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Abstract: Silibinin is the main biologically active component of silymarin extract and consists of a
mixture 1:1 of two diastereoisomeric flavonolignans, namely silybin A (1a) and silybin B (1b), which
we call here silybins. Despite the high interest in the activity of this flavonolignan, there are still few
studies that give due attention to the role of its stereochemistry and, there is still today a strong need
to investigate in this area. In this regard, here we report a study concerning the radical scavenger
ability and the antiproliferative activity on different cell lines, both of silybins and phosphodiester-
linked silybin dimers. An efficient synthetic strategy to obtain silybin dimers in an optical pure form
(6aa, 6ab and 6bb) starting from a suitable building block of silybin A and silybin B, obtained by
us from natural extract silibinin, was proposed. New dimers show strong antioxidant properties,
determined through hydroxyl radical (HO•) scavenging ability, comparable to the value reported for
known potent antioxidants such as quercetin. A preliminary screening was performed by treating
cells with 10 and 50 µM concentrations for 48 h to identify the most sensitive cell lines. The results
show that silibinin compounds were active on Jurkat, A375, WM266, and HeLa, but at the tested
concentrations, they did not interfere with the growth of PANC, MCF-7, HDF or U87. In particular,
both monomers (1a and 1b) and dimers (6aa, 6ab and 6bb) present selective anti-proliferative activity
towards leukemia cells in the mid-micromolar range and are poorly active on normal cells. They
exhibit different mechanisms of action in fact all the cells treated with the 1a and 1b go completely
into apoptosis, whereas only part of the cells treated with 6aa and 6ab were found to be in apoptosis.

Keywords: silybin; silibinin; flavonolignan dimers; radical scavenger of ROS; apoptosis; leukemia cells

1. Introduction

Oxidative stress can cause cell injury and death, which may be related to numerous
diseases and conditions, such as liver damage, aging, cancer, stroke, Alzheimer’s disease,
and Parkinson’s disease [1,2]. The well-known capability of flavonoids to scavenge reactive
oxygen species (ROS) is frequently cited as the key property underlying the prevention of
and/or reduction in oxidative stress-related chronic diseases and age-related disorders,
such as cardiovascular diseases, carcinogenesis, and neurodegeneration. However, many
studies have suggested that the therapeutic activity of these compounds involves other
properties their ability to directly bind to target peptides [3], inducing the inhibition of key
enzymes, the modulation of cell receptors or transcription factors, as well as the perturba-
tion of protein (or peptide) aggregates, who are known to regulate many cell functions.
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Flavonoids have a broad spectrum of biological activities and administering high
dosages could trigger side effects. One strategy to improve the potency and selectivity of
flavonoids is to take advantage of the dimeric nature of biflavonoids, thereby facilitating
simultaneous interactions through the binding of multiple sites of a biological target [4–6].
Similar to flavonoid dimers, flavonolignan dimers or simply bi-flavonolignans are also an
emerging class of dimeric compounds that unlike bi-flavonoids, which are very widespread
in nature, consist of synthetic dimers of few flavonolignans isolated from the milk thistle
Silybum marianum [L. Gaertn. (Asteraceae)] [7]. In this frame, recently we reported the
synthesis of new silibinin dimers in which the two monomer units are linked through a
phosphodiester bridge, between two aliphatic OH functions (Phosphate-Linked Silybin
dimers, Figure 1) [8].
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Figure 1. Structure of silibinin (1ab), silybin A (1a), silybin B (1b) and Phosphate-Linked Silybin
dimers (PLSd) [8].

Silibinin is a diastereoisomeric mixture of two flavonolignans, namely, silybin A (SilA)
and silybin B (SilB) (1a and 1b, Figure 1), in a ratio of approximately 1:1, extracted from
milk thistle seeds [9,10]. Silibinin has been used as a traditional drug to treat a range
of liver disorders, including hepatitis and cirrhosis. The manifold inhibitory effects of
silibinin against various cancer cells include growth inhibition, anti-inflammation, cell
cycle regulation, apoptosis induction, chemo-sensitization, inhibition of angiogenesis,
reversal of multi-drug resistance, and inhibition of invasion and metastasis [11,12]. Many
in vitro and in vivo reports on the activity of silibinin, clearly neglect the structure-activity
relationship of the pair of diastereoisomers, using silibinin, the natural mixture of the two
flavonolignans SilA and SilB, for all experiments. These studies have mostly disregarded
this aspect because of the difficulty separating, on a preparative scale, two diastereoisomers
(1a and 1b). In the 2021 a very in-depth study by Kren et al. [13] on the central role of
stereochemistry in the pharmacological properties of silybin, highlights how it is necessary
to continue studying these flavonolignans, together with the other silymarin flavonolignans,
never neglecting their optical purity.

As a part of our continuing research effort on the synthesis of newly modified silib-
inin [14–16], in 2017, starting from silibinin (1ab), dimers 3-3, 3-9′ ′ ′ and 9′ ′-9′ ′ phosphodi-
ester were obtained (Figure 1) [8]. Dimers, obtained as mixture of diastereoisomers, were
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very soluble in water and stable in both human serum and alkaline phosphatase. Despite
silibinin (1ab) and silybins (1a and 1b) [17,18] not having strong antioxidant activity, dimers
9′ ′-9′ ′ showed a strong radical-scavenging ability. In particular, the ability to scavenge 1O2
in H2O was tested, and a higher reactivity towards HO• (about two times) was estimated
for the 3-9′ ′ and 9′ ′-9′ ′ dimers with respect to silibinin. Starting from these results, it seemed
interesting to investigate the structure–activity relationships of dimers 9′ ′-9′ ′, obtained
from diastereoisomerically pure silybin monomers (SilA 1a and SilB 1b, Figure 1).

Herein, we report an improvement of 9′ ′-9′ ′ PLSd dimers synthesis and a systematic
study on the ability to scavenge HO• radicals as well as their antiproliferative effect on many
human tumor cell lines of different histological origins or metastatic potential. Human
dermal fibroblasts (HDFs) were used as healthy cells to evaluate the selectivity of action
of the examined metabolites towards tumor cells. Furthermore, apoptosis induction was
investigated in leukemia cells treated with the examined compounds.

2. Results and Discussion
2.1. Synthesis of 9′ ′-9′ ′ Phosphodiester Silybin Dimers 6

To deepen our research efforts on 9′ ′-9′ ′ phosphodiester silybin dimers, we chose to
improve the efficiency of the initially proposed synthetic strategy [18–20]. For the synthesis
of these highly symmetrical dimers, it was advantageous to start from the intermediate 9′ ′-
OH of the silybins; therefore, it was necessary to review the previously reported synthetic
strategy [8].

In the previous method, the synthesis involves the regioselective protection of different
OH functions of silybin with isobutyryl chloride, but it is laborious and not very efficient
(yields ≤ 20%) [7]. To develop an efficient synthetic strategy and highlight the effects of
stereochemistry on biological activity, we started from two pure diastereoisomers, silybin
A and silybin B (1a and 1b), obtained by our own silibinin purification protocol [21].

Initially, we converted silybins (1a and 1b) into their 9′ ′-ODMT ether (Scheme 1)
and then applied exhaustive acylation with an excess of isobutyryl chloride in DCM
and pyridine. Fully protected silybins were obtained in good yields (65–68% range, see
Materials and Methods section). The next treatment with 1% I2 in MeOH allowed the
removal of the DMT protecting group to give 2 (2a or 2b, Scheme 1) in 90% and 88% yields,
respectively [22]. Unlike our previously reported observations during formic acid depro-
tection [19,20,23], side deprotection products were not observed with this procedure. In
addition, deprotection was highly reproducible and very efficient. Phosphitylation of build-
ing blocks 2a and 2b with 2-cyanoethyl-N,N-diisopropylaminochlorophosphoramidite
(3) in anhydrous DCM led to derivatives 4a and 4b in 86% and 80% yields, respectively.

These were then coupled with building blocks 2a and 2b in the presence of 4,5-
dicyanoimidazole (DCI) in MeCN. For the synthesis of the heterodimer SilA-p-SilB, the best
yield was observed by coupling silybin A phosphoramidite 4a and the protected silybin
B (2b). After one-pot oxidation of the triester phosphite to phosphate with tButOOH in
decane, the phosphotriester dimers were purified and obtained in good yields (5aa 83%,
5bb 80% and 5ab 77%). Treatment with ac. ammonia finally led to complete deprotection,
and after RP-HPLC purification, dimers 6aa, 6bb and 6ab were obtained in 77%, 82% and
80% yield, respectively. The structures of dimers 6 were confirmed by 1D and 2D NMR (1H,
13C, and 31P) and MS analyses. The spectra of the silybin derivatives 2a and 2b appeared as
those of a silybin monomer (see Experimental Section and Supporting Material), whereas
the splitting of some signals is observed in the spectra of phosphoramidites 4a and 4b,
since they are a pair of diastereoisomers where the phosphorous is a stereocenter and it
can be R or S. The same goes for dimers 5aa and 5bb and 5ab, which are also a mixture of
diastereoisomers. As expected, for the 6ab dimer, chemical shift splitting of some nuclei
was observed in both the 1H and 13C spectra.
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2.2. Radical Scavenger Activities (HO•)

Biologically, the hydroxyl radical (HO•) is widely believed to be generated when
hydrogen peroxide reacts with Fe(II) (Fenton reaction). The putative HO•·is an extremely
reactive and short-lived species that can damage DNA, proteins, and lipids. However, the
Fe(II)/H2O2 mixture has disadvantages in a scavenging assay because many flavonoids
as well as flavonolignans are also metal chelators. When the sample is mixed with Fe(II),
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it may alter the activity of Fe(II) by chelation. As a result, it is impossible to distinguish
if the antioxidants are simply good metal chelators or HO• scavengers. In our study the
second order rate constants for HO• reactions with silybin dimers (6aa, 6bb and 6ab) have
been determined by pulse photolysis method [24] using hydrogen peroxide (H2O2) as
ROS sources. The reactivity towards HO• was determined to be in the same order of
magnitude for dimers 6aa, 6bb and 6ab (Table 1), always remaining significantly greater
than dimers 3-3 and 3-9′ ′ [8]. This could be explained considering that in dimers 9′ ′-9′ ′ the
3, 5 and 4′ ′ OH functions, responsible for the radical scavenger activity, are not involved
in any bond. In fact, the influence of the individual hydroxy groups of silibinin (1ab) on
its antioxidant and radical scavenging properties were studied in detail and the findings
led to the conclusion that the 3, 5 and 4′ ′ phenolic moieties as well as the 3-OH group, are
essential for the compounds radical- scavenging properties [25,26].

Table 1. Second order rate constant kII
HO• ,X of silybin phosphodiester dimers 6aa, 6bb and 6ab.

Compound kII
HO• ,X (M−1·s−1) a

6aa 8.63 ± 1.35 × 109

6bb 1.01 ± 0.16 × 1010

6ab 1.48 ± 0.09 × 1010

a: calculated in H2O.

2.3. In Vitro Antiproliferative Activity of Dimers 6aa, 6ab, and 6bb

The anticancer efficacy of silibinin, which is mainly realized through targeting prolif-
eration, apoptosis, inflammation, angiogenesis, and other cancer-modulating mechanisms,
is clearly evident from recently published reports. Despite the high interest in the prop-
erties of this flavonolignan, which is also attributable to its non-toxicity, pharmacological
studies on the two diastereoisomers, silybins A and B, are still required to develop a
structure–activity profile.

In this context, the antiproliferative effect of silibinin compounds was evaluated
on many human tumor cell lines of disparate histological origins or different metastatic
potential, and human dermal fibroblasts (HDFs) were used as healthy cells to evaluate
the selectivity of action of the examined compounds towards tumor cells. A preliminary
screening was performed by treating cells with 10 and 50 µM concentrations for 48 h to
identify the most sensitive cell lines. The results show that silibinin compounds were active
on Jurkat, A375, WM266, and HeLa, but at the tested concentrations, they did not interfere
with the growth of PANC, MCF-7, HDF or U87 (Figure 2). This reveals an interesting
tumor cell selectivity, an important feature for the optimization of therapeutic compounds.
All molecules showed good activity on Jurkat cells derived from leukemia, even at the
lowest used concentration (10 µM), displaying a reduction in proliferation of about 20%,
which reached more than 40% when the cells were incubated with the molecules at 50 µM.
Interestingly, the dimers appeared to be more active than monomers on the melanoma cell
lines used (WM266 and A375) (Figure 2).

For further studies, dose–response curves were obtained (Figure 3), and the corre-
sponding IC50 values were calculated on the cells resulted more sensitive to the treatment
with the compounds, the leukemia cell line Jurkat. As shown in Table 2, IC50 values were
quite similar for all tested molecules. Nevertheless, the most active compound was found
to be SilB, with an IC50 of 36 µM. Importantly, all molecules were poorly active on HDFs,
showing their selectivity of action towards tumor cells. In particular, monomers showed
an IC50 of about 200 µM, and dimers were even more selective with higher IC50 (Figure 3).
These data are interesting considering that, in similar experiments, silibinin compounds are
usually used in concentrations of up to 300 µM [27]. A relevant outcome is the identification
of a molecule with low toxicity in healthy cells. As reported in the literature, silibinin exerts
its cytotoxic effect by activating the apoptotic pathway [28,29]; therefore, we investigated
whether dimers induce apoptosis to the same degree as the related monomers.



Molecules 2022, 27, 1702 6 of 15

Molecules 2022, 27, x FOR PEER REVIEW 6 of 15 
 

an IC50 of about 200 µM, and dimers were even more selective with higher IC50 (Figure 3). 

These data are interesting considering that, in similar experiments, silibinin compounds 

are usually used in concentrations of up to 300 µM [27]. A relevant outcome is the iden-

tification of a molecule with low toxicity in healthy cells. As reported in the literature, 

silibinin exerts its cytotoxic effect by activating the apoptotic pathway [28,29]; therefore, 

we investigated whether dimers induce apoptosis to the same degree as the related 

monomers. 

 

 

Figure 2. Effect of compounds on tumors and healthy cell proliferation. The cells were incubated in 

the presence of the compounds at 10 µM (A) or 50 µM (B) for 48 h at 37 °C. The results are pre-

sented as the percentage of proliferating cells with respect to the control (vehicle-treated cells) and 

are expressed as means ± SE, * p < 0.05. 

0

20

40

60

80

100

120

140

160

Control 1a 1b 6aa 6bb 6ab

P
ro

li
fe

ra
ti

o
n

 c
el

ls
 (

%
 v

s 
co

n
tr

o
l)

[10 μM]

HeLa MCF-7 A375 WM266 Jurkat PANC HDF U87

*
*

*

**
*

* *** *
*

0

20

40

60

80

100

120

Control 1a 1b 6aa 6bb 6ab

P
ro

li
fe

ra
ti

o
n

 c
el

ls
 (

%
 v

s 
co

n
tr

o
l)

[50 μM]

HeLa MCF-7 A375 WM266 Jurkat PANC HDF U87

*

**

*

*

*

*
*

*
*

*

*   *

*
*

B) 

A) 

Figure 2. Effect of compounds on tumors and healthy cell proliferation. The cells were incubated in
the presence of the compounds at 10 µM (A) or 50 µM (B) for 48 h at 37 ◦C. The results are presented
as the percentage of proliferating cells with respect to the control (vehicle-treated cells) and are
expressed as means ± SE, * p < 0.05.
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Figure 3. Dose–response curves obtained using the indicated concentrations of compounds on
responsive cells. The proliferation was determined by CCK8 assay. The results are presented as the
percentage of proliferating cells compared with the control (vehicle-treated cells) and are expressed
as means ± SE of two independent experiments performed in triplicate.

Table 2. IC50 values of compounds after 48 h incubation.

IC50 ± DS (µM)

SilA (1a) SilB (1b) SilAA (6aa) SilBB (6bb) SilAB (6ab)

Jurkat 46.7 ± 14.1 36 ± 14.3 71 ± 15.5 59 ± 19.9 64 ± 10.8
HDF 199 ± 34.5 172 ± 39.0 >200 >200 >200

For this purpose, Jurkat was incubated with the molecules at a concentration of 200 µM,
and flow cytometric analysis with annexin V/propidium iodine (PI) double staining was
carried out.

The results indicate that 6aa and 6ab could induce apoptosis as effectively as the
monomers, although they showed a lower percentage of apoptotic cells; in particular, 20%
of cells treated with 6aa were apoptotic (early and advanced) with respect to the control, and
6ab exhibited about 25% (early and advanced) apoptotic cells, whereas 70% of cells treated
with 1a or 1b were apoptotic (Figure 4). In contrast, 6bb was not able to induce apoptosis:
only 4% of treated cells were apoptotic compared with the control (Figure 4). These results
indicate not only that the dimers probably have a different mechanism of action from
the monomers but also that the behaviour differs among the dimers, underlining the
importance of the stereochemistry of the molecules and suggesting that it could affect
the activity of the silybin compounds by means of specific and selective interactions with
protein partners.
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Figure 4. Apoptosis analysis with annexin V-FITC/PI double-staining method on Jurkat cells. The
cells were treated with the indicated compounds (1a, 1b, 6aa, 6bb and 6ab) at a concentration of
200 µM at 37 ◦C for 48 h. The control (Control) is the vehicle-treated sample. In each panel, lower left
quadrant: viable cells; upper left: necrotic cells; upper right: advanced apoptotic cells; lower right:
early apoptotic cells. This picture is representative of two independent experiments.

3. Materials and Methods
3.1. General Methods and Materials

All chemicals were purchased from Sigma–Aldrich (Milano, Italy). HPLC–grade
MeCN and MeOH were purchased from Carlo Erba Reagents and Sigma-Aldrich, respec-
tively. Reactions were monitored by TLC (F254 precoated silica gel plates, Merck) and
column chromatography (Merck Kieselgel 60, 70–230 mesh, Milano, Italy). HPLC analysis
of dimers 6aa, 6bb and 6ab, was performed with a Shimadzu LC–8A PLC system (Shi-
madzu Analytical and Measuring Instruments, Milano, Italy) equipped with a Shimadzu
SCL–10A VP System control and a Shimadzu SPD–10A VP UV–Vis detector. Mass spec-
trometric analyses were performed on AB SCIEX TOF/TOF 5800 in positive or negative
mode and Waters Micromass ZQ Instrument (Waters, Milano, Italy) equipped with an
electrospray source in positive mode. The NMR spectra were recorded at 25 ◦C on an
NMR spectrometer Bruker DRX, Bruker Advance (Bruker Italia Srl, Milano, Italy) and
INOVA-500 NMR instrument (Varian, Milan, Italy), referenced in ppm to residual solvent
signals (CDCl3, at δH 7.27, δC 77.0; CD3OD, at δH 3.31, δC 49.0 and DMSO-d6, δH 2.50, δC
39.5. 31P NMR spectra were recorded using D3PO4 (85 wt. % in D2O, 98 atoms %D) as an
external standard, referenced to residual solvent signals (δP 0.0 ppm). Data for 1H NMR are
reported as follows: chemical shift (ppm), multiplicity (s = singlet, br = broad, d = doublet,
t = triplet, and m = multiplet), coupling constant (Hz), integration, and assignment. The 1H
signals were assigned by using 1H/1H COSY, 1H/13C HSQC, and 1H/13C HMBC. NMR
data were processed using Bruker Topspin 3.6.1 software. The proton-detected heteronu-
clear correlations were measured using a gradient heteronuclear single-quantum coherence
(HSQC) experiment, optimized for 1JHC = 155 Hz, and a gradient heteronuclear multiple
bond coherence (HMBC) experiment, optimized for nJHC = 8 Hz.

Silybin A and silybin B were obtained by HPLC purification of silibinin purchased
from Sigma–Aldrich (S0417) as reported by us [21]. The experimental procedures to the
synthesis of building blocks 2 and 4, are described in detail only for the stereoisomers of
silybin A: the same reaction conditions (temperature, stoichiometric ratios, time of reaction)
were used for silybin B.
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3.2. Synthesis of 3,5,7,4′ ′-O-tetra-isobutyryl-silybin 2a (or 2b)

Silybin A (1a, 730 mg, 1.51 mmol), previously co-evaporated several times with anhy-
drous THF and dissolved in anhydrous pyridine (4 mL), was reacted with DMTCl (666 mg,
1.96 mmol). The reaction mixture, left at room temperature for 2 h under stirring, was then
diluted with MeOH and concentrated under reduced pressure. The crude was then diluted
with DCM, transferred into a separatory funnel, washed once with a saturated NaHCO3
aqueous solution, and then once with H2O. The organic phase, dried over anhydrous
Na2SO4, was filtered, and then concentrated under reduced pressure. The crude was next
purified on a silica gel column, eluting with DCM/MeOH (98:2, v/v) in the presence of
1% of pyridine, affording pure 9′ ′-O-(4,4′-dimethoxytriphenylmethyl)-silybin A as a pale
amorphous solid (1.14 g, 1.44 mmol) in a 96% yield.

In total, 1.14 g (1.44 mmol) of product dissolved in anhydrous DCM (20 mL), adding
Et3N (841 µL, 6.05 mmol) and pyridine (1.2 mL, 14.4 mmol), was reacted with isobutyryl
chloride (638 µL, 6.05 mmol). The mixture was left under stirring at 0 ◦C for 15 min
and then diluted with MeOH and concentrated under reduced pressure. The crude was
then diluted with DCM, transferred into a separatory funnel, washed one time with a
saturated NaHCO3 aqueous solution, and then once with H2O. The organic phase, dried
over anhydrous Na2SO4, was filtered, and then concentrated under reduced pressure. The
crude was next purified on a silica gel column, eluting with n-hexane/EtOAc (7:3, v/v)
in the presence of 1% of pyridine furnishing pure 3,5,7,4′ ′-O-tetra-isobutyryl-9′ ′-O-(4,4′-
dimethoxytriphenylmethyl)-silybin A as pale amorphous solid (1.06 g, 1.0 mmol) in a
70% yield.

In a solution, 0.1 M of product (1.06 g, 1.0 mmol) in MeOH/DCM (6:1 v/v) was added
1% (p/v) of I2 (100 mg). The solution was left under stirring at room temperature for
1 h and then added Na2S2O3 and concentrated under reduced pressure. The crude was
then diluted with DCM, transferred into a separatory funnel, washed one time with a
saturated NaHCO3 aqueous solution, and then once with H2O. The organic phase, dried
over anhydrous Na2SO4, was filtered, and then concentrated under reduced pressure. The
crude was next purified on a silica gel column, eluting with n-hexane/EtOAc (6:4, v/v),
leading pure 3,5,7,4′ ′-O-tetra-isobutyryl-silybin A (2a) as pale amorphous solid (686 mg,
0.9 mmol) in a 90% yield.

2a 690 mg (60% starting from 1a). Rf = 0.5 (n-hexane/EtOAc 6:4 v/v silica gel). 1H-
NMR (400 MHz, CDCl3, 25 ◦C, δ ppm, J Hz): 7.13–6.96 (complex signals, 6H, H-2′, H-5′,
H-6′, H-2′ ′, H-5′ ′, H-6′ ′); 6.74 (d, J = 2.2, 1H, H-6); 6.55 (d, J = 2.2, 1H, H-8); 5.66 (d, J = 12.2,
1H, H-3); 5.35 (d, J = 12.2, 1H, H-2); 5.02 (d, J = 8.0, 1H, H-7′ ′); 4.02–3.97 (m, 1H, H8′ ′);
3.87–3.82 (overlapped signals, 4H, OCH3 and H-9′ ′a); 3.57 (dd, J = 12.5, 3.6, 1H, H-9′ ′b);
2.97–2.71 (m, 3H, CH of isobutyryl (ibu) groups in 5, 7 and 4′ ′); 2.59–2.49 (m, 1H, CH of ibu
in 3); 1.37–1.22 (m, 18H, CH3 of ibu groups in 5, 7 and 4′ ′); 1.12–0.97 (m, 6H, CH3 of ibu
group in 3). 13C NMR (100 MHz, CDCl3, 25 ◦C, δ ppm): 185.0; 175.3; 175.0 (2C); 174.1; 162.4;
156.5; 151.7; 151.6; 144.1; 143.6; 140.5; 134.5; 128.6; 123.0; 120.8; 119.8; 117.0, 116.5, 111.1 (2C);
110.7; 108.7; 81.1; 78.3; 76.0; 72.9; 61.4; 56.1; 34.2; 34.0; 33.9; 33.6; 19.0; 18.8; 18.7; 18.5. MS
(MALDI-TOF, positive ions): m/z calculated for C41H46O14 = 762.289; found: 763.996 [M +
H]+, 785.229 [M + Na]+, 801.652 [M + K]+.

2b 644 mg (55% starting from 1b). Rf = 0.5 (n-hexane/EtOAc 6:4 v/v silica gel). 1H
NMR (400 MHz, CDCl3, 25 ◦C, δ ppm, J Hz): 7.11–6.96 (complex signals, 6H, H-2′, H-5′,
H-6′, H-2′ ′, H-5′ ′, H-6′ ′); 6.75 (d, J = 2.2, 1H, H-6); 6.55 (d, J = 2.2, 1H, H-8); 5.67 (d, J = 12.1,
1H, H-3); 5.36 (d, J = 12.2, 1H, H-2); 5.04 (d, J = 8.0, 1H, H-7′ ′); 4.02–3.97 (m, 1H, H8′ ′);
3.86–3.80 (overlapped signals, 4H, OCH3 and H-9′ ′a); 3.56 (dd, J = 12.4, 3.6, 1H, H-9′ ′b);
2.96–2.73 (m, 3H, CH of ibu groups in 5, 7 and 4′ ′); 2.60–2.50 (m, 1H, CH of ibu group in 3);
1.35–1.26 (m, 18H, CH3 of ibu groups in 5, 7 and 4′ ′); 1.02–0.92 (m, 6H, CH3 of ibu group in
3). 13C NMR (100 MHz, CDCl3, 25 ◦C, δ ppm): 185.0; 175.1; 175.0 (2C); 174.1; 162.4; 156.5;
151.7; 151.6; 144.1; 143.6; 140.6; 134.5; 128.5; 123.1; 120.9; 119.7; 117.1, 116.4, 111.3; 111.1;
110.8; 108.7; 81.0; 78.3; 75.9; 72.8; 61.4; 56.0; 34.2; 34.0; 33.9; 33.6; 19.0; 18.8; 18.7; 18.5. MS
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(MALDI-TOF, positive ions): m/z calculated for C41H46O14 = 762.289; found: 763.425 [M +
H]+, 785.784 [M + Na]+, 801.358 [M + K]+.

3.3. Synthesis of Phosphoramidite Silybin 4a (or 4b)

To 3,5,7,4′ ′-tetra-O-iBu-silybin A (2a, 0.26 mmol; 200 mg) dissolved in anhydrous
DCM (4.5 mL), DIEA (181 µL, 1.05 mmol), and 2-cyanoethyl-N,N-diisopropylamino-
chlorophosphoramidite 3 (73 µL, 0.31 mmol) were mixed. After 20 min the solution
was concentrated and silica gel chromatography of the residue (eluent n-hexane/EtOAc
6:4, v/v, with 3% v/v of Et3N), afforded desired compound 4a in 86% yield.

4a 219 mg (0.22 mmol, 86%). Rf = 0.8 (n-hexane/EtOAc 6:4, v/v silica gel). 1H NMR
(400 MHz, CDCl3, 25 ◦C, δ ppm, J Hz, mixture of diastereoisomers): 7.11–6.94 (complex
signals, 6H, H-2′, H-5′, H-6′, H-2′ ′, H-5′ ′, H-6′ ′); 6.74 (d, J = 2.2, 1H, H-6); 6.55 (d, J = 2.2,
1H, H-8); 5.66 (d, J = 12.2, 1H, H-3); 5.65 (d, J = 12.2, 1H, H-3); 5.35 (d, J = 12.2, 1H, H-2);
5.34 (d, J = 12.2, 1H, H-2); 5.02 (d, J = 7.8, 1H, H-7′ ′); 4.14–4.06 (m, 1H, H-8′ ′); 3.97–3.49
(m, 9H, OCH3, 2H-9′ ′, OCH2CH2CN, N[CH(CH3)2]2; 2.97–2.48 (m, 6H, CH of ibu groups,
OCH2CH2CN); 1.36–1.26 (m, 18H, CH3 of ibu groups in 5, 7 and 4′ ′); 1.20–1.07 (m, 15H,
CH3 of ibu groups in 3, N[CH(CH3)2]2). 13C NMR (100 MHz, CDCl3, 25 ◦C, δ ppm, mixture
of diastereoisomers): 185.0 (2C); 175.2 (2C); 175.0 (2C); 174.1; 162.5; 156.5; 151.7; 151.5 (2C);
144.2; 143.5; 143.4; 140.5(2C); 134.6; 128.3; 128.2; 123.0; 122.9; 120.9; 120.8; 119.9; 119.8; 117.6;
117.5; 117.1; 116.9; 116.5; 116.4; 111.4; 111.2; 111.1; 110.7, 108.7; 81.2; 81.1; 76.2; 75.8; 72.9
(2C); 62.5; 62.2; 62.0; 58.7; 58.6; 58.5; 58.3; 56.0 (2C); 43.3; 43.2; 34.2; 34.0; 33.9; 33.6; 24.6; 24.5;
20.4; 20.3 (3C); 19.0; 18.8; 18.7; 18.5. 31P NMR (CDCl3, 161.98 MHz, 25 ◦C, δ ppm): 150.3;
149.9. MS (ESI-TOF, positive ions): m/z calculated for C50H63N2O15P = 962.397; found:
964.229 [M + H]+, 986.033 [M + Na]+, 1002.553 [M + K]+.

4b 202 mg (0.21 mmol, 80%). Rf = 0.8 (n-hexane/EtOAc 6:4, v/v, silica gel). 1H NMR
(400 MHz, CDCl3, 25 ◦C, δ ppm, J Hz, mixture of diastereoisomers): 7.11–6.94 (complex
signals, 6H, H-2′, H-5′, H-6′, H-2′ ′, H-5′ ′, H-6′ ′); 6.75 (d, J = 2.2, 1H, H-6); 6.55 (d, J = 2.2, 1H,
H-8); 5.67 (d, J = 12.1, 1H, H-3); 5.35 (d, J = 12.1, 1H, H-2); 5.34 (d, J = 12.1, 1H, H-2); 5.02 (d,
J = 7.8, 1H, H-7′ ′); 4.14–4.05 (m, 1H, H-8′ ′); 3.97–3.50 (m, 9H, OCH3, 2H-9′ ′, OCH2CH2CN,
N[CH(CH3)2]2; 2.96–2.49 (m, 6H, CH of ibu groups, OCH2CH2CN); 1.36–1.26 (m, 18H, CH3
of ibu groups in 5, 7 and 4′ ′); 1.20–1.07 (m, 15H, CH3 of ibu groups in 3, N[CH(CH3)2]2) ppm.
13C NMR (100 MHz, CDCl3, 25 ◦C, δ ppm, mixture of diastereoisomers): 185.0; 175.1 (2C);
175.0; 174.9; 174.1; 162.4; 156.5; 151.7; 144.3; 144.2; 143.5 (2C); 140.5 (2C); 134.7; 128.2; 128.1;
123.0; 122.9; 121.0; 119.9; 119.8; 117.6; 117.5; 117.1; 116.5; 116.3; 111.1; 110.8, 108.7; 81.1;
81.0; 76.1; 75.8; 72.8; 62.7; 62.5; 62.2; 62.1; 58.7; 58.5 (2C); 58.3; 56.0 (2C); 43.3; 43.2; 34.2;
34.0; 33.9; 33.6; 24.6 (2C); 24.5 (2C); 20.3 (3C); 19.0; 18.8; 18.7 (3C); 18.5. 31P NMR (CDCl3,
161.98 MHz, 25 ◦C, δ ppm): 150.2; 149.8. MS (ESI-TOF, positive ions): m/z calculated for
C50H63N2O15P = 962.397; found: 964.215 [M + H]+, 986,212 [M + Na]+, 1002.322 [M+K]+.

3.4. General Procedure for the Synthesis of Phosphotriester dimers 5aa, 5bb and 5ab

In total, 219 mg (0.22 mmol) of phosphoramidites 4a and the building block 2a 155 mg
(0.20 mmol) previously dried and kept under reduced pressure, were reacted with a 0.25 M
4,5-dicyanoimidazole solution in anhydrous MeCN (1.5 mL, 0.37 mmol). To obtain the
5bb dimer, the phosphoramidite 4b and the derivative 2b were coupled under the same
conditions as previously reported. To obtain the 5ab dimer, the best yields were obtained
by coupling the phosphoramidite 4a and the derivative 2b. The reaction was left under
stirring at r.t. and monitored by TLC with an eluent system n-hexane/EtOAc (6:4, v/v).
After 30 min, the reaction was over, and then a 5.5 M tert-Butyl hydroperoxide (TBHP)
solution in decane (150 µL) was added and left stirring at r.t. After 30 min the reaction
mixture was, concentrated under reduced pressure, and purified by flash chromatography,
eluting with n-hexane/EtOAc (7:3, v/v), to afford pure 5 (5aa, 5bb and 5ab) yellow-brown
amorphous powder in 83%, 80% and 77% yields, respectively.

5aa 272 mg (0.17 mmol, 83%). Rf = 0.5 (n-hexane/EtOAc 1:1, v/v, silica gel). 1H-NMR
(400 MHz, CDCl3, 25 ◦C, δ ppm, J Hz): 7.11–6.91 (complex signals, 12H, H-2′, H-5′, H-6′, H-
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2′ ′, H-5′ ′, H-6′ ′); 6.76 (s, 2H, H-6); 6.55 (s, 2H, H-8); 5.66 (d, J = 12.1, 2H, H-3); 5.36 (d, J = 12.1,
2H, H-2); 4.93 (t, J = 8.0, 2H, H-7′ ′); 4.32–3.95 (m, 8H, H8′ ′, 2H9′ ′, OCH2CH2CN); 3.86–3.80
(overlapped signals, 6H, OCH3); 2.95–2.49 (m, 10H, CH of ibu groups, OCH2CH2CN);
1.39–1.25 (m, 18H, CH3 of ibu groups in 5, 7 and 4′ ′); 1.14–1.08 (m, 6H, CH3 of ibu groups
in 3); 1.01–0.96 (m, 6H, CH3 of ibu groups in 3). 13C NMR (100 MHz, CDCl3, 25 ◦C, δ ppm):
184.9; 175.1; 175.0; 174.1; 162.4; 156.5; 151.7; 143.6; 143.4; 143.3; 140.8; 133.7; 128.9; 123.3;
123.2; 121.3; 121.1; 119.8 (2C); 117.2; 117.1; 116.6; 116.5; 116.4; 111.5, 111.4; 111.1; 110.7, 108.7;
80.9; 76.0; 75.9; 75.7; 72.8; 72.7; 66.5; 62.3; 56.0; 34.2; 34.0; 33.9; 33.6; 19.0; 18.8; 18.7 (C2);
18.5. 31P NMR (161 MHz, CDCl3, 25 ◦C, δ ppm): -2.4. MS (MALDI-TOF, positive ions):
m/z calculated for C85H94NO30P = 1639.560; found: 1641.838 [M+H]+, 1663.652 [M + Na]+,
1679.154 [M + K]+.

5bb 262 mg (0.16 mmol, 80%). Rf = 0.5 (n-hexane/EtOAc 1:1, v/v, silica gel). 1H NMR
(400 MHz, CDCl3, 25 ◦C, δ ppm, J Hz): 7.11–6.91 (complex signals, 12H, H-2′, H-5′, H-6′, H-
2′ ′, H-5′ ′, H-6′ ′); 6.76 (s, 2H, H-6); 6.55 (s, 2H, H-8); 5.66 (d, J = 12.1, 2H, H-3); 5.36 (d, J = 12.1,
2H, H-2); 4.93 (t, J = 8.0, 2H, H-7′ ′); 4.32–3.95 (m, 8H, H8′ ′, 2H9′ ′, OCH2CH2CN); 3.86–3.80
(overlapped signals, 6H, OCH3); 2.95–2.49 (m, 10H, CH of ibu groups, OCH2CH2CN);
1.36–1.24 (m, 18H, CH3 of ibu groups in 5, 7 and 4′ ′); 1.13–1.09 (m, 6H, CH3 of ibu groups
in 3); 1.02–0.98 (m, 6H, CH3 of ibu groups in 3) ppm. 13C-NMR (125 MHz, CDCl3, 25 ◦C, δ
ppm, J Hz): 184.9; 175.1; 175.0 (2C); 174.1; 162.4; 156.5; 151.7 (2C); 143.6; 143.4; 143.3; 140.8;
133.7; 128.9; 123.3 (2C); 121.2; 121.1; 119.8 (2C); 117.2; 117.1; 116.6 (2C); 116.4; 111.5, 111.4;
111.1; 110.7, 108.7; 80.9; 75.9; 75.7; 72.8; 66.5 (2C); 62.3; 62.2; 56.0; 34.2; 34.0; 33.9; 33.6; 19.0;
18.8; 18.7; 18.5. 31P NMR (161 MHz, CDCl3, 25 ◦C, δ ppm): -2.4. MS (MALDI-TOF, positive
ions): m/z calculated for C85H94NO30P = 1639.560; found: 1641.554 [M + H]+, 1663,159 [M
+ Na]+, 1679.555 [M + K]+.

5ab 262 mg (0.15 mmol, 77%). Rf = 0.5 (n-hexane/EtOAc 1:1, v/v, silica gel). 1H
NMR (400 MHz, CDCl3, 25 ◦C, δ ppm, J Hz): 7.12–6.88 (complex signals, 12H, H-2′, H-5′,
H-6′, H-2′ ′, H-5′ ′, H-6′ ′); 6.76–6.73 (m, 2H, H-6); 6.56–6.54 (m, 2H, H-8); 5.69–5.61 (m,
2H, H-3); 5.38–5.32 (m, 2H, H-2); 4.99–5.90 (m, 2H, H-7′ ′); 4.35–3.97 (m, 8H, H8′ ′, 2H9′ ′,
OCH2CH2CN); 3.88–3.79 (overlapped signals, 6H, OCH3); 2.96–2.48 (m, 10H, CH of ibu
groups, OCH2CH2CN); 1.36–1.24 (m, 18H, CH3 of ibu groups in 5, 7 and 4′ ′); 1.13–1.08 (m,
6H, CH3 of ibu groups in 3); 1.02–0.96 (m, 6H, CH3 of ibu groups in 3) ppm. 13C NMR
(100 MHz, CDCl3, 25 ◦C, δ ppm): 184.9; 175.1; 175.0 (2C); 174.1; 162.4; 156.5; 151.7 (2C); 143.6;
143.4; 143.3; 140.8; 133.7; 128.9; 123.3 (2C); 121.2; 121.1; 119.8 (2C); 117.2; 117.1; 116.6 (2C);
116.4; 111.5, 111.4; 111.1; 110.7, 108.7; 80.9; 76.1; 76.0; 75.9; 75.7; 72.8; 66.5 (2C); 62.3; 62.2; 56.0;
34.2; 34.0; 33.9; 33.6; 19.0; 18.8; 18.7 (2C); 18.5. 31P NMR (161 MHz, CDCl3, 25 ◦C, δ ppm):
-2.3; -2.6. MS (MALDI-TOF, positive ions): m/z calculated for C85H94NO30P = 1639.560;
found: 1641.497 [M + H]+, 1663.132 [M + Na]+, 1679.115 [M + K]+.

3.5. General Procedure for the Synthesis of Dimers 6aa, 6bb and 6ab

In total, 200 mg (0.12 mmol) of dimer 5aa were treated with 7mL of a mixture conc. aq
NH3/MeOH (1:1, v/v) for 5 h at 50 ◦C, leading to full removal of the ibu and 2-cyanoethyl
(CE) groups. The mixture was dried under reduced pressure and suspended in a buffer
solution and then purified on RP-HPLC carried out on Phenomenex Kromasil® C18 column
(10 µm particle size, 10.0 mm × 250 mm i.d.) using a linear gradient of MeCN in in 0.1 M
Ammonium Acetate in H2O (pH 7.0) (pH 7.0) from 5% to 95% over 20 min at a flow rate
of 6 mL/min with detection at 288, 260 nm. Compound thus obtained was converted
into the corresponding sodium salts by cation exchange on a DOWEX (Na+ form) resin
to obtain homogeneous samples 6aa in 77% yield. RP-HPLC analysis was carried out on
Luna C18 (2) (5 µm particle size, 150 mm × 4.6 mm i.d.) using a linear gradient of MeCN
in in 0.1 M ammonium acetate in H2O (pH 7.0) from 5% to 95% over 20 min at a flow rate
of 0.8 mL/min with detection at 288 nm. The purity of the 6aa product was 99.6% (see SM).

6aa 97 mg (0.09 mmol, 77%). tR = 13.3 min (99.6% purity, see Figure S1 in SM). 1H NMR
(400 MHz, DMSO-d6 + 5% D2O, 25 ◦C, δ ppm, J Hz); 7.11–6.74 (complex signals, 12H, H-2′,
H-5′, H-6′, H-2′ ′, H-5′ ′, H-6′ ′) 5.85 (s, 4H, H-6 and H-8); 5.05 (d, J = 11.0, 2H, H-2); 4.82 (d,
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J = 7.6, 2H, H-7′ ′); 4.57 (d, J = 11.0, 1H, H-3); 4.35–4.27 (m, 2H, H8′ ′); 3.80–3.65 (overlapped
signals, 8H, OCH3, H-9′ ′a); 3.58– 3.47 (m, 2H, H-9′ ′b) ppm. 13C NMR (100 MHz, DMSO-d6
+ 5% D2O, 25 ◦C, δ ppm): 197.8; 168.2; 163.7; 162.8; 148.0; 147.5; 143.8; 143.6; 130.5; 127.6;
121.8; 120.8; 116.8; 116.7; 115.7; 112.1, 100.6; 96.7; 95.7; 82.9; 77.1; 76.2; 71.8; 63.6; 56.0. 31P
NMR (161 MHz, DMSO-d6 + 5% D2O, 25 ◦C, δ ppm): -1.6. MS (MALDI-TOF, negative
ions): m/z calculated for C50H43O22P = 1026.198; found: 1025.355 [M − H]-.

6bb 103 mg (0.10 mmol, 82%). tR = 13.4 min (98.7% purity, see Figure S2 in SM). 1H
NMR (400 MHz, DMSO-d6, 25 ◦C, δ ppm, J Hz): 11.90 (s, 2H, OH-5); 11.08 (s, 2H, OH-7);
9.19 (s, 2H, OH-4′ ′); 7.10–6.73 (complex signals, 12H, H-2′, H-5′, H-6′, H-2′ ′, H-5′ ′, H-6′ ′)
5.91 (s, 4H, H-6 and H-8); 5.85–5.79 (m, 2H, OH-3); 5.05 (d, J = 11.1, 2H, H-2); 4.83 (d, J = 7.8,
2H, H-7′ ′); 4.60 (d, J = 11.1, 1H, H-3); 4.58 (d, J = 11.1, 1H, H-3); 4.34–4.26 (m, 2H, H8′ ′);
3.79–3.65 (overlapped signals, 8H, OCH3, H-9′ ′a); 3.58– 3.48 (m, 2H, H-9′ ′b) ppm. 13C
NMR (100 MHz, DMSO-d6, 25 ◦C, δ ppm, J Hz): 198.2; 167.4; 163.7; 162.9; 148.0; 147.5;
143.8; 143.5; 130.5; 127.6; 121.6; 120.8; 117.0; 116.8; 115.7; 112.1, 100.8; 96.5; 95.5; 83.0; 77.1;
76.2; 71.9; 63.6; 56.0. 31P NMR (161 MHz, DMSO-d6, 25 ◦C, δ ppm): -1.7. MS (MALDI-TOF,
negative ions): m/z calculated for C50H43O22P = 1026.198; found: 1025.196 [M − H]−.

6ab 100 mg (0.10 mmol, 80%). tR = 13.5 min (99.2% purity, see Figure S3 in SM). 1H
NMR (400 MHz, MeOD-d4, 25 ◦C, δ ppm, J Hz): 7.15–6.79 (complex signals, 12H, H-2′,
H-5′, H-6′, H-2′ ′, H-5′ ′, H-6′ ′) 5.92 (s, 4H, H-6 and H-8); 5.02–4.94 (m, 4H, H-2 and H7′ ′);
4.53 (d, 11.5, 1H, H-3); 4.26–4.20 (m, 2H, H8′ ′); 3.91–3.80 (overlapped signals, 8H, OCH3,
H-9′ ′a); 3.79– 3.75 (m, 2H, H-9′ ′b) ppm. 13C NMR (100 MHz, MeOD-d4, 25 ◦C, δ ppm):
196.9; 167.3; 163.9; 162.9; 147.7; 146.9; 143.9; 143.8; 143.6; 130.0; 127.8; 120.6; 120.3; 116.5;
116.3; 116.1; 114.9; 110.9, 100.4; 96.9; 94.9; 83.3 (2C); 77.0; 76.1; 76.0; 72.2; 64.0; 55.1. 31P
NMR (161 MHz, MeOD-d4, 25 ◦C, δ ppm, J Hz): -0.2. MS (MALDI-TOF, negative ions): m/z
calculated for C50H43O22P = 1026.198; found: 1025.144 [M − H]−.

3.6. Hydroxyl Radical (·OH) Generation and Reactivity Estimation

The reactivity constant between new silybin dimers and hydroxyl radical has been
determined using Laser flash Photolysis system. The spectroscopic equipment and method
have been described elsewhere, and only an introduction is given below [8].

The formation of di-thiocyanate radical anion (SCN2
•−) through reactivity of photo-

generated hydroxyl radicals (HO•) with thiocyanate (SCN- in the presence of hydrogen
peroxide. The second-order rate constants between HO• and dimers were determined
following reactions (R1–R4 in the Section 2.2) and using the following equation:

Abs0

Abs
= 1+

kII
HO• ,Dimer[Dimer]

kII
HO• ,SCN− [SCN−

] (1)

where Abs0 and Abs are the absorption of SCN•−2 at 475 nm in absence and presence
of dimers; kII

HO• ,SCN− and kII
HO• ,Dimer are the second-order rate constants of HO• with

thiocyanate and dimers at different concentrations. The plot of Abs0
Abs vs. the concentration of

dimers (6aa, 6bb or 6ab) can be fitted with a liner correlation and slope used to determine
the value of kII

HO• ,Dimer. The results presented here were the mean of three replicates. Means
were compared by one way analysis of variance (ANOVA) and significant differences were
assessed by post hoc tests of least significant. Differences with a p value of < 0.05 were
considered significance.

3.7. Culture Conditions

Human T lymphoblastoid (Jurkat) and human metastatic melanoma (WM266) cell lines
were grown in RPMI medium supplemented with heat inactivated 10% fetal bovine serum
(FBS), 2.5 mM glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin (Euroclone).
Human cervix adenocarcinoma cell line (HeLa), human lung carcinoma (A549), human
pancreatic cancer (PANC), human glioblastoma (U87) normal human fibroblasts (HDF)
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were grown in DMEM supplemented with 10% fetal bovine serum (FBS), 1% glutamine,
100 U/mL penicillin and 100 µg/mL streptomycin (Euroclone, Milano, Italy). Cells were
maintained in humidified air containing 5% CO2, at 37 ◦C [30].

3.8. Antiproliferative Activity

Cells were plated at density of 10,000 cells/well for Jurkat, 2000/well for WM266 and
HDF, 1200 cells/well for HeLa, and 1000 for PANC, U87 and A375 in 96-well microplates
(Thermofisher, Waltham, MA, USA). After 24 h incubation, cells were treated with increas-
ing concentrations of synthetized compounds previously solubilized in DMSO at 50 mM
concentration. Cell proliferation was determined by using (2-(2-methoxy-4-nitrophenyl)-
3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (CCK-8, Sigma
Aldrich) for Jurkat cells [31], and the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium
bromide assay (MTT, Sigma Aldrich, Sigma Aldrich, St. Louis, MO, USA)) for HeLa,
WM266, PANC, U87 and HDF cells [32], after 48 h treatment. Plates were then analyzed by
using a microplate reader (Enspire, Perkin Elmer Italia Spa, Milano, Italy) at 450 (CCK-8) or
570 nm (MTT).

The results are presented as the percentage of proliferating cells respect to the control
(vehicle treated cells) and are expressed as means ± SE of, at least, three independent
experiments performed in triplicate. The statistical analysis was performed using Student’s
t-test, unpaired, two-sided, p < 0.05 was considered significant. The IC50 values were
calculated by GraphPad Prism software.

3.9. Apoptosis Assay

The apoptosis analysis was performed on Jurkat cells seeded at 2.5 × 105 cells/mL in
a 6-well plate. The cells were incubated in the absence or presence of 200 µM concentration
of examined compounds at 37 ◦C and apoptosis induction was analysed after 48 h by
double staining with annexin V/FITC and propidium iodide (PI) (eBioscience, Affimetrix
Santa Clara, CA, USA) [33]. The cells undergoing apoptosis were quantified using a flow
cytometer equipped with a 488 nm argon laser (Becton Dickinson, Franklin Lakes, NJ, USA)
by Cell Quest software. All FACS analyses were performed at least 2 times.

4. Conclusions

In this work, we reported the synthesis of the optically pure phosphodiester dimers
of silybins following a very efficient synthetic strategy using an orthogonal protection of
the different OH groups. Starting from the two pure diastereoisomers and exploiting the
well-known phosphoramidite chemistry, the new 9′ ′-9′ ′ dimers of silybin A and silybin B
(6aa, 6ab and 6bb) were obtained in pure form and in good yields.

Their ability to scavenge reactive oxygen species (ROS) such as hydroxyl radical (HO•)
highlights the high activity of all three dimers, comparable to that reported for a known
potent antioxidant as quercetin. Although they are diastereomers, 6aa, 6ab and 6bb show
very similar radical scavenger activity.

To disclosing a structure–activity relationship, dimers (6aa, 6ab and 6bb), as well as
the silybin A (1a) and silybin B (1b), a preliminary screening was performed by treating
cells with 10 and 50 µM concentrations for 48 h. The results indicate that both monomers
and dimers present selective anti-proliferative activity towards leukemia cells at the con-
centrations used, in particular, all silybin compounds showing a similar IC50 in the mid-
micromolar range and are poorly active on normal cells. However, the mechanism by which
the different silybin compounds induce their cytotoxic activity appears to be different: all
the cells treated with the monomers go completely into apoptosis, whereas only part of
the cells treated with 6aa and 6ab were found to be in apoptosis. Contrarily, when the
cells were treated with 6bb dimer, no significant number of cells in the apoptotic stage
was observed. These results demonstrate the crucial role of the stereochemistry for these
flavonolignans, in the activation of the apoptotic mechanism and opens up a new window
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to deeply investigate the interaction of such compounds with proteins involved in cancer
metabolic pathways.

Supplementary Materials: The following supporting information can be downloaded: HPLC profile
of dimers 6aa, 6bb and 6ab in Figures S1–S3; 1H, 13C and 31P NMR spectra of compounds 2, 4–6 in
Figures S3–S31.
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