoptera (e.g.
Erotylidae, Lampyridae, Coccinellidae), but represent a
typical trait of blister beetles (Meloidae) [6].
Meloidae is a widespread family including almost

3000 species [6–8] well-known for secreting canthari-
din (C10H12O4; hereafter named CA), a toxic terpene.
Blister beetles, if disturbed, naturally exude CA in
yellowish oily haemolymph droplets from leg and an-
tennal joints to defend themselves from predators.
The concentration of the secreted CA vary from 0.03
to 0.79 mg for each gram of exuded haemolymph [9,
10], but largely depends on species, environmental
and physiological conditions. Males produce more CA
than females [9–15] and accumulate large amounts of
this terpene in their reproductive organs and, particu-
larly, in male accessory glands (MAG) [13, 16–19].
During mating, males transfer large quantities of CA
to females [6, 20–23] which, in turn, use the received
compound for protecting eggs from potential preda-
tors or parasites [13, 16, 21, 24].
CA is well-known in popular pharmacology for its

traditional use as a sexual stimulant or antiphlogistic
agent [6, 25–27]. However, CA is also a potent blistering
compound causing many adverse effects after ingestion,
such as severe damages to gastrointestinal, kidney and
urinary tracts [6, 27]. The large use of CA in modern
medicine is hindered by its extreme toxicity that renders

its employment limited to the topical treatment of warts
under strict legislative regulations [27, 28].
Recently, CA and its derivatives have regained popu-

larity as alternative compounds for anti-cancer treat-
ments [29–33]. Such a renewed interest has led to a
growing literature devoted to reveal the molecular basis
of CA de novo biosynthesis in blister beetles, focusing
on species belonging to the (species-rich) Meloinae sub-
family. Both gene-expression analyses of key-enzymes in
different organs of Epicauta sibirica Pallas, 1773 (tribe
Epicautini; all reported as chinensis Laporte, 1849) [18,
19, 34, 35] and a de novo transcriptomic approach com-
paring the relative abundance of transcripts in males vs.
females in Hycleus cichorii (Linnaeus, 1767) (tribe
Mylabrini; reported as Mylabris) [36] were coherent with
previous studies indicating that: (i) CA may be synthe-
tized via the mevalonate (MVA) pathway [37], (ii) farne-
sol may act as an intermediate [38–40], and (iii) a
juvenile hormone (JH) metabolite could be involved in
one of the latest biosynthetic steps [35, 37, 41].
However, there is still a gap of knowledge on some

crucial steps of the CA biosynthetic pathway, as well as
the specific site of its in vivo production. At first, the
third pair of MAG was designated as the production site
[16, 42], but recently, both high CA content and tran-
scriptional level of the 3-hydroxy-3-methylglutary-CoA
reductase (HMGCR, an essential enzyme of the MVA
pathway) observed in the fat body of E. sibirica sug-
gested that CA biosynthesis may more likely occur in
this tissue [19].
McCormick et al. were the first to suggest that MAG

represented the storage organ for CA and not the site of
its biosynthesis [21, 41]: these authors hypothesized that
the newly synthetized CA could first proceed to the
haemolymph, from which it would have been removed
by a ‘cantharidin kidney’ and stored in MAG [21]. What-
ever the mechanism, a not-yet thoroughly addressed
question regards the safe modes of CA circulation and
storage. It is in fact still unclear how self-protection
from the toxicity of a high CA content could be
prompted in male reproductive organs, in which mecha-
nisms able to inactivate or mild the action of the (in-
coming and accumulating) CA might be operating.
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Furthermore, still unidentified mechanisms should allow
CA to be transported through the haemolymph from the
fat body (or another production sites) to the storing or-
gans, and then discharged outside the body without
causing self-injuries.
A third, more general (and evolutionary) question

concerns the identification of proteins in the haemo-
lymph repertoire that should support such a metabol-
ically expensive defensive strategy. In fact, yet highly
effective, a haemolymph-mediated chemical defence
requires a rapid renewal of water [43] and compo-
nents of the immune system (e.g. alkaloids, haemo-
cytes or antimicrobial peptides) after bleeding.
Moreover, both efficient haemolymph-coagulating and
integument repairing mechanisms are expected, as
these should be essential requirements of autohae-
morrhaging insects to limit haemolymph loss and
guarantee their survival.
With this study, we attempted for the first time to

shed light on modes of mobilization, storage, and deacti-
vation of CA in blister beetles which shall prevent its ad-
verse effects on organs/tissues where CA is stored and/
or regularly circulates. To do so, we used a de novo as-
sembly transcriptome approach and a differential gene
expression analysis targeting the reproductive organs
and exuded haemolymph (gathered during autohaemor-
rhaging) of males of two Meloinae species, i.e. Lydus tri-
maculatus (LT) [Fabricius, 1775 (tribe Lyttini)] and
Mylabris variabilis (MV) [Pallas, 1781 (tribe Mylabrini)].
The choice of these two species was dictated by their: 1)
proved ability to produce high titres of CA in natural
conditions [10]; 2) relatively high abundance on field
[10], crucial to acquire the amount of haemolymph ne-
cessary to gain reasonable RNA yields, and 3) ascription
to two different tribes of Meloinae owning the proper
level of phylogenetic divergence [6, 8] to observe a co-
occurrence of abundantly expressed candidate detoxifi-
cation genes. Besides, our approach allowed examining
the expression levels of the thus-far-identified genes re-
lated to CA biosynthesis in male reproductive tracts
(MRT) of LT and MV. We also provided a catalogue of
over-represented protein families in haemolymph in-
volved in the costly physiology of the autohaemorrha-
ging strategy.

Results
De novo assembly and annotation of LT and MV
transcriptomes
Our final dataset consisted of 252,190,732 and
301,963,686 (50–150 bp) quality-filtered reads for LT
and MV, respectively (Table 1). Both de novo assemblies
received a high score of completeness (BUSCO ‘C’
values = ~ 97%) and produced for LT a total of 190,214
assembled transcripts, ranging from 401 to 31,991 bp,

and corresponding to 111,614 Trinity unigenes, and for
MV a total of 165,191 assembled transcripts, ranging
from 401 to 26,915 bp, and corresponding to 94,199
Trinity unigenes (Table 1). We found a higher percent-
age of duplicated BUSCOs (D) in LT than in MV (Table
1). This can be considered a possible artifact originated
by the high number of allelic variants (= high heterozy-
gosity) in LT populations, being interpreted as multiple
unigenes/isoforms. Since this did not affect our main
conclusions, we decided to not de-replicate the obtained
transcriptomes and maintain the whole information. By
selecting the longest transcript isoform for each Trinity
unigene cluster and using the Annocript pipeline (see
Methods), we observed that 47.7% (LT) and 33.4% (MV)
could be annotated with BLAST searches against UniRef
[mostly from Tribolium castaneum Herbst, 1787; Cole-
optera, Tenebrionidae], whereas 30.0% (LT) and 20.8%
(MV) were annotated against Swiss-Prot [mostly from
Drosophila melanogaster Fallén, 1823; Diptera, Droso-
philidae]. Finally, 30.2% (LT) and 21.3% (MV) of the lon-
gest transcripts matched with functional protein
domains in InterProScan with at least one match in one
of the following repositories: SignalP, TMHMM, Pfam,
SMART, Tigr and ProfileScan.
Detailed annotation information for individual LT and

MV longest transcripts is available in Additional file 1.
Classification and relative abundance of top 15 con-
served Protein families (Pfam) and Gene Ontology (GO)
terms are reported in Fig. 1. Residue motifs mediating
protein-protein interactions and signalling, such as leu-
cin rich (Pf13855) and ankyrin (Pf12796) repeats, as well
as immunoglobulin-related domains (Pf07679, Pf13927)
were among the most abundant Pfam in transcriptomes
of both species (Fig. 1). ‘Protein kinase’ (Pf00069),
‘Cytochrome P450’ (Cyp450) (pf00067), ‘Reverse Tran-
scriptase’ (pf00078) and ‘Trypsin’ (Pf00089) were also
well-represented in both species (Fig. 1A), as well as pro-
tein families involved in movement of small solutes, such
as ‘Major Facilitator Superfamily’ (Pf07690) and ‘Sugar
(and other) transporters’ (Pf00083) (Fig. 1A). Overall,
the relative abundances of GO were also coherent be-
tween the two analysed species. Among the most signifi-
cant ‘GO-biological processes’, three DNA-related terms
(‘transcription’, ‘regulation of transcription’, ‘DNA inte-
gration’) were highly frequent, but interestingly, also
processes associated to transport (e.g. ‘transmembrane
transport’ and ‘intracellular protein transport’) were
highly represented (Fig. 1B). The most represented loca-
tions of gene products in cellular structures (‘GO-cellu-
lar components’) were, in order, ‘integral to membrane’,
‘nucleus’ and ‘cytoplasm’ (Fig. 1C). Finally, among ‘GO-
molecular functions’, ‘ATP-binding’, ‘nucleic acid
binding’, ‘DNA binding’ were the most recurrent, but,
noteworthy, a number of other GO binding-related
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terms - such as metal-ion binding (zinc, calcium, iron) -
were also rather abundant (Fig. 1D).

Analysis of differentially expressed genes (DEGs)
Overall, the expression profiles observed for both tar-
geted tissues in LT and MV were comparable in terms
of relative abundance of differentially expressed tran-
scripts (Fig. 2). Following a conservative approach
(logFC > 2, FDR < 0.001), 1800 (LT) and 568 (MV) tran-
scripts appeared upregulated in MRT when compared to
the whole body, whereas 1275 (LT) and 1471 (MV) tran-
scripts showed an enhanced expression in haemolymph

(Fig. 2). Among the upregulated transcripts in these two
tissues, ~ 15% did not display a significant similarity with
known proteins in the non-redundant (nr) database after
BLAST search. Comparison of DEGs between the two
targeted tissues showed 5005 (LT) and 6139 (MV) tran-
scripts with enhanced expression in MRT with respect
to haemolymph, whereas 2186 (LT) and 2527 (MV) were
upregulated in the haemolymph respect to MRT (Fig. 2).
The complete list (and annotation) of DEGs (i.e. upregu-
lated) in MRT and haemolymph of each species is re-
ported in Additional file 2 (a list of downregulated genes
in both tissues is available upon request).

Table 1 De novo transcriptome assembly statistics, quality control and annotation for LT and MV

De novo assembly statistics (Trinity v2.3.1) LT MV

Number of reads (150 bp) 270,706,855 319,413,792

Number of ‘clean’ reads (50–150 bp) 252,190,732 301,963,686

Number of predicted ‘unigenes’ 111,614 94,199

Number of predicted ‘transcripts’ 190,214 165,191

Percent GC 33.09 32.72

Contig N50 1622 1659

Median contig lengtha 836 780

Average contiga 1219 1207

Total assembled basesa 231,947,268 199,377,335

Range of transcript length 401–31,991 401–26,915

Number of transcripts longer than 10,000 101 203

Number of transcripts longer than 5000 2215 2420

Number of transcripts longer than 3000 11,932 10,856

Number of transcripts longer than 2000 29,414 25,399

Number of transcripts longer than 1000 78,770 64,122

Assembly quality control (Busco v3.0.1)

Complete (C) 1038 (97.4%) 1030 (96.6%)

Complete & Single Copy (S) 653 998

Complete & Duplicated (D) 385 32

Fragmented (F) 25 27

Missing (M) 3 9

De novo transcriptome annotation (Annocript)

Number of ‘longest ORF’ sequences 111,614 94,199

Mean sequence length (and range) in bp 942 (401–31,991) 941 (401–26,915)

Average percentage of GC 34.25 33.47

UniRef b 53,281 31,491

SwissProtb 33,546 19,670

Domains 33,801 20,067

Ribosomal RNAs 319 282

Transcripts with at least one blast result 53,694 31,892

Number of non-coding sequences c 1322 1777

Gene Ontology 31,298 17,879
a calculated based on all transcripts; b annotations generated based only on the longest unigene per transcript; c number of non-coding sequences were obtained
with probability > 0.95 and maximum length of the ORF = 100

Fratini et al. BMC Genomics          (2021) 22:808 Page 4 of 24



Significantly over-represented GO terms in DEGs
(when compared to the whole assemblies) are reported
in Additional file 3. Among the most abundant ‘GO-bio-
logical processes’ already observed in the two whole
transcriptomes, transmembrane and intra-cellular pro-
tein transportations were also specifically enriched in
MRT and haemolymph of both species (Additional file
3). Enriched-GO shared between species in MRT and
haemolymph are reported in Tables 2 and 3,
respectively.
In MRT, dynein, cilium- and microtubule-related GO

terms (likely associated with cytoskeletal dynamics in
spermatogenesis) were the most over-represented,
whereas others were related to ubiquitination, transcrip-
tion regulation and phosphorylation (i.e. ‘serine/threo-
nine kinase’) (Table 2). In haemolymph, most of shared
enriched GO terms pertained to DNA replication, cyto-
skeleton, cell adhesion, actin binding (probably related
to clotting), signal transduction and vesicle mediated-
transport, but responses to oxidative stress and activities
of G-protein coupled receptors were also recorded

(Table 3). MRT- and haemolymph-specific Pfam upregu-
lated in each species (adj. p < 0.05) are reported in Add-
itional file 4. The subsets of Pfam (adj. p < 0.05) shared
between LT and MV are reported in Table 4 (MRT) and
Table 5 (haemolymph), respectively.
In MRT most of shared Pfam were related to motor

functions of cilia and flagella, microtubule dimerization
and transport of organelles and vesicles along microtu-
bules (i.e. dynein-related subfamilies, e.g. pf12774 and
pf03028; Table 4). Other shared and highly enriched do-
mains were possibly involved in structural and/or regula-
tion processes (i.e., pf13868; pf00412; pf15921; Table 4).
Noteworthily, some significantly enriched domains in
MRT of LT (but also detected in MV, yet with p > 0.05)
were related to protein phosphorylation (pf00069) or,
possibly, detoxification, such as glutathione synthases
(pf03917) and zinc carboxypeptidases (pf00246) (Add-
itional file 4: Table S11-S12). Additional species-specific
protein families were linked to other processes, such as
aminopeptidases (pf00883, pf02789) in LT or carboxyl-
ases (pf05090) and hydrolases (pf00723) in MV

Fig. 1 Classification and relative abundance of top 15 protein families (Pfam) (A) and Gene Onthology (GO) terms in each category (B,
C, D) in LT and MV transcriptomes. Pfam and GO differentially expressed between species are marked with * (p < 0.05)
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(Additional file 4: Table S11-S12). In haemolymph, most
of shared enriched-Pfam were related to actin cross-
linking proteins (e.g. pf00630, pf06268), vesicle transport
(e.g. pf00191) or cell/membrane adhesion (e.g. pf00052)
(Table 5). Other shared domains were related to oxygen
transport (hemocyanin; pf03723), DNA replication pro-
cesses (Minichromosome maintenance; pf00493,
pf14551, pf17207), RNA binding (Pumilio family;
pf00806) and lipid-binding (e.g. StAR-related lipid-
transfer; pf01852) (Table 5). Other, but more species-
specific domains were still related to the above-mentioned
functions (Additional file 4). Interestingly, a subset of
Pfam were clearly related to innate immunity responses
(e.g. Spätzle: pf16077 and CUB: pf00431) with some do-
mains more specifically involved in coagulation (haemo-
lectins/mucins; e.g. C8: pf08742; von Willebrand factor:

pf00094; Mucin2_WxxW: pf13330) and, possibly, in the
formation of the viscous (oily) haemolymph-exudate
(Table 5; Additional file 4: Table S13-S14).

Genes putatively involved in CA biosynthesis
We searched in both transcriptomes for unigenes related
to the MVA pathway and trans-farnesol branch (“terpen-
oid backbone biosynthesis”, KEGG map 009000), as well
as for enzymes involved in the JH biosynthesis (“insect
hormone biosynthesis”, KEGG map 00981). In these
pathways, we selected genes previously reported as re-
lated with CA content in blister beetles (i.e. in Epicauta
and/or Hycleus, whose sequence data were available);
further selection was driven by protein sequence hom-
ology with the ones from Epicauta, which allowed
recognising six transcripts with high similarity (70–93%).

Fig. 2 Tissue-specific gene expression of MRT and haemolymph in LT and MV. Volcano plots display the relative abundance levels of
upregulated transcripts in MRT and haemolymph compared to the whole body. The x-axis represents the log2 of the expression ratio (FC = fold
change) for each transcript (tissue specific logCPM: whole body logCPM, where CPM stands for Counts Per Million reads); the y-axis represents
the log10 of the p-value corrected for the false discovery rate (FDR). Red dots represent differentially expressed transcripts with logFDR < 0.001
and at least 2-fold difference in logCPM; black dots if logFDR > 0.001. Negative logFC values indicate transcripts enhanced in the target tissue
subsets, while positive values indicate transcripts upregulated in the whole body
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Those pathways are summarized in Fig. 3A, in which the
six genes selected are highlighted. Intensity of expres-
sion, as revealed by FPKM counts in transcriptome ana-
lyses, is reported in Fig. 3B (a complete list of transcripts
emerging from BLAST searches on LT and MV tran-
scriptomes can be found in Additional file 5: Table S15).
MVA enzymes expressed in LT and MV transcriptomes
included acetyl-CoA C-acetyltransferase (atoB; 2.3.1.9),
hydroxyl-methylglutaryl-CoA synthase (HMGCS;
2.3.3.10), hydroxyl-methylglutaryl-CoA reductase
(HMGCR; 1.1.1.34), mevalonate kinase (mvaK1;
2.7.1.36), phosphomevalonate kinase (mvaK2; 2.7.4.2)
and diphosphomevalonate decarboxylase (MVD;
4.1.1.33). Transcripts encoding these enzymes all showed
high identity (~ 60–80%) in both species with Tribolium
protein putative orthologs (except for mvaK1 showing a

44% of similarity, and, thus, not further considered), but
none was significantly upregulated in MRT or haemo-
lymph in respect to the whole body. Among these genes,
HMGCR - a rate-limiting enzyme in MVA pathway and
crucial for CA synthesis [34] - was downregulated in
MRT (Fig. 3B). We also searched for transcripts related
to the farnesyl diphosphate synthase (FDS; 2.5.1.1,
2.5.1.10), a key enzyme in farnesol metabolism, but also
intervening in the formation of the geranyl diphosphate,
a precursor of sesquiterpenoids, triterpenoids and mono-
terpenoids. This gene, moderately abundant in the whole
body of both species (̴30–45 FPKM), was significantly
downregulated in MRT and haemolymph of LT and MV
(Fig. 3B). Among genes belonging to the branched chain
of trans-farnesol (a potential precursor of CA), we iden-
tified NADP+-dependent farnesol dehydrogenase

Table 2 Most significant (p < 0.05) GO terms enriched in MRT of both LT and MV. ALL = count number of all GO retrieved in
transcriptome; UP = count number of enriched GO

LT MV

ID Description ALL UP p ALL UP p

Biological process GO:0036159 inner dynein arm assembly 8 6 8.48 × 10−36 9 7 4.66 × 10−111

GO:0003341 cilium movement 25 9 6.19 × 10−34 16 8 4.36 × 10−98

GO:0060271 cilium morphogenesis 53 10 5.85 × 10−22 29 5 2.38 × 10−25

GO:0007018 microtubule-based movement 266 23 3.00 × 10−22 124 10 1.33 × 10− 26

GO:0006974 response to DNA damage stimulus 47 5 1.84 × 10−06 35 5 1.50 × 10−21

GO:0006355 regulation of transcription, DNA-dependent 724 18 6.60 × 10− 03 430 7 2.30 × 10− 03

Molecular function GO:0008569 minus-end-directed microtubule motor activity 21 9 1.15 × 10− 38 18 8 1.82 × 10−90

GO:0045503 dynein light chain binding 22 9 2.27 × 10−37 19 8 4.44 × 10−87

GO:0051959 dynein light intermediate chain binding 23 9 3.74 × 10−36 20 8 6.21 × 10−84

GO:0045505 dynein intermediate chain binding 27 9 5.80 × 10−32 22 8 2.85 × 10−78

GO:0003777 microtubule motor activity 283 26 6.48 × 10−27 135 12 2.29 × 10−35

GO:0005524 ATP binding 3724 122 1.77 × 10−24 1973 56 2.69 × 10−45

GO:0008017 microtubule binding 236 20 5.43 × 10−19 147 5 1.32 × 10−05

GO:0046872 metal ion binding 2030 53 6.82 × 10−07 1075 18 2.55 × 10− 07

GO:0004842 ubiquitin-protein ligase activity 201 11 1.82 × 10−06 37 5 2.46 × 10− 09

GO:0016887 ATPase activity 346 13 1.67 × 10−04 176 9 5.11 × 10−15

GO:0031625 ubiquitin protein ligase binding 72 5 2.56 × 10− 04 87 5 1.59 × 10−20

GO:0005509 calcium ion binding 737 20 1.22 × 10−03 394 11 2.72 × 10−09

GO:0004674 protein serine/threonine kinase activity 324 11 1.82 × 10− 03 200 6 8.15 × 10−06

Cellular component GO:0005874 microtubule 265 36 2.17 × 10− 57 154 14 2.18 × 10−42

GO:0005929 cilium 33 12 2.88 × 10−46 31 12 2.54 × 10−127

GO:0030286 dynein complex 108 15 1.40 × 10−24 42 9 1.82 × 10−58

GO:0005737 cytoplasm 1719 72 1.04 × 10−23 1042 37 4.81 × 10−40

GO:0016021 integral to membrane 8136 167 7.70 × 10−09 4727 60 3.49 × 10−13

GO:0016020 membrane 520 21 2.39 × 10−07 336 14 1.34 × 10−18

GO:0005634 nucleus 2937 65 2.97 × 10−05 1789 34 1.07 × 10−15

GO:0005886 plasma membrane 843 25 5.15 × 10− 05 603 16 2.40 × 10−12

GO:0005739 mitochondrion 419 12 7.14 × 10−03 285 8 5.31 × 10− 07

Fratini et al. BMC Genomics          (2021) 22:808 Page 7 of 24



Table 3 Most significant (p < 0.05) GO terms enriched in haemolymph of both LT and MV. ALL = count number of all GO retrieved
in transcriptome; UP = count number of enriched GO

LT MV

ID Description ALL UP p ALL UP p

Biological process GO:0006270 DNA-dependent DNA replication initiation 40 9 1.40 × 10−38 27 8 6.51 × 10−31

GO:0007155 cell adhesion 98 12 5.98 × 10− 30 83 13 2.82 × 10−29

GO:0051056 regulation of small GTPase med. Signal transduction 38 7 7.97 × 10−25 26 5 4.58 × 10−13

GO:0007616 long-term memory 22 5 1.68 × 10−20 23 5 1.79 × 10−14

GO:0007229 integrin-mediated signaling pathway 76 8 4.48 × 10−17 67 6 7.39 × 10− 08

GO:0007411 axon guidance 64 7 1.92 × 10−15 70 6 1.57 × 10−07

GO:0007165 signal transduction 408 14 1.92 × 10−08 234 13 1.31 × 10−09

GO:0006979 response to oxidative stress 109 6 9.48 × 10−07 76 7 2.27 × 10− 09

GO:0035556 intracellular signal transduction 427 12 1.07 × 10−05 217 7 5.02 × 10−03

GO:0016192 vesicle-mediated transport 159 6 1.43 × 10−04 114 5 2.60 × 10−3

GO:0016567 protein ubiquitination 142 5 1.12 × 10−03 75 5 5.49 × 10−05

GO:0007049 cell cycle 145 5 1.34 × 10−03 87 7 3.53 × 10−08

GO:0006260 DNA replication 182 5 7.26 × 10− 03 74 7 1.27 × 10−09

Molecular function GO:0005096 GTPase activator activity 183 14 1.19 × 10−21 112 12 1.58 × 10−18

GO:0003678 DNA helicase activity 76 8 4.48 × 10−17 55 7 8.04 × 10−13

GO:0051015 actin filament binding 120 10 5.96 × 10− 17 70 7 3.65 × 10−10

GO:0046872 metal ion binding 2030 50 3.13 × 10−16 1075 34 4.23 × 10− 10

GO:0005524 ATP binding 3724 70 3.80 × 10− 13 1973 48 3.15 × 10−08

GO:0003779 actin binding 234 11 5.71 × 10− 10 147 14 4.72 × 10−19

GO:0005200 structural constituent of cytoskeleton 56 5 4.92 × 10−09 31 6 5.92 × 10− 16

GO:0005525 GTP binding 581 16 4.92 × 10−07 331 11 2.49 × 10− 03

GO:0003700 sequence-specific DNA bind. Transcr. factor activity 605 17 1.27 × 10− 07 335 9 7.62 × 10− 03

GO:0003723 RNA binding 1017 22 2.51 × 10−06 545 18 2.57 × 10− 06

GO:0042802 identical protein binding 123 6 5.74 × 10− 06 87 6 4.55 × 10− 06

GO:0005509 calcium ion binding 737 17 1.07 × 10−05 394 14 9.96 × 10− 06

GO:0003924 GTPase activity 426 11 9.50 × 10− 05 249 10 3.91 × 10− 05

GO:0004930 G-protein coupled receptor activity 258 7 1.37 × 10−03 159 10 9.57 × 10− 09

GO:0003677 DNA binding 2066 29 2.17 × 10− 03 1362 25 8.86 × 10− 03

GO:0008017 microtubule binding 236 6 5.41 × 10− 03 147 7 1.07 × 10− 03

Cellular component GO:0042555 MCM complex 29 8 3.05 × 10− 40 18 8 5.19 × 10− 42

GO:0031594 neuromuscular junction 14 5 3.98 × 10− 29 16 6 4.09 × 10− 27

GO:0005886 plasma membrane 843 35 1.63 × 10− 25 603 41 7.88 × 10− 37

GO:0005737 cytoplasm 1719 47 2.89 × 10−18 1042 44 1.91 × 10−20

GO:0005925 focal adhesion 89 8 1.25 × 10− 14 34 7 8.30 × 10− 20

GO:0005634 nucleus 2937 54 6.24 × 10− 10 1789 48 4.47 × 10− 10

GO:0031012 extracellular matrix 76 6 1.18 × 10− 09 40 5 5.72 × 10− 09

GO:0016021 integral to membrane 8136 107 1.68 × 10− 07 4727 125 8.67 × 10− 24

GO:0000139 Golgi membrane 177 8 3.97 × 10− 07 112 5 2.27 × 10− 03

GO:0005887 integral to plasma membrane 164 7 6.04 × 10− 06 122 8 1.79 × 10− 07

GO:0016020 membrane 520 13 3.52 × 10− 05 336 14 4.05 × 10− 07

GO:0005829 cytosol 788 17 3.90 × 10− 05 620 22 2.45 × 10− 08

GO:0005622 intracellular 1029 19 2.52 × 10− 04 512 16 2.75 × 10− 05
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(FOHSDR: 1.1.1.216), protein-S-isoprenylcysteine O-
methyltransferase (ICMT: 2.1.1.100), STE24 endopeptid-
ase (STE24: 3.4.24.84) and protein farnesyltransferase
subunit beta (FNTB: 2.5.1.58). All transcripts putatively
encoding these genes were expressed but downregulated
in MRT or haemolymph respect to whole body (Add-
itional file 5: Table S15; Fig. 3B). Since a metabolite of
JH could constitute a precursor of CA, we also investi-
gated genes involved in JH biosynthetic pathway. Tran-
scriptomic data showed that transcripts of two key
enzymes responsible for the de novo synthesis of JH, i.e.
methyl farnesoate epoxidase (MFE: 1.14.14.127;
1.14.14.128) and JH acid O-methyltransferase JH-III syn-
thase (JHAMT: 2.1.1.325), were expressed at very low
levels in both species (Fig. 3B). On the contrary, the ju-
venile hormone epoxide hydrolase (JHEH), involved in
the degradation of JH, was abundant in whole bodies (̴
48–97 FPKM), though significantly downregulated in
MRT of both species (Fig. 3B). Moreover, searching for
members of the Cyp450 family, we identified unigenes
showing 75% similarity with CYP4BM1, whose high ex-
pression level was demonstrated to be related to CA
production [19]. These transcripts were significantly
downregulated in MRT of both species as compared to
the whole body (Additional file 5: Table S15) (as well as

all transcripts showing a similarity with CYP4C7, a ses-
quiterpenoid omega-hydroxylase degrading JH III [44]).
Finally, we did not detect specific transcripts associ-

ated to genes of the sesquiterpenoid, triterpenoid or
monoterpenoid biosynthetic pathways. Also, we did not
find transcripts possibly encoding enzymes catalysing
cyclization reactions (as would be required for the trans-
formation of a linear sesquiterpenoid into the tricyclo-
decane structure of CA), such as the trans-isoprenyl di-
phosphate synthase involved in cyclization of 8-
oxogeranial to build the iridoid ring scaffold in flea bee-
tles (Coleoptera: Chrysomelidae: Alticini) [45]. Rather,
we identified transcripts referable to two key enzymes
involved in the formation of terpenoid-quinone biosyn-
thesis, such as the geranylgeranyl pyrophosphate syn-
thase (2.5.1.1 2.5.1.10 2.5.1.29) and the 1,4-dihydroxy-2-
naphthoate octaprenyltransferase (2.5.1.74), which, how-
ever, were not differentially expressed in MRT or
haemolymph of both species as well.

Identification of candidate genes related to CA
detoxification and transport
The most conservative approach (logFC> 2, FDR < 0.001)
identified 157 and 70 orthologous transcripts upregu-
lated in both species in MRT and haemolymph,

Table 3 Most significant (p < 0.05) GO terms enriched in haemolymph of both LT and MV. ALL = count number of all GO retrieved
in transcriptome; UP = count number of enriched GO (Continued)

LT MV

GO:0005576 extracellular region 380 9 1.18 × 10− 03 273 8 6.03 × 10–03

GO:0005856 cytoskeleton 154 5 2.18 × 10− 03 99 6 2.53 × 10− 05

GO:0005874 microtubule 265 6 1.22 × 10− 02 154 6 2.37 × 10− 03

Table 4 Pfam shared and enriched in MRT of both LT and MV (adj p < 0.05). ALL = count number of all Pfam retrieved in
transcriptome; UP = count number of enriched Pfam

LT MV

Pfam ID Description ALL UP adj. p ALL UP adj. p Putative function

pf12774 Hydrolytic ATP bind. Site of dynein motor region D1 25 10 2.9 × 10−11 16 7 2.54 × 10−14 dynein motor

pf03028 Dynein heavy chain and region D6 of dynein motor 39 12 1.09 × 10−10 27 8 7.04 × 10− 12 dynein motor

pf15921 Coiled-coil domain-containing protein 158 62 15 1.70 × 10−10 46 13 9.71 × 10− 19 sperm regulation

pf12780 P-loop containing dynein motor region D4 22 9 2.05 × 10−10 14 7 8.62 × 10− 16 dynein motor

pf08393 Dynein heavy chain, N-terminal region 2 31 10 2.7 × 10−09 23 9 5.54 × 10− 17 dynein motor

pf12777 Microtubule-binding stalk of dynein motor 24 8 1.77 × 10− 07 13 7 1.29 × 10− 16 dynein motor

pf12775 P-loop containing dynein motor region D3 19 7 3.69 × 10− 07 14 6 7.56 × 10− 12 dynein motor

pf12781 ATP-binding dynein motor region D5 19 7 3.69 × 10− 07 15 7 6.19 × 10− 17 dynein motor

pf07728 AAA domain (dynein-related subfamily) 67 10 1.72 × 10− 03 34 8 1.67 × 10− 09 dynein motor

pf08385 Dynein heavy chain, N-terminal region 1 21 5 5.81 × 10− 03 18 5 1.83 × 10−6 dynein motor

pf13868 Trichohyalin-plectin-homology domain 8 3 1.68 × 10−02 3 3 2.73 × 10− 10 structural organization

pf00412 LIM domain 66 8 4.58 × 10−02 69 7 6.87 × 10−03 regulatory
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respectively. By relaxing the threshold (i.e., FDR < 0.01)
the number of orthologous transcripts between the two
species raised to 482 (MRT) and 283 (haemolymph), re-
spectively. By applying the less conservative threshold,
upregulated orthologous unigenes potentially involved in
CA transport and/or detoxification were identified
(Fig. 4A; Additional file 5: Table S16). Among them, two
members belonging to ‘Major Facilitator Superfamily’,
four to ‘ABC transporters’ and three to proteins involved
in mobilization of small solutes (i.e. three sugar trans-
porters, one sodium:solute symporter and one choline
transporter) were identified in MRT, whereas three
lipid-binding proteins were detected in the haemolymph
(Fig. 4A). No unigenes coding for members of the most
common families of detoxification enzymes (e.g.
CypP450s, glutathione S-transferases) were identified.

Reverse transcription-quantitative PCR (RT-qPCR)
validation
Abundance of transcripts emerging from transcriptomic
analyses has been confirmed by RT-qPCR by examining
12 transcripts differentially modulated in MRT and total

body. We first examined transcripts coding for both
JHAMT and MFE, two key enzymes of the latest steps
of JH biosynthetic pathway, and for JHEH, a JH-
degrading enzyme putatively involved in the production
of a CA precursor. All three unigenes did not show any
upregulation in MRT (Fig. 3C). Then, we analysed 4
transcripts coding for proteins whose possible homologs
in Chrysomela populi Linnaeus, 1758 (Coleoptera, Chry-
somelidae) are involved in transport of a plant-derived
glycoside (salicin) from haemolymph to specific defen-
sive glands (see Discussion): (i) proton-coupled folate
transporter (PCFT), (ii) sugar transporter (SWEET1),
(iii) sodium-coupled monocarboxylate transporter 2
(SLC5A12) and (iv) choline transporter-like protein 1
(SLC44A1) (Fig. 4A). Two of them, PCFT and SLC5A12
showed a strong differential expression in MRT com-
pared to whole body (Fig. 4B). Finally, 5 transcripts en-
coding other putative transporters, chosen for ligand
similarity, were analysed for their possible involvement
in CA sequestration: i) probable polyol transporter 4
(PLT4), ii) probable multidrug resistance-associated pro-
tein lethal (2)03659 [l (2)03659], iii) ATP-binding

Table 5 Pfam shared and enriched in haemolymph of both LT and MV (adj p < 0.05). ALL = count number of all Pfam retrieved in
transcriptome; UP = count number of enriched Pfam

LT MV

Pfam ID Description ALL UP adj. p ALL UP adj. p Putative function

pf00630 Filamin/ABP280 repeat 64 23 6.57 × 10−40 44 19 4.20 × 10− 22 cellular immune response

pf00191 Annexin 42 13 1.27 × 10− 18 23 11 1.72 × 10− 13 protein trafficking

pf00493 MCM2/3/5 family 29 9 2.77 × 10− 12 20 8 5.32 × 10− 08 hematopoiesis (DNA replication)

pf02145 Rap/ran-GAP 9 5 4.45 × 10−10 10 4 1.40 × 10− 3 regulatory

pf00168 C2 domain 110 15 2.41 × 10−08 95 15 3.77 × 10− 05 signal transduction

pf14551 MCM N-terminal domain 12 5 4.59 × 10− 08 10 6 4.28 × 10− 08 hematopoiesis (DNA replication)

pf00372 Hemocyanin, copper containing domain 7 4 7.45 × 10− 08 4 4 5.27 × 10− 07 clotting cross-link (prophenoloxidase)

pf06268 Fascin domain 3 3 9.79 × 10− 08 3 3 7.45 × 10− 05 Actin-bundling protein Singed

pf17207 MCM OB domain 22 6 7.12 × 10− 07 9 6 9.28 × 10−09 hematopoiesis (DNA replication)

pf00806 Pumilio-family RNA binding repeat 4 3 1.67 × 10− 06 3 3 7.45 × 10−5 mRNA regulation

pf08742 C8 domain 17 5 5.58 × 10−06 9 9 1.54 × 10− 18 clotting component

pf00094 von Willebrand factor type D domain 27 6 1.32 × 10− 05 13 11 8.99 × 10− 21 clotting component

pf00595 PDZ domain 136 12 1.71 × 10− 03 86 11 1.06 × 10− 02 protein-protein interaction/signal transduction

pf00435 Spectrin repeat 71 8 1.93 × 10− 03 71 27 4.40 × 10−28 protein trafficking

pf01290 Thymosin beta-4 family 3 2 1.93 × 10− 03 3 3 7.45 × 10− 05 tissue repair/regulation of hematopoiesis

pf03723 Hemocyanin, ig-like domain 3 2 1.93 × 10− 03 6 4 2.37 × 10−05 clotting cross-link (prophenoloxidase)

pf00052 Laminin B (Domain IV) 12 3 8.07 × 10−03 7 4 7.45 × 10−05 immunity against bacterial infections

pf02210 Laminin G 2 70 7 1.55 × 10− 02 54 10 2.69 × 10−03 immunity against bacterial infections

pf01826 Trypsin Inhibitor like cysteine rich domain 14 3 1.74 × 10− 02 12 4 5.37 × 10−03 Associated with hemocytin

pf00054 Laminin G domain 57 6 2.13 × 10−02 40 10 3.23 × 10−06 immunity against bacterial infections

pf00788 Ras association (RalGDS/AF-6) domain 15 3 2.47 × 10−02 12 5 7.45 × 10−05 signal transduction

pf00169 Pleckstrin homology (PH) domain 60 6 2.98 × 10−02 42 7 1.51 × 10− 02 signal transduction

pf16077 Spaetzle 29 4 3.32 × 10−02 22 6 5.74 × 10− 04 innate immunity
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cassette sub-family F member 2 (ABCF2), iv) multidrug
resistance protein homolog 49 (MDR49), v) ATP-
binding cassette sub-family B member 6 mitochondrial
(ABCB6) (Fig. 4A). All of them exhibited a higher ex-
pression in MRT compared to whole body, particularly
in MV (Fig. 4C).
The validation analysis was performed using independ-

ent, triplicate RNA samples extracted from whole bodies
and MRT. Correlation analyses indicate statistically sig-
nificant (R2 = 0.5878; p < 0.0001, for LT; R2 = 0.2518; p <
0.0286, for MV) linear relationships between RNA-seq
and RT-qPCR results in both species (Fig. 5). This result

strongly supports the transcriptional abundance profiles
revealed by RNA-seq analyses, in terms of both absolute
transcript abundance and relative fold-change differ-
ences of transcripts among tissue and samples.

Discussion
The present study produced a de novo assembly of male
transcriptomes of LT and MV, two blister beetle species
(Meloidae) belonging to the Meloinae subfamily. A high-
throughput characterization of the upregulated portion
of transcriptome in MRT and haemolymph of CA-
exuding blister beetles is here provided for the first time.

Fig. 3 Pathway and expression levels (Heat-Map and RT-qPCR) of genes putatively involved in CA biosynthesis in LT and MV. A) The
diagram shows a recap of the pathways involved in the synthesis and degradation of JH, highlighting the enzymes whose transcripts were here
selected and examined. Green ellipses represent the enzymes of the upstream mevalonate and terpenoid backbone pathways, the red ones
indicate the enzymes specific for the downstream JH pathway. B) Colours in the Heat-Map were assigned according to percentiles, with yellow
referring to the lowest FPKM values (below 30th percentile) and dark blue to the FPKM highest values (above 95th percentile). Identity
percentages of tBLASTn using Epicauta protein sequences (as in GenBank Acc. N.) as a query are reported in the last column. B = body, MRT =
male reproductive tract, H = haemolymph. C) The graphs show RT-qPCR results expressed as fold change (2-ΔΔCt) for three enzymes of the JH
pathway, i.e. JHAMT, JHEH and MFE in LT and MV, respectively
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The two target tissues are essential in understanding the
biological defence mechanisms in Meloidae due to their
close interaction with CA; in fact, the MRT corresponds
to a specialized body compartment where CA is accu-
mulated in large quantities (and from which it is re-
leased upon mating), whereas haemolymph represents a
system of internal vehiculation and outward emission of
CA under stressful conditions. The most relevant as-
pects emerging from our comparative analysis are dis-
cussed below.

High quality of LT and MV de novo transcriptome
assembly and conservation of gene expression patterns
A high-quality de novo transcriptome assembly, sup-
ported by the high percentage of (BUSCO) completeness
(̴ 97%) in terms of the expected gene content, was

produced for LT and MV (Table 1). The overall size of
the assembled transcriptomes (̴ 200Mb), as well as the
number of retrieved transcripts (̴180,000 on average),
were similar in the two target Meloinae species (Table
1). These results likely mirror a comparable amplitude
in the two species of the gene repertoire active in males,
as it is expected in (relatively) phylogenetically close taxa
having analogous physiological, ecological, and behav-
ioural traits [6, 7]. It is also worth noticing that the most
frequent protein domains and functional categories to
whom the annotated transcripts were ascribed were
nearly the same for both beetles (Fig. 1) and partially
overlapped with those recovered in Hycleus [36]. These
were basically related to nucleic acid synthesis and regu-
lation, signal transduction, cytoskeleton-mediated trans-
port, and metabolite transfer, and might be coherent

Fig. 4 Expression levels (Heat-Map and RT-qPCR) of genes putatively involved in sequestration mechanisms related to CA
detoxification in LT and MV. A) Colours in the Heat-Map were assigned according to percentiles, with yellow referring to the lowest FPKM
values (below 20th percentile) and dark blue to the FPKM highest values (above 95th percentile). Transcripts showing identities with those
involved in salicin sequestration in Chrysomela populi (see Discussion) are marked with (*). B) The graphs show RT-qPCR results expressed as fold
change (2-ΔΔCt) for transcripts showing similarities to the ones involved in salicin sequestration in Chrysomela populi, i.e. PCFT, SWEET1, SLC5A12
and SLC44A1 in LT and MV, respectively. C) The graphs show RT-qPCR results expressed as fold change (2-ΔΔCt) for other transcripts possibly
involved in CA transport, i.e. PLT4, l(2)03659, ABCF2, MDR49 and ABCB6 in LT and MV, respectively
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with the activation of metabolic processes of sexually
mature male insects. Such a convergence may also de-
pend on the fact that males were in both cases collected
from field after their emerging period, maintained in la-
boratory at steady rearing conditions and kept nourished
on their natural host plants. The observed resemblance,
however, remains partly speculative, since, as in other
non-model insects [46], nearly 50–65% of recovered
transcripts were unannotated. This however likely con-
stitutes a valuable portion of transcriptomes to disclose
possible underlying differences, and, above all, to identify
proteins conferring peculiar adaptations to blister bee-
tles. Remarkably, we also observed that the number of
transcripts specifically upregulated in MRT and haemo-
lymph of both LT and MV was comparable (Fig. 2). This
outcome, again, might suggest a conservation of tran-
scriptomic responses in these two tissues to provide fun-
damental functions in both species, almost certainly
including those related to CA metabolism.

Gene expression and role of the male reproductive
system in CA biosynthesis
Overall, the transcriptome of MRT of both species
encompassed a large set of protein domains whose en-
richment was expected based on the fundamental role
that these organs play in insect reproduction. Dynein,
kinesin, microtubule-associated domains were the most
abundant protein families, plausibly involved in
mobilization of sperms, but also of secretory vesicles
(and of their associated lipid and protein-based content)

that were observed to replenish MAG [47]. Many other
domains were associated to germ-cell proliferation or,
more in general, to those developmental processes on-
going in reproductive organs of male insects, usually me-
diated by phosphorylation, nucleic acid regulation,
ubiquitination and induction of many signalling cascades
(as in T. castaneum) [48]. Among the latter, we observed
many kinases, as well as a group of neuralized-like ubi-
quitin ligases known to play roles in Notch pathway-
mediated cell fate decisions during development [49].
Furthermore, we also recorded carboxypeptidases that,
along with other peptidases (e.g. aminopeptidases and
trypsins in LT), are known to play a role in various as-
pects of male reproduction [50, 51].
Besides their reproductive functions, MRT, and par-

ticularly MAG, store large quantities of CA [13, 16–19].
However, MAG were recently disregarded as the site of
CA production, as the enzymes involved in the earlier
steps of CA biosynthesis were highly expressed in other
organs [19, 52]. In fact, HGMCR - a key enzyme of the
MVA pathway that directly alter the amount of down-
stream CA biogenesis in blister beetles [34] - showed a
60-fold higher expression in the CA-replenished fat body
of E. sibirica than in other tissues [19]. Additionally,
FDS, a key enzyme of the isoprenoid pathway synthesiz-
ing the farnesyl diphosphate (FPP), a precursor of vari-
ous essential isoprenoid end-products, was hitherto
found upregulated in the alimentary canal of males of H.
cichorii [52]. Coherently with these previous observa-
tions, HMGCR and FDS (as well as unigenes encoding

Fig. 5 RT-qPCR validation. Correlation between transcriptional abundance of 11 genes (in LT) and 10 genes (in MV) in both whole body and
dissected MRT samples, as revealed by RT-qPCR and RNA-seq. Level of abundance is defined as the ratio between each sample value over the
group median (mean FPKM and mean ΔCt for RNA-seq and RT-qPCR data, respectively) in both RT-qPCR and RNA-seq approaches. For both
techniques, statistical evaluation throughout Pearson test was performed and relative results are reported in the figure insets
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enzymes of the farnesol/farnesal-related branch of the
terpenoid synthetic pathway; Additional file 5: Table
S15) were both downregulated in MRT of LT and MV
(Fig. 3B; Additional file 5: Table S15). Remarkably,
among all, FDS appeared highly expressed in whole bod-
ies of both species (and particularly in MV; see Fig. 3
and Additional file 5: Table S15). Hence, as already sug-
gested [19, 52], FDS represents a plausible candidate
gene for the synthesis of CA (along with other terpe-
noids) in blister beetles.
It has also been hypothesized that CA may originate

from a JH-derived metabolite [35, 40]. In fact, silen-
cing of two enzymes of the JH pathway, i.e. MFE and
JHEH (but not JHAMT) caused a significant decrease
in CA concentration in 3-to-7 days post-mated males
of E. sibirica [35]. Hence, the JH III acid diol (a deg-
radation product of JH III; Fig. 3A) was hypothesized
as a potential precursor of CA [35]. JHs are sesquiter-
penoids normally synthesized by corpora allata and re-
leased into the haemolymph where they regulate larval
growth and metamorphosis [53]. In adults, JHs stimu-
late vitellogenesis and egg production in females [54]
and orchestrate both the courtship behaviour and
maturation of accessory glands in males [55, 56]. Since
MRT of blister beetles can be reached by JH through
the haemolymph, a degradation step of this hormone
favouring a downstream CA synthesis could theoretic-
ally take place in this organ. Transcripts encoding two
enzymes involved in the de novo synthesis of JH, i.e.
MFE and JHAMT, were overall scarcely expressed
(FPKM < 1) in LT and MV (Fig. 3B). This could imply
that the JH titre at time of collection on field of
(haemolymph-exuding) LT and MV was already ad-
equate to ensure both the onset of reproductive mat-
uration of males and CA renewal in their bodies. On
the contrary, the mRNA of the JH-degrading enzyme
JHEH was abundantly expressed in whole bodies of
males of both species (Fig. 3B). The active conversion
of JH into JH acid diol promoted by JHEH might serve
both to suppress JH signalling and response [57] and
supply JH-related metabolites to sustain CA biosyn-
thesis. Since both our RNA-seq and RT-qPCR analyses
confirmed that JHEH was significantly downregulated
in MRT of both species (Fig. 3B-C), this might indi-
cate that the JH-degrading route leading to CA was
not expressed very highly in MRT at the time the sam-
ples were captured and dissected (i.e. CA may not be
synthesized during the actual defence response, but
accumulated before emission) and/or that it may more
likely take place elsewhere in blister beetle body. Both
options are plausible as in males of E. sibirica the
highest transcript level of JHEH was observed 5th day
after mating - in a phase of high CA productivity -
and more significantly in the fat body [35].

Despite our data are coherent with previous findings
downsizing the importance of MAG in the biosynthesis
of CA, these might still constitutively express a key en-
zyme converting a linear terpenoid precursor into the
typical tricyclo-decane structure of CA in one of the very
latest steps of the biosynthetic pathway. Although we
failed to detect transcripts pertaining to IDS-related ter-
pene synthases - a family of enzymes known to perform
terpene cyclization in insects [45] – some other over-
looked biochemical processes converting a final metab-
olite delivered through the haemolymph, could
eventually take place in MAG and contribute to accu-
mulate CA in this organ. To conclude, it is worth to re-
mark that tailored genomic analyses on fat bodies will be
necessary to possibly identify the missing enzymes of the
endogenous biochemical pathway. Anyhow, the here-
provided transcriptomes of MRT still could represent a
valuable background to uncover some still-unexplored
enzymatic mechanisms related to CA de novo biosyn-
thesis in blister beetles.

Possible mechanisms preventing self-intoxication from CA
in blister beetles
CA is a potent toxin binding to protein phosphatase 2A,
a metabolic constituent of all eukaryote cells [58]. Then,
regardless of where CA is synthesized, mechanisms to
cope with its toxicity should exist in the accumulating
MAG, but, in general, in tissues and organs that interact
with this terpene. In insects, toxicokinetic detoxification
of lipophilic xenobiotics is typically achieved in two
phases: i) Phase I, consisting in oxidation-reduction re-
actions converting the xenobiotic into a polar compound
and generally performed by Cyp450s, carboxylesterases,
alcohol/aldehyde dehydrogenases, hydroxylases and per-
oxidases, and ii) Phase II, consisting in the subsequent
conjugation of the (polar) degradation product with an
endogenous compound (sugars, amino acids, or glutathi-
one) usually accomplished by glucosyl-transferases, acyl-
transferases and glutathione S-transferases (GST) [59–
61]. Logically, it would not be beneficial for blister bee-
tles to activate Phase I and Phase II detoxification strat-
egies in CA storing organs, because that would alter or
inactivate a de novo synthetized and advantageous ter-
pene. Consistently, although Cyp450s and other Phase I
and II enzyme-related domains were abundant in whole
transcriptomes of both LT and MV (Fig. 1A) - as ex-
pected in phytophagous insects protecting themselves
against the detrimental effects of secondary metabolites
of plants [62] - these were not significantly over-
represented in MRT (Additional file 4: Table S11-S12).
Then, other self-protective strategies are more likely
than direct detoxification, such as sequestration of toxic
compounds in intracellular compartments (Phase III), an
additional mechanism which several insects evolved to
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tolerate xenobiotics [63–65]. Indeed, the observation of
numerous replenished vesicles inside the cells of the
glandular epithelia of MAG and vasa deferentia of M.
proscarabeus [47] could support a compartmentalization
strategy of CA.
Phase III is operated in many organisms by membrane

transport proteins belonging to ATP-binding cassette
(ABC) transporters or solute carrier proteins of the
Major Facilitator Superfamily (MFS) [66, 67]. ABC trans-
porters are amongst the largest carrier families present
in many phyla [68] and known to be involved in detoxi-
fication in insects [69], whereas only recently MFS have
been demonstrated to mediate xenobiotic resistance in
arthropods [70–72]. Again, in phytophagous insects,
proteins of both families can prevent the interference of
chemical plant defences with physiological processes [46,
73]. The inspection of LT and MV orthologous unigenes
upregulated in MRT allowed detecting some conserved
transcripts encoding ABC and MFS proteins, as well as
members of other protein families involved in the
mobilization of small solutes (Fig. 4A; Additional file 5:
Table S16). These transporters might function in the
loading of MAG or other secretory reproductive tissues
with seminal fluid components (e.g. prostaglandins,
lipids, peptides, hormones) [74, 75]. Along with trans-
portation of seminal fluid substances, some of these pro-
teins could have also evolved the ability in blister beetles
to sequester and concentrate CA (or noxious CA precur-
sors) into the vesicles of MAG to ensure protection of
MRT. More likely, to prevent damages, ABC or MFS
proteins could shuttle into MAG a chemically deacti-
vated form of CA carried by the haemolymph, such as,
for example, an endogenously produced glycosylated
intermediate. Alternatively, the inward transportation of
a diet-acquired glycosyl donor from haemolymph could
serve to deactivate a noxious CA precursor in MRT.
Noteworthy, both the complete absence of a cuticular
partitioning and the labyrinthine lacunar system ob-
served in the third MAG pair of Meloe proscarabeus
[47] might support the absorption and vehiculation of
substances from the haemolymph into blister beetle
MRT.
Among LT and MV orthologous transporters upregu-

lated in MRT, the proton-coupled folate transporter,
sugar transporter SWEET1, sodium-coupled monocar-
boxylate and choline transporter-like protein 1 (Fig. 4A-
B) echoed the panel of proteins governing the sequestra-
tion of the plant-derived phenolic glycoside salicin in
larvae of Chrysomela populi [76]. By feeding on plants,
larvae of this leaf beetle sequester salicin that reaches a
specialized closed and chitin-coated defensive glandular
reservoir via the haemolymph. In larval defensive glands
the acquired glycoside is then enzymatically converted
into a biologically active form, the salicylaldehyde, which

is emitted as a deterrent [77–79]. Actually, the enzym-
atic conversion of a glycosidic precursor gathered dir-
ectly from plants is considered a recent novelty evolved
in leaf beetles to release toxins in a safe manner. In more
ancestral leaf beetle groups, such as in Phaedon
cochleariae Fabricius, 1791 and Gastrophysa viridula De
Geer, 1775, monoterpenoids (iridoids) are de novo
synthetized [80–82] through the conversion of an
autonomously-produced 8-hydroxygeraniol-8-O-β-d-
glucoside into the iridoids in the glandular reservoir,
where cleavage and toxin release occur [81]. Likewise, to
readily avoid the hazardous effects of an endogenously
produced toxic terpene, glycosylation of a CA precursor
should occur autonomously in blister beetles, without
having to rely on sequestering compounds from diet.
Therefore we hypothesize that, in order to circumvent
the auto-intoxicative effects of CA, blister beetles might
shuttle autonomously-synthetized CA glycosylated pre-
cursors from haemolymph into MAG. Remarkably, the
enrichment in both species of glycosyl transferase do-
mains in the transcriptomic repertoire of haemolymph
(i.e. pf03360 in LT and Pf04666 in MV, Additional file 4:
Table S13-S14) could support the transfer of a sacchar-
ide moiety to a circulating CA precursor.
Five other unigenes of ABC and MFS transporters

which might play a role in sequestration mechanisms
were identified using a more ‘relaxed’ threshold (i.e.
FDR < 0.01) (Fig. 4A,C). Specifically, three of them
(PLT4, l(2)03659, ABCF2) were significantly upregulated
in MRT as compared to whole body (Fig. 4C) and, then,
deserve further attention to understand their role in
detoxification.
Whatever the biochemical mechanism to prevent dam-

ages in the storing organs, the auto haemorrhage re-
sponse requires a rapid release of CA in the
haemolymph to reach the intersegmental membranes of
blister beetle appendages and be discharged externally.
Then, once the behavioural response is triggered, a
mode of transport in the haemolymph capable of miti-
gating the toxicity of a released and free-circulating CA
in beetle tissues should also be expected. Among the
proposed carriers, lipocalins have been regarded as po-
tential CA-binding proteins able to simultaneously carry
out roles related to both transport and detoxification in
blister beetle haemolymph [21, 22]. Insect lipocalins bind
a variety of lipophilic (endogenous or exogenous) com-
pounds and are involved in many functions, among
which olfaction, pheromone transport and metabolite
(e.g. retinoic acid) binding [83]. Among the three LT
and MV orthologous lipid-binding proteins upregulated
in haemolymph, one was related to a phorbol ester/diac-
ylglycerol binding protein unc-13 (whose possible role is
discussed in the next paragraph), but two were, as previ-
ously hypothesized [21], associated to lipocalins (Fig.
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4A). We specifically identified: (i) a possible homolog of
apolipoprotein D (ApoD) (Fig. 4A), a lipocalin associated
with high-density lipoproteins playing fundamental roles
in lipid metabolism or in binding for progesterone and
arachidonic acid in humans [84] and, (ii) a low-density
lipoprotein receptor (MALRD1) (particularly abundant
in LT haemolymph) able to bind to ligands (such as
lipocalins) and internalize them through receptor-
mediated endocytosis [85]. Among these two, ApoD was
previously found transcriptionally induced in T. casta-
neum in response to the injection of crude lipopolysac-
charide [86] or upon septic injury [87], thus suggesting a
role of this protein in both immunity and stress re-
sponses in tenebrionid beetles. Hence, under stressful
conditions, ApoD could be strongly upregulated in
haemolymph of blister beetles. Once there, this protein
could bind the released CA and deliver it outward dur-
ing the autohaemorrhaging exudation. Since substrate
binding abilities of lipocalins are broad [83], more tai-
lored approaches are needed to confirm this hypothesis.

Haemolymph-specific transcriptomes and possible
molecular adaptation to reflex-bleeding
Blister beetles, if stressed, exude viscous-oily droplets of
haemolymph from the autohaemorrhaging tissues, and
this represents the manner they externally emit CA.
The autohaemorrhaging behaviour requires efficient

coagulation and integument repairing mechanisms to
minimize haemolymph loss [5]. Moreover, wounds in
the intersegmental membranes provoked by increased
haemolymph pressure are exposed to the attack of path-
ogens, which challenge the immunity system.
In insects the haemostatic system serves to stop bleed-

ing, prevent microbial entry and favour wound sealing
and healing. The first step in clotting formation in ar-
thropods is achieved by the release of structural clot
components following haemocyte degranulation. Among
the most represented motifs in LT and MV haemolymph
proteins (Table 5), we identified Von Willebrand Factors
(vWF), C8 and trypsin inhibitor-like cysteine rich do-
mains, typical of structural clotting proteins of arthro-
pods [88, 89]. We also retrieved several transcripts
encoding haemocytins - multidomain insect humoral
lectins homologous to the mammalian vWF [90, 91] -
owning vWF, C8 and trypsin inhibitor-like cysteine rich
domains (Table 5) and that likely represent the main
structural glycoproteins involved in coagulation of blister
beetle haemolymph. We also found many transcripts re-
lated to calcium-dependent transglutaminases (i.e. hae-
mocyte protein-glutamine gamma-glutamyltransferase)
and prophenoloxidases (PPO), two protein classes
known to cross-link the structural components in insects
to harden the clot [88, 89]. The PPO-activating system
constitutes an important component of insect defence

mechanisms [92]: in fact, PPO released by haemocytes
via a proteolytic cascade promotes the oxidation of
phenolic molecules to produce melanin around invading
pathogens and wounds [88, 89, 93]. We also observed
other factors possibly engaged in coagulation and innate
immunity, among which Spätzle and Laminin. Spätzle is
a structural homolog of coagulogen, a clotting protein
and functional equivalent of fibrinogen from horseshoe
crab [94], but also a key regulator of the Toll pathway,
leading to the expression of genes involved in immune
defence to gram-positive bacteria and fungi [95]. Lami-
nins are extracellular matrix glycoproteins of the basal
lamina [96] but were demonstrated to interact with in-
vading parasites and to play a dual role in immunity by
both maintaining the basal levels of complement in the
haemolymph and promoting the production of comple-
ment components through the interaction with LRIM1,
as demonstrated in Anopheles gambiae Giles, 1902 [97].
Filamin, fascin, mucin and vinculin were among the

most abundant domains in LT and MV haemolymph
(Table 5; Additional file 4: Table S13-S14). Since these
domains are typical of actin-bundling proteins producing
gelation factors [98, 99], they could be responsible for
the emission of the exuded haemolymph in the form of
a mutable (liquid to solid) viscous-elastic oily substance
in blister beetles. However, we cannot exclude that such
factors might somehow be involved in tissue morpho-
genesis and repair following the autohaemorrhaging
damage [100]. These repairing functions could also be
performed by thymosines, whose domains were highly
represented in the haemolymph of the two analysed spe-
cies (Table 5). Thymosin β4, in particular, is associated
with tissue repair and cell migration in vertebrates [101],
albeit still scarcely characterized in insects [102]. Thy-
mosines are also known to regulate haemopoietic stem
cell proliferation and differentiation in crustaceans [103].
Indeed, haematopoiesis is expected to be enhanced after
injury-induced haemolymph loss and nonself challenge
[104] and an increased level of mitosis is also likely to
occur within the hematopoietic tissue by immune stimu-
lation [105]. Coherently, we found many domains related
to mitosis (Table 5), such as mini-chromosome mainten-
ance (MCM) proteins involved in chromosome
replication.
We also detected some over-represented protein do-

mains related to the diacylglycerol (DAG) /phosphatidic
acid (PA) signalling pathway [106], i.e. diacylglycerol ki-
nases (RalGDS/AF-6 and C1 domains), pleckstrin hom-
ology (PH) and PDZ-related proteins (Table 5;
Additional file 4: Table S13-S14). The high representa-
tion of diacylglycerol kinases (and the upregulation of
inositol 1,4,5 triphosphate phosphatase-related tran-
scripts; Additional file 2: Table S4, S6) could indicate an
active conversion of DAG to PA [107], the latter being

Fratini et al. BMC Genomics          (2021) 22:808 Page 16 of 24



the main substrate of two major constituents of cell
membranes in eukaryotes, i.e. phosphatidylcholine and
phosphatidylethanolamine [108]. PA is also known to ac-
tivate the phosphoinositide signalling pathway [109]
regulating many cell activities through the direct inter-
action of phosphoinositides with membrane proteins or
by membrane recruitment of cytosolic proteins contain-
ing e.g. PH and PDZ domains able to bind phosphoino-
sitides [110, 111]. Phosphoinositide signalling triggers
cell proliferation and survival, but also induces cytoskel-
etal changes and actin remodelling for vesicle trafficking,
membrane dynamics (and ruffling), cell division/cytokin-
esis and migration [112]. Hence, among all possible roles
of DAG/PA signalling pathway, the increase of PA and
the activation of phosphoinositide-induced processes in
our target species could respond to the need of repairing
cells and remodelling tissues damaged after autohaemor-
rhaging. These processes could also be sustained by the
activity of multiple Rap/Rho GAP and Rho GEF-
containing proteins (Table 5; Additional file 4: Table
S13-S14), known to regulate cytoskeletal rearrangements
necessary for cell-shape change, cell adhesion and migra-
tion [113]. More tailored investigations, however, are
needed to clarify if the activation of the above-
mentioned signalling pathways could have any role in
blister beetle autohaemorrhaging response.
Finally, we observed several proteins exhibiting mul-

tiple C2 domains (Table 5). These Ca2+-dependent
cysteine-rich modules, binding phospholipids and target-
ing cell membranes, are involved in several signal trans-
duction cascades or membrane trafficking [114]. In LT
and MV haemolymph C2 domains were mostly repre-
sented by transcripts annotated as Multiple C2 domain/
Transmembrane region Proteins (i.e. MCTP, containing
three consecutive C2 and a peroxin-like domain),
synaptotagmin-1, phorbol ester/diacylglycerol binding
protein unc-13 homolog B and Protein Kinase C. The
exact homology and function of these transcripts need
to be verified, since the presence of multiple-C2 domain
proteins, synaptotagmin-1 and unc-13 homologs in in-
sect haemolymph is rather unusual. In fact, in inverte-
brates these molecules are expressed in synaptic vesicles
of the nervous system, where they regulate the secretion
of neurotransmitters [115, 116]. Noteworthily, MCTPs
were found expressed in the accessory cells of the olfac-
tory organs of Drosophila and supposed to be secreted
into the sensillum lymph that surrounds the olfactory re-
ceptor neuron dendrites [117]. If further analyses will
confirm the homology of the retrieved transcripts with
proteins involved in neuronal functions, then circulating
MCTP, synaptotagmin-1 and unc-13 could neuromodu-
late the response to autohaemorrhaging ruptures starting
from peripheral sensory organs placed in legs and anten-
nae where these damages more often occur. These

findings, if corroborated, could inform about the exist-
ence of a ‘neuronal alarm system’ allowing blister beetles
to rapidly activate repairing functions and minimize
haemolymph loss.

Conclusions
This study provided a high quality de novo assembly of
LT and MV male transcriptomes, a valuable genetic re-
source to explore some of the still enigmatic aspects of
blister beetle biology. By specifically producing transcrip-
tomes of two tissues steadily in contact with CA, i.e. the
MRT and haemolymph in two species, we were able to
draw some hypotheses on the mechanisms employed by
these insects to guarantee a safe storage, circulation and
autohaemorrhaging emission of CA. We were also able
to identify for the first-time a panel of haemolymph fac-
tors expressed in the reflex-bled exudate of blister bee-
tles. Finally, we contributed to characterize the
expression levels in MRT and haemolymph of genes so-
far known to be involved in the autogenous production
of CA in two species never investigated thus far.
The precise mechanisms allowing CA to be accumu-

lated in MRTs and released into the haemolymph with-
out causing damages to internal tissues of blister beetles
are still elusive. In this regard, we here propose that se-
questration through ABC, MFS or solute transporters of
a purported glycosylated CA precursor could avoid
auto-intoxication after accumulation in MAG of this ter-
pene. We also identified some abundantly expressed
lipocalins that could vehiculate and mitigate the reactiv-
ity of a freely circulating CA in the haemolymph during
the autohaemorrhaging response. Future tailored studies
aimed at verifying these hypotheses and/or definitively
identifying factors granting self-protection in blister bee-
tles would shed light on one of the most intriguing as-
pects of their biology. Nonetheless, unveiling these
mechanisms would be of great help to design innovative
drug-delivery systems for a safe therapeutic application
of CA in medicine. As for gene upregulation in haemo-
lymph, we detected many factors involved in coagulation
and integument repairing mechanisms in blister beetles.
Their over-representation possibly reflects the need to
limit the fluid loss due to the reflex-bleeding behaviour,
a possible common adaptation in autohaemorrhaging in-
sects [5] which is worth to be further analysed in an evo-
lutionary perspective. Finally, respect to CA biosynthesis,
our results are coherent with recent literature excluding
a leading role of MRT in CA production at both its up-
stream biosynthetic steps (i.e. MVA pathway) and those
related to JH catabolism. Yet, in MAG, overlooked bio-
chemical mechanisms converting a final terpenoid inter-
mediate into the tricyclo-decane skeleton of CA cannot
be excluded. Future research efforts shall be focused to
elucidate the final phases of the CA biosynthetic
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pathway and candidate organs where these latest enzym-
atic steps may occur.

Methods
Beetle sampling
Males of LT (tot. n. = 45, all labeled: Lazio, Roma, Tolfa,
Rio Fiume, 42°03′36″N 11°56′50″E, 75 m) and of MV
(tot. n. = 69; 56 labeled: Lazio, Roma, Tolfa, Piantangeli
- Grasceta dei Cavallari, 42°10′52″N 11°56′30″E, 440 m;
13 labeled: Abruzzo, Pescara, Popoli, R.N. Sorgenti del
Pescara, 42°10′41″N 13°48′36″E, 350 m) were collected
in Central Italy in June–July 2019 by hand-picking the
specimens while resting on flower stems (mainly of Dip-
sacaceae and Asteraceae) during the warmer hours of
the day. Specimens were identified on field by the tax-
onomist of our research team (MAB) using taxonomic
keys (Bologna 1991). Conspecific individuals were sexed
by examining the last ventrite shape (deeply emarginated
in males) and immediately placed in fauna-boxes with
either a paper or soil bottom and provided with sand.
All specimens were then transported to laboratory and
kept alive for 1–2 days or, at most, a week, and fed daily
with fresh flowers (e.g. Knautia sp.) and fruits (e.g. apple
slices).

Collection of tissues
The ‘whole body’ (or ‘total transcriptome’) reference set
was constructed by immediately storing in TRIzol Re-
agent (Thermo Fisher Scientific, Wilmington, DE, USA)
9 males of both LT and MV (18 specimens in total). Bio-
logical replicates were obtained by sub-dividing the
stored males in 3 pools, each composed by 3 individuals
per species. Haemolymph from the remaining 36 LT and
60 MV was gathered after cutting the apical antenno-
mers and applying a light pressure on the abdomen to
facilitate the release of droplets from the cut areas. In
case of poor haemolymph emission, cuts were also per-
formed in the tarsal part of one or more legs. Haemo-
lymph droplets were collected in ice-kept 1.5 ml
Eppendorf vials filled with 1 ml TRIzol Reagent. Each of
the three biological replicates of haemolymph was as-
sembled from 12 LT and 20 MV, respectively. After
haemolymph extraction, the MRT from 15 (out of 36)
LT and 15 (out of 60) MV were dissected, and 3 bio-
logical replicates composed by 5 of each were generated.
Each specimen was put in a sterile Petri dish and quickly
dissected with scissors and tweezers under a stereo-
microscope. Ventrites were removed to expose the male
internal genitalia and a drop of RNase-Free water was
added to facilitate the isolation of MAG from the con-
tiguous internal organs. After their dissection, the three
pairs of MAG, testicles and vasa deferentia were gently
pulled out with tweezers and put in 1.5 ml vials (Eppen-
dorf) kept on ice with 1ml TRIzol.

RNA extraction, quantification and sequencing
Total RNA from tissues was isolated using a TRIzol-
based procedure (Thermo Fisher Scientific, Wilmington,
DE, USA). Total bodies were grounded in a sterile cer-
amic mortar using liquid nitrogen to obtain a fine pow-
der, and then homogenized in 1 ml of TRIzol Reagent.
Pooled tissues of haemolymph and MRT were lysed dir-
ectly in TRIzol by pipetting the lysate several times until
complete homogenization. RNA concentration and pur-
ity were determined by measuring absorbance using
NanoDrop 2000 Spectrophotometer (Thermo Fisher Sci-
entific, Wilmington, DE, USA). 1 μg of total RNA was
run on a 1% denaturing gel to verify RNA integrity. For
each sample (‘pool’, see above) 10 μg (from total body or
MRT) or 1–4 μg (from haemolymph) of high-quality
RNA (RIN value > 8) was sent to IGA Technology Ser-
vices s.r.l. (Udine, IT) for mRNA-seq stranded library
preparation, validation, and sequencing, resulting in 9 li-
braries for each species. A 2 × 150 bp paired-end se-
quencing was performed using a NovaSeq 6000 System
(Illumina, San Diego, California, USA) with a depth of
about 30 million (haemolymph and MRT) or 60 million
(total body) of reads per sample. Data generated in the
present study are available in the Sequence Read Archive
(SRA) database of NCBI (http://www. ncbi.nlm.nih.gov/
sra) under bioproject number PRJNA674987.

De novo transcriptome assembly, abundance estimation
and differential expression analysis
Read quality was assessed by FastQC software v0.11.4
(http://www.bioinformatics.babraham.ac.uk) and read
quality trimming was performed by Trimmomatic soft-
ware (v0.32) [118]. The whole quality-trimmed read
dataset (including reads from all tissues and body sam-
ples) for each species, concatenated into two paired
FASTQ files, was de novo assembled using the Trinity
software (release 2.3.2) [119, 120] with default parame-
ters and --SS_lib_type RF, −-jaccard_clip, −-normalize_
reads, −-min_contig_length 400 flags set on the ADA
Server at the Department of Biology, University of Na-
ples Federico II (24 cores, 256 GB of memory) [121].
The quality of the assembled transcriptomes was
assessed by BUSCO (v3.0.1) pipeline [122]. Transcript-
level quantification for each sample was performed using
RSEM software [123] and Bowtie aligner [124], as imple-
mented in the Trinity software package. Quality control
between RNA-seq replicates was performed using the
PtR Trinity perl script (v0.32); very good correlation
scores (R2 > 80) were obtained for all replicates in both
species, except for the third replicate from total body tis-
sue of LT that was excluded from subsequent analyses.
DGE analysis was performed using edgeR software [125],
which uses a negative binomial model for differential ex-
pression analysis, with cut-off values of FDR (False
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Discovery Rate) < 0.001 and FC (Fold Change) > 2. FDR =
p-value adjusted for multiple testing with the
Benjamini-Hochberg procedure.

Functional annotations
The functional categories present in the two assembled
transcriptomes were investigated and summarized using
Annocript pipeline (https://github.com/frankMusacchia/
Annocript) [126] and UniProtKB reference database.
The longest transcript of each Trinity gene cluster was
employed as representative for the annotation. We per-
formed the following similarity searches: BLASTX
against TrEMBL/UniRef and SwissProt (parameters: e-
value 1E-5, threshold 18, wordsize 4), RPSBLAST against
CDD profiles (parameters: e-value 1E-5), BLASTn
against Rfam and rRNAs (parameters: e-value 1E-5). GO
(Gene Ontology) and PFAM annotations were obtained,
for each transcript, using default Annocript pipeline
parameters. The enrichment analysis was then per-
formed on the GO and PFAM terms of DE tran-
scripts, identified by edgeR in each pairwise tissue
comparisons and for each species, using Annocript
and the Fisher Exact Test (adjusted p-value < 0.01) in
[R] package (www.R-project.org).

Manual BLAST searches for genes putatively involved in
CA biosynthesis
Manual searches were performed to detect unigenes that
coded enzymes supposed to be involved in CA regula-
tion in blister beetles and mapped in the ‘terpenoid
backbone’ (map 00900) and ‘insect hormone’
(map 00901) biosynthetic pathways of Kyoto
Encyclopedia of Genes and Genomes (KEGG; www.
genome.jp/kegg). tBLASTn searches were run on LT
and MV transcriptomes by using Tribolium (Tenebrio-
noidea: Tenebrionidae) or preferentially (when available)
Epicauta or Hycleus (Tenebrionoidea: Meloidae) protein
sequences deposited in GenBank (and reported in detail
in Additional file 5: Table S15) as a query. Among tran-
scripts showing the highest matching scores (and lowest
e-values), only those aligning with more than a half of
residues of the query length and showing an identity
percentage > 60% were considered. To confirm these re-
sults, manual BLASTn searches were also performed
using the same matching threshold against LT and MV
transcriptomes for the subset of genes whose mRNA se-
quences were available in Genbank for Epicauta and/or
Hycleus. Transcripts with the highest scores and identity
percentages for the searched gene (thus, representing
the most plausible closest orthologs) and with FPKM> 1
for at least one of the three entries i.e. body (B), haemo-
lymph (H) and male reproductive tract (MRT), were
retained; if all variants of the “best orthologs” scored
FPKM< 1, these were all reported.

Comparative analysis of LT and MV orthologs to identify
genes involved in CA deactivation and/or transport
Based on the assumption that proteins responsible for
CA detoxification in the accumulating organs should be
conserved across species, we optimized the selection of
candidate genes by searching for putative orthologous
transcripts upregulated (FDR < 0.01) in MRT versus
body samples of both LT and MV. Similarly, we
searched for orthologous transcripts upregulated in
haemolymph versus body samples of both species to
identify possible transport-related proteins. The two
MRT upregulated transcript lists, and the two haemo-
lymph upregulated transcript lists were pairwise com-
pared using a Best Reciprocal BLASTn Hit approach
with a custom Perl script and a coverage cutoff of 30%
and an e-value cut-off of 0.01. To detect potential CA
detoxifying enzymes or transporters, we selected com-
mon upregulated transcripts in MRT and haemolymph
containing functional protein domains typical of: i) en-
zymes participating to the modification/degradation of
apolar xenobiotics (e.g. CypP450s, carboxylesterases,
hydroxylases, peroxidases, GSTs, glycosyl transferases
and acyltransferase), ii) transporters involved in seques-
tration of terpenes/drugs and/or xenobiotics in insects
(e.g. ABC-transporters, Multidrug-resistance and MFS
proteins [66, 127] and iii) small solute carriers. Add-
itionally, we searched for common upregulated tran-
scripts in haemolymph encoding proteins previously
hypothesized to bind and mobilize CA, such as lipo-
phorins, apolipoprotein, lipocalins and General Odor-
ant Binding Proteins [21, 22]. After manual inspection,
we selected candidate orthologous transcripts from a
broader list provided by the ‘Best Reciprocal Hit’ output
including 483 and 283 unsorted pairs of transcripts
from gonads and haemolymph, respectively. In doing
so, all “unknown transcripts” which failed to receive a
functional domain by the automatic annotation proced-
ure were further scanned using InterProScan [128] and
HHpred [129].

Validation of transcripts by RT-qPCR
Total RNA was extracted from whole bodies and dis-
sected MRT to obtain three novel replicates for RT-
qPCR analysis. 1 μg of total RNA extracted from MRT
and whole body samples was retro-transcribed into
cDNA by SuperScript™ III Reverse Transcriptase
(Thermo Fisher Scientific, Wilmington, DE, USA), fol-
lowing the manufacturer’s instructions. The RT-qPCR
was performed using the SsoAdvanced™ Universal SYBR®
Green Supermix (BIO-RAD Laboratories Inc., Hercules,
CA, USA), according to manufacturer’s instructions.
Amplifications were conducted for: i) β-Actin (β-ACT),
Ribosomal Protein S7 (RP S7), as reference genes; ii) Ju-
venile hormone acid O-methyltransferase (JHAMT),
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Methyl farnesoate epoxidase (MFE), Juvenile hormone
epoxide hydrolase (JHEH) of the JH pathway; iii)
Proton-coupled folate transporter (PCFT), Sugar trans-
porter Sweet 1 (SWEET1), Sodium monocarboxylate
cotransporter 1 (SMCT1), Choline transporter-like pro-
tein 1 (SLC44A1), as potential orthologs of salicin
sequestring proteins of C. populi); iv) Polyol transporter
4 (Polt4), Probable multidrug resistance-associated pro-
tein lethal (2)03659 (l(2)03659), Multidrug resistance
protein homolog 49 (MDR49), ATP-binding cassette
sub-family F member 2 (ABCF2), ATP-binding cassette
sub-family B member 6 (ABCB6), as other (MFS/ABC)
transporters of interest. Specific primers pairs were de-
signed (Additional file 6: Table S17). All reactions were
performed in triplicate in the Corbett Rotor-Gene 6000
(Qiagen, Hilden, Germany) and relative quantification
was carried out with the ΔΔCT method [130] using the
abundance of RPS7 mRNA as endogenous housekeeping
control. The relative transcription levels as obtained by
RT-qPCR analyses were therefore compared with abun-
dance levels as detected by RNA-seq (FPKM, fragments
per kilobase of exon model per million reads mapped -
the same values employed to produce the Heat Maps in
Fig. 3-4). Values from replicate experiments were aver-
aged. Finally, to obtain values suitable for statistical
comparisons, we calculated (for each gene) a fold-
change (FC) value as the ratio of abundance of each
transcript (ΔCt and FPKM for RT-qPCR and RNA-seq,
respectively) over the group median. These values (plot-
ted after conversion in log2 numbers) were used to
evaluate the correlation between RNA-seq and RT-
qPCR methods, applying statistical evaluation through-
out the Pearson test (by using the Prism GraphPad
software).
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