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ON FORWARD AND INVERSE UNCERTAINTY QUANTIFICATION

FOR MODELS INVOLVING HYSTERESIS OPERATORS

Olaf Klein1,*, Daniele Davino2 and Ciro Visone3

Abstract. Parameters within hysteresis operators modeling real world objects have to be identified
from measurements and are therefore subject to corresponding errors. To investigate the influence of
these errors, the methods of Uncertainty Quantification (UQ) are applied. Results of forward UQ for a
play operator with a stochastic yield limit are presented. Moreover, inverse UQ is performed to identify
the parameters in the weight function in a Prandtl-Ishlinskĭı operator and the uncertainties of these
parameters.
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1. Uncertainties in models with hysteresis operators
and uncertainty quantification

Considering, e.g., magnetization, piezo-electric effects, elasto-plastic behavior, or magnetostrictive materials,
one has to take into account hysteresis effects. Many models involve therefore hysteresis operators. The param-
eters in the models are identified using results from measurements, sometimes performed only for some sample
specimens but also used for other specimens.

The parameters in the hysteresis operators are therefore also subject to uncertainties. We apply the methods
of Uncertainty Quantification (UQ), see, e.g., [14, 15], to deal with these uncertainties, i.e., we describe them
by introducing appropriate random variables modeling the corresponding information/assumptions/beliefs and
use probability theory to describe and determine the influence of the uncertainties.

In this paper, we present results of elementary Forward Uncertainty Quantification. During forward UQ,
one starts from the random variable representing the value(s) of the considered parameter(s) in the model
and considers the resulting model output as random variable. This allows to compute properties like expected
value, variation, probabilities for outputs entering some interval, credible intervals, and other Quantities of
Interest (QoI). Moreover, we will also present a brief example of Inverse UQ, i.e., of using (further) data and
measurements, to determine (reduce/adapt) the uncertainty of the parameter(s), i.e., to determine a (new)
random variable taking into account the (new) information, and use the (new) random variable to represent the
parameter(s) afterwards.
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Forward UQ is presented, for example, in [19] for the Bouc-Wen hysteresis model and in [10] for the
Davidenkov model with simplified loading-reloading rules.

Forward and inverse UQ can be found for example in [11] for a model involving the stop operator and in [16]
for a model involving a hysteretic multi scale formulation.

Inverse UQ for a Prandtl-Ishlinskĭı operator of stop type can be found in [13].
The plan of the paper is the following: In Section 2, the play operator with deterministic data is recalled and

a method to efficiently compute the values of the play operators for all possible yield limits is introduced. In
Section 3, we will consider the play operator if the yield limit is not know exactly such that we represented it by
a random variable and perform forward UQ to determine the evolution of the uncertainty. In Section 4, we will
recall the generalized Prandtl-Ishlinskĭı operator with a parameterized weight function as in [4], introduce the
corresponding initial loading curve and present equations that are satisfied by this curve. In Section 5, we will
consider results of measurements and will try to identify the values of the parameters and extract information
about their uncertainties, i.e., we perform inverse UQ. In the first attempt, we extract several approximations
of the initial curve from the measurements, use the equations introduced in Section 4 to compute for each
approximation a corresponding pair of parameters and investigate the resulting set of pairs. In the second
attempt, Bayes’ Theorem is applied.

2. The play operator with deterministic data

An important example for an hysteresis operator is the play operator, see, e.g., [3, 8, 9, 17]. Using a notation
as in [3, 9, 17], we assume that a final time T > 0 and some yield limit r ≥ 0 are given and consider the play
operator Pr[·, ·] as operator from R× C[0, T ] to C[0, T ] mapping (z0, u) ∈ R× C[0, T ] (with z0 being the initial
state, u being the input function and C[0, T ] denoting the space of all continuous functions from [0, T ] to R)
to a function Pr[z0, u] ∈ C[0, T ]. For the function Pr[z0, u] : [0, T ] → R, we denote by Pr[z0, u](t) the value
at t for any t ∈ [0, T ]. We recall that for u ∈ C[0, T ] being piecewise monotone, i.e., such that there exists
0 = t0 < t1 < · · · < tn = T with u being monotone on [ti−1, ti] for all i ∈ {1, . . . , n}, it holds that Pr[z0, u] is
piecewise monotone and satisfies

Pr[z0, u](0) = max (u(0)− r,min (u(0) + r, z0)) , (2.1a)

Pr[z0, u](t) =

{
max (Pr[z0, u](ti−1), u(t)− r)) , if u is increasing on [ti−1, ti],

min (Pr[z0, u](ti−1), u(t) + r)) , if u is decreasing on [ti−1, ti],
(2.1b)

for all t ∈ ]ti−1, ti] and all i ∈ {1, . . . , n}. An example for an input function and the output of the play operator
is shown in Figure 1. To define the function Pr[z0, u] for general u ∈ C[0, T ], a convergence argument is used,
see, e.g., in [8].

In Figure 2, the outputs of the play for one input function and several yield limits are shown. Therein, we
observe that even if Pr[0, u] and Pr′ [0, u] with r 6= r′ coincide on some time interval, they may not coincide in
the future.

In the next section, we need to deal with the evolutions of Pr[r, u] for all r ≥ 0 simultaneously and
are interested in an efficient method to evaluate for t ∈ [0, T ] the function [0,∞) 3 r 7→ Pr[r, u](t).
The method in use is inspired by consideration for the Preisach operator and the representation of the
Preisach operator by using the play operator and a memory sequence, allowing the evaluation according
to Lemma 2.1.

Adapting the construction of the memory sequence as in ([9], Text from (II.2.11) up to Prop. II.2.5)
to a play operator with an initial configuration being equal to some constant value w ∈ R on
[0,+∞[, we deal with piecewise monotone input functions u ∈ C[0, T ], and t ∈ [0, T ], and consider the
following construction:
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Figure 1. Left-hand side: evolution of input function u, of u + 2, of u − 2 and of P2[0, u];
right-hand side: input-output diagram, showing evolution of (u(t),P2[0, u](t)), sizes of marking
circles decreases with time.

Figure 2. One input function and the output functions Pr[0, u] for the play-operator with yield
limits r ∈ {1, 1.5, 2, 2.5, 3}. Top: evolution; bottom, left-hand side: input-output diagram for
r ∈ {1, 2, 2.5}; bottom, right-hand side: input-output diagram for r ∈ {1.5, 3}.

- Let

rw,u,t,0 := max{|u(τ)− w| : τ ∈ [0, t]}, (2.2a)

sw,u,t,0 := max{τ ∈ [0, t] : |u(τ)− w| = rw,u,t,0}, (2.2b)

zw,u,t,0 := u (sw,u,t,0) . (2.2c)

- If rw,u,t,0 > 0 then it follows that zw,u,t,0 6= w. We define

pw,u,t :=

{
1, if zw,u,t,0 < w,

−1, if zw,u,t,0 > w.
(2.3)
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For k = 1, 2, . . . , we recursively define

zw,u,t,k :=


max{u(τ) : τ ∈ [sw,u,t,k−1, t]}, if k is odd and pw,u,t > 0,

max{u(τ) : τ ∈ [sw,u,t,k−1, t]}, if k is even and pw,u,t(t) < 0,

min{u(τ) : τ ∈ [sw,u,t,k−1, t]}, otherwise,

(2.4)

rw,u,t,k :=
1

2
|zw,u,t,k − zw,u,t,k−1| , (2.5)

sw,u,t,k := max {τ ∈ [sw,u,t,k−1, t] : u(τ) = zw,u,t,k} , (2.6)

until it holds that sw,u,t,k(t) = t. Then we define Kw,u,t := k and rw,u,t,Kw,u,t+1 = 0. We have sw,u,t,k = t
for some finite index k since u restricted to [0, t] has different local extrema at sw,u,t,0, sw,u,t,1, . . . , and the
number of them is limited since u is piecewise monotone. Moreover, we see that the construction yields
that

0 = rw,u,t,Kw,u,t+1 < rw,u,t,Kw,u,t
< · · · < rw,u,t,1 < rw,u,t,0 <∞. (2.7)

Adapting now ([9], Prop. II.2.5), we get:

Lemma 2.1. In the considered situation, it holds:

a) Pr[w, u](t) = w for all r ≥ rw,u,t,0.
b) If rw,u,t,0 > 0, we have

Pr[w, u](t) = zw,u,t,k + (−1)kpw,u,tr, ∀ r ∈ [rw,u,t,k+1, rw,u,t,k] , k ∈ {0, . . . ,Kw,u,t}. (2.8)

Proof.
a) Let r ≥ rw,u,t,0 be given. Recalling (2.2a), we deduce that u(τ) − r ≤ w ≤ u(τ) + r for all τ ∈ [0, t]. In

view of (2.1a), we conclude that Pr[w, u](0) = w. Since u is piecewise monotone, we can perform an induction
argument over the monotonicity intervals and observe by using (2.1b) that Pr[w, u](τ) = w for all τ ∈ [0, t].

b) Assume that rw,u,t,0 > 0. Let λ : [0,∞)→ R be defined by λ(r) := 0 for all r ≥ 0 if w = 0; otherwise let

λ(r) :=


w, if r ≤ rw,u,t,0,
w
(

1− 1
|w| (r − rw,u,t,0)

)
, if rw,u,t,0 ≤ r ≤ rw,u,t,0 + |w| ,

0, if r ≥ rw,u,t,0 + |w| .
(2.9)

For both definitions it holds that λ ∈ W 1,∞(0,∞), that
∣∣∣dλ(r)dr

∣∣∣ ≤ 1 for all r ≥ 0 and that λ(s) = 0 for all

s ≥ rw,u,t,0 + |w|. This yield that λ belongs to the subset Λ0 of memory configurations as defined in II.(2.5)
from [9].

Following II.(2.11) from [9], we define mλ : R→ [0,+∞[ by

mλ(v) := min{r ≥ 0 : |v − λ(r)| = r}, ∀ v ∈ R. (2.10)

Then it follows that mλ(v) = |v − w| for all v ∈ R with |v − w| ≤ rw,u,t,0. Recalling (2.2a), we see that this
equation holds for v = u(τ) for all τ ∈ [0, t]. Considering r̄ and t̄ as in II.(2.14) from [9], we deduce by recalling
II.(2.12) from [9], (2.2a), (2.2b), and (2.3) that

r̄ := max{mλ(u(τ)) : τ ∈ [0, t]}
= max{|u(τ)− w| : τ ∈ [0, t]} = rw,u,t,0, (2.11)
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t̄ := max{τ ∈ [0, t] : mλ(u(τ)) = r̄}
= max{τ ∈ [0, t] : |u(τ)− w| = rw,u,t,0} = sw,u,t,0, (2.12)

u(t̄)− λ(r̄) = u(sw,u,t,0)− w = −pw,u,t |u(sw,u,t,0)− w|
= − pw,u,trw,u,t,0 = −pw,u,tr̄. (2.13)

- If pw,u,t = 1 then it follows from (2.13) that u(t̄) = λ(r̄) − r̄. We define rk := rw,u,t,k for all k ∈
{0, . . . ,Kw,u,t + 1} and tk := sw,u,t,k for all k ∈ {0, . . . ,Kw,u,t}. Defining moreover tKw,u,t+1 = t, rk := 0
and tk := t for all k ∈ N with k > Kw,u,t + 1 and recalling the definition of a memory sequence as in
the text before Proposition II.2.5 from [9], it follows that {(tj , rj)}∞j=0 is the memory sequence of u at

the point t with respect to the initial configuration λ. Moreover, it holds that (−1)j = pw,u,t(−1)j for all
j ∈ {0, 1, 2, . . . }.

- If pw,u,t 6= 1 then it follows from (2.3) and (2.13) that u(t̄) = λ(r̄) + r̄. We define rk := rw,u,t,k−1 for all
k ∈ {1, . . . ,Kw,u,t + 2} and tk := sw,u,t,k−1 for all k ∈ {1, . . . ,Kw,u,t + 1}. Defining moreover tKw,u,t+2 = t,
rk := 0 and tk := t for all k ∈ N with k > Kw,u,t + 2 and recalling the definition of a memory sequence as
in the text before Proposition II.2.5 from [9], it follows that {(tj , rj)}∞j=1 is the memory sequence of u at

the point t with respect to the initial configuration λ. Moreover, it holds that (−1)j = pw,u,t(−1)j−1 for
all j ∈ {0, 1, 2, . . . }.

Recalling now II.(2.17) in Proposition II.2.5 from [9] and considering the value of pw,u,t, we see that the assertion
is proved.

3. Forward UQ for the play operator with stochastic yield limit

Now, we want to consider a situation, wherein the true value of the yield limit is not known exactly, but we
think that its value is near to 2. For this situation, we will do forward UQ to determine the influence of this
uncertainty.

Hence, we interpret the yield limit r ≥ 0 as value of the random variable R generated from the normal
distribution N(2, 0.52) with mean 2 and standard deviation 0.5 by ignoring (−∞, 0] and rescaling, leading to
the following probability density function ρR of R, see also Figure 3:

ρR(r) =

{
1
C e−

(r−2)2

2·0.52 , if r ≥ 0

0, if r < 0,
with C =

∫ ∞
0

e−
(r−2)2

2·0.52 dr. (3.1)

The mapping [0,∞) 3 r 7→ Pr[w, u](t) is continuous, see e.g., Corollary II.2.2 from [9]. Hence, it follows that
the composition of this mapping with R generates a random variable, denoted by PR[w, u](t). The collection
(PR[w, u](t))t∈[0,T ] is a stochastic process.

For an initial state w ∈ R, an input function u and a time t ∈ [0, T ], we denote by µw,u,t the probability
measure on R for PR[w, u](t) and observe that for the expected value E (PR[w, u](t)) it holds that

E (PR[w, u](t)) =

∫ ∞
0

Pr[w, u](t)ρR(r)dr =

∫ ∞
−∞

sdµw,u,t(s). (3.2)

Hence, we see that the expected value is equal to the output of a Prandtl-Ishlinskĭı operator with weight
function ρR and an initial state function that is equal to w on [0,∞).

To compute PR[w, u](t) or the measure µw,u,t by using (Pr[w, u](t))r≥0, we consider the representation as in
Lemma 2.1.

Let rw,u,t,0 be defined as in (2.2a). Then it follows from Lemma 2.1.a that Pr[w, u](t) = w for for all r ≥
rw,u,t,0.
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Figure 3. Probability density ρR and expected value E (R) ≈ 2.00007 of R defined in (3.1).

If rw,u,t,0 > 0, we consider (rw,u,t,k)
Kw,u,t+1
k=1 , (zw,u,t,k)

Kw,u,t

k=0 and pw,u,t as defined in (2.2c)–(2.5). Using
Lemma 2.1.b, we see that [rw,u,t,k+1, rw,u,t,k] 3 r → Pr[w, u](t) ∈ Iw,u,t,k with

Iw,u,t,k :=
[
zw,u,t,k + min

{
(−1)kpw,u,trw,u,t,k, (−1)kpw,u,trw,u,t,k+1

}
,

zw,u,t,k + max
{

(−1)kpw,u,trw,u,t,k, (−1)kpw,u,trw,u,t,k+1

}]
(3.3)

is a one-to-one mapping with the derivative (−1)kpw,u,t ∈ {1,−1} such that it holds for r ∈ [rw,u,t,k+1, rw,u,t,k]

and z ∈ Ik that Pr[w, u](t) = z if and only if r =
z−zw,u,t,k

(−1)kpw,u,t
. Using this properties, we can show that the

probability measure µw,u,t for the random variable PR[0, u](t) is the sum of a Dirac measure at w weighted
by
∫
rw,u,t,0

ρR(r)dr =
∫
max{|u(τ)−w|:τ∈[0,t]} ρR(r)dr and of a measure with a density on R being equal to 0 if

rw,u,t,0 = 0 and being equal to

R 3 z 7→
Kw,u,t∑
i=0

{
0, if z /∈ Iw,u,t,k,
ρR

(
z−zw,u,t,k

(−1)kpw,u,t

)
if z ∈ Iw,u,t,k,

(3.4)

otherwise.
As example, we consider the piecewise monotone input function u ∈ C[0, T ] such that the value of the function

increases linearly on [0, 1] from 0 to 4, afterwards decreases linearly on [1, 2] to 0, afterwards increases linearly
on [2, 3] to 3.5 and afterwards decreases linearly on [3, 4] to −4.5.

The probability measure µ0,u,t for the random variable PR[0, u](t) is the sum of a Dirac measure at 0 weighted
by
∫
max{|u(τ)|:τ∈[0,t]} ρR(r)dr and of a measure with a density, denoted by φt. For t ∈ {0, 0.5, 1, 2, 3, 3 13

32 , 4}, the

values of u(t), of the output P2[0, u](t) of the play operator with yield limit 2, of the expected value E (PR[0, u](t))
of (PR[0, u](t)), of max{|u(τ)| : τ ∈ [0, t]} and of the weight

∫
max{|u(τ)|:τ∈[0,t]} ρR(r)dr are presented in Table 1.

Moreover, the density φt, the expected value and the weight are also shown in Figures 4 and 5.
To compute Pr[0, u]

(
13
32

)
as function of r for t = 3 13

32 = 109
32 , we use Lemma 2.1. Using (2.2a)–(2.6) and the

text afterwards, we get the values shown in Table 2. Hence, Lemma 2.1 yields that for [0,∞) 3 r → Pr[0, u]
(
13
32

)
it holds that the function increases linearly on [0, 1.625] from 0.25 to 1.875, decreases linearly on [1.625, 1.75]
to 1.75, increases linearly on [1.75, 2] to 2 and decreases linearly on [2, 4] to 0 and is equal to 0 on [4,∞), see
also Figure 6. For computing the corresponding density φ 109

32
, shown in the top, right-hand side of Figure 5 by

using (3.4), we have to sum up several values for ρR(r). In Figure 6, the corresponding values are marked for
z ∈ {0.1, 1.3, 1.8, 1.9}. In view of the Ik shown in Table 2, we see that for z ∈ [0, 0.25) we need to evaluate ρR(r)
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Table 1. Values for the time t, the input function u(t), P2[0, u](t), E (PR[0, u](t)), max{|u(τ)| :
τ ∈ [0, t]}, and

∫
max{|u(τ)|:τ∈[0,t]} ρR(r)dr; the values that have been chosen for the time t are

also considered in Figures 4 and 5.

t u(t) P2[0, u](t) E (PR[0, u](t)) maxτ∈[0,t] |u(τ)|
∫
max{|u(τ)|:τ∈[0,t]} φR(r)dr

0 0 0 0 0 1
0.5 2 0 0.199411 2 0.500016
1 4 2 1.99994 4 0.0000316722
2 0.5 2.5 1.60112 4 0.0000316722
3 3.5 1.5 1.7988 4 0.0000316722

3 13
32 0.25 2.25 1.66774 4 0.0000316722
4 −4.5 −2.5 −2.49993 4.5 2.8661 · 10−7

Figure 4. The density function φt and the weight
∫
max{|u(τ)|:τ∈[0,t]} φR(r)dr for the Dirac

measure concentrated at 0 leading to the probability measure µ0,u,t of PR[0, u](t) for some
values of t, see also Table 1. Also E (PR[0, u](t)) is shown, marked be E. It holds top, left-hand
side: t = 0; top, right-hand side: t = 0.5; bottom, left-and side: t = 1; bottom, left-and side:
t = 2.
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Figure 5. The density function φt and the weight
∫
max{|u(τ)|:τ∈[0,t]} φR(r)dr for the Dirac

measure concentrated at 0 leading to the probability measure µ0,u,t of PR[0, u](t) for some
values of t, see also Table 1. Also E (PR[0, u](t)) is shown, marked be E. It holds top, left-hand
side: t = 3; top, right-hand side: t = 3 13

32 = 109
32 , bottom t = 4.

Table 2. Values for r0,u,3 13
32 ,k

, s0,u,3 13
32 ,k

, z0,u,3 13
32 ,k

and the interval I0,u,3 13
32 ,k

for the considered

input function. It holds K0,u,3 13
32

= 3 and p0,u,3 13
32

= −1.

k r0,u,3 13
32 ,k

s0,u,3 13
32 ,k

z0,u,3 13
32 ,k

I0,u,3 13
32 ,k

0 4 1 4 [0,2]
1 2 2 0 [1.75,2]
2 1.75 3 3.5 [1.75,1.875]
3 1.625 3 13

32 0.25 [0.25,1.875]
4 0 — —

for one value of r to evaluate (3.4). In the corresponding computation for z ∈ [0.25, 1.75) ∪ (1.875, 2], we have
to sum up two values of ρR, while for z ∈ [1.75, 1.875] we have to sum up four values.

As one can see in Figure 7, showing evolutions of P2[0, u](t) and of the expected value E (PR[0, u](t)), it holds
that these evolutions differ. Since Corollary II.2.2 from [9] yields that∣∣P2[0, u](t)− PE(R)[0, u](t)

∣∣ ≤ |E(R)− 2| = 0.00007, ∀ t ∈ [0, T ],
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Figure 6. Output of play operator Pr[0, u](t) as function of r for t = 3 13
32 = 109

32 and evaluating
value for ρR during computing the sum as in (3.4) for z ∈ {0.1, 1.3, 1.8, 1.9}.

Figure 7. Left-hand side: evolution of P2[0, u](t) (indistinguishable from evolution of
PE(R)[0, u](t) in the considered scale) and of the expected value E (PR[0, u](t)); right-hand side:
corresponding input-output diagram.

such that in the scale used in this figure the graphs of P2[0, u] and PE(R)[0, u] would coincide, we deduce that
also the evolutions of PE(R)[0, u](t) and of the expected value E (PR[0, u](t)) differ.

4. Generalized Prandtl-Ishlinskĭı operators

Following [6, 7, 18], we consider generalized Prandtl-Ishlinskĭı operators that are defined by combining a
Prandtl-Ishlinskĭı operators and a given function g : R→ R by mapping an input function u : [0, T ]→ [0, T ] to
the output of the Prandtl-Ishlinskĭı considered with the composition g ◦ u used as input function. These kind
of operators can be inverted analytically and can model effects like saturation, asymptotic behaviors, etc., see,
e.g., discussions in [2, 5, 18].

In Sections 3 and 5 from [4] the following generalized Prandtl-Ishlinskĭı operator has been used to model the
magnetization of Galfenol for an applied magnetic field H. This operator is defined by mapping H ∈ C[0, T ] to
Gc1,c2,c3 [H] ∈ C[0, T ] defined by

Gc1,c2,c3 [H](t) = PIc1,c2 [tanh(c3H)](t), ∀ t ∈ [0, T ], (4.1)

with the Prandtl-Ishlinskĭı operator PIc1,c2 : C[0, T ]→ C[0, T ] being defined by

PIc1,c2 [u)](t) =

∫ ∞
0

c1e−r/c2Pr[λ0(r), u](t)dr, ∀u ∈ C[0, T ], t ∈ [0, T ], (4.2)

with c1, c2, c3 being positive parameters and λ0 : [0,∞)→ R being an appropriate function.
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Related to a Prandtl-Ishlinskĭı operator is the initial loading curve, whose value at x ∈ R can be determined
by letting the input monotonically increase or decrease linearly from 0 to x on [0, T ] with an initial configuration
λ being constant 0, and evaluating the output of the Prandtl-Ishlinskĭı operator at T .

In applications to plasticity modeled by a Prandtl-Ishlinskĭı operator this curve can be measured by consid-
ering a material with no previous memory, e.g., if the memory was erased for instance by heating above the
Curie temperature and cooling again or applying an input function with decreasing oscillations.

The initial loading curve ψc1,c2 for PIc1,c2 satisfies

ψc1,c2(s) =

∫ ∞
0

c1e−r/c2


(s− r), if r ≤ s,
0, if − r ≤ s ≤ r,
(s+ r), if r ≥ −s,

dr,

= sc1c2 + c1c
2
2

{
e−

s
c2 − 1, if s ≥ 0,

1− e
s
c2 , if s ≤ 0,

(4.3)

for all s ∈ R.
Following, [5, 6, 12], we consider u ∈ C[0, T ] and 0 ≤ ta < tb < tc ≤ T with u being monotone on [ta, tb] and

on [tb, tc] such that u(ta) = u(tc). Recalling (2.1b), we get for all w0 ∈ R that

Pr[w0, u](tc)− Pr[w0, u](tb) = 2


0, if

∣∣∣u(tc)−u(tb)2

∣∣∣ ≤ r,
u(tc)−u(tb)

2 − r, if u(tc)−u(tb)
2 > r,

u(tc)−u(tb)
2 + r, if − u(tc)−u(tb)

2 > r.

(4.4)

Therefore, invoking (4.3) and (4.2), we get

ψc1,c1

(∣∣∣∣u(tc)− u(tb)

2

∣∣∣∣)
=

1

2

{
PIc1,c2 [λ0, u](tc)− PIc1,c2 [λ0, u](tb), if u(tc) ≥ u(tb),

PIc1,c2 [λ0, u](tb)− PIc1,c2 [λ0, u](tc), if u(tb) ≤ u(tc).
(4.5)

Considering an input cycle and differences for corresponding measurements for a process that one would like
to represent by a Prandtl-Ishlinskĭı operator, one can derive an approximation for the initial loading curve on
[0, |(u(t2)− u(tb))/2|] from the measurements during [t1, t2] by replacing on the right-hand side of (4.5) the
values of the operator by corresponding values from the measurements.

5. Identification and inverse UQ

5.1. Considered situation

In [1], a magnetostrictive Terfenol-actuator is investigated and the hysteresis between the reference signal
determining the current generating the magnetic field and the resulting displacement is considered, and the
data of the First-Order-Reversal-Curves (FORCs) are used to determine a Preisach operator and a generalized
Prandtl-Ishlinskĭı operator.

We will now use the data measured during the preparation of the FORC-diagram in [1], considering now the
measured current (corrente) generated from the reference signal as input data, such that we get Figure 8 from
the measurements, quite similar to the FORC diagram in Figure 4a from [1], except for the scale of the input.

Now, we will approximate these data by the initial loading curve corresponding to Gc1,c2,c3 [H](t), i.e., we
consider the differences derived from the function tanh(c3I(t)) as input for ψc1,c1 . This will be used to determine
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Figure 8. FORCs and further measurements during creation of these curves.

an appropriate value for c3 and to derive information about c1 and c2 and their uncertainty, i.e., for these
parameters we will perform inverse UQ.

5.2. Identification of c3

To determine c3, we consider the generated approximations of the initial loading curve. For i ∈ {30, · · · , 58},
we have sets of times ti,0 < ti,1 < · · · < ti,Ki

such that the current I as function of time has a discrete local
maximum at ti,0 and it holds I (ti,0) > I (ti,1) > · · · > I (ti,Ki

). For i ∈ {1, · · · , 29} it holds that the current I
has a discrete local minima at ti,0 and it holds I (ti,0) < I (ti,1) < · · · < I (ti,Ki

).
Let L denote the relative length change measured by the length sensor as function of time. Then it follows

that the data sets (I (ti,k) , L (ti,k))
Ki

k=0 for i = 30, . . . , 58 represent the FORCs.
To derive the initial loading curve ζi,c3 for i ∈ {1, 2, . . . , 58} and for c3 > 0 by considering the data set

(I (ti,k) , L (ti,k))
Ki

k=0 and the transformation x 7→ tanh(c3x), we consider (4.5) with ψc1,c1 replaced by ζi,c3 ,
PIc1,c2 [λ0, u] replaced by L, u(t) := tanh(c3I(t)), tb = ti,0, and tc = ti,k for all k = 0, . . . ,Ki, leading to

ζi,c3

(
|tanh(c3I(ti,k))− tanh(c3I(ti,0))|

2

)
=

1

2

{
L(ti,k)− L(ti,0), if i ≤ 29,

L(ti,0)− L(ti,k), if i > 29,
∀ k ∈ {0, 1, . . . ,Ki}, i ∈ {1, . . . , 58}. (5.1)

By interpolation, we get a function ζi,c3 defined on
[
0, 12 |tanh(c3I(ti,k))− tanh(c3I(ti,0))|

]
.

Now, c3 is determined by requesting that the sum over the squared L2-difference between these generated
approximations is minimized. We end up with the optimal value c3 = ctanh = 0.682138. The corresponding
(ζi,ctanh

)
58
i=1 set of initial loading curves is shown in Figure 9.

5.3. Identification of c1,i and c2,i

For each approximation ζi,ctanh
of the initial loading curve derived from the measurements by using

interpolation, we determine (c1,i, c2,i) ∈ (0, 250) × (0.0000001, 25) by minimizing the L2-difference between
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Figure 9. Derived initial loading curves.

Figure 10. The first measured initial loading curve (solid line) and ψc1,i,c2,i with i = 1 (dashed
line).

this approximation for the initial loading curve and the ψc1,i,c2,i initial loading curve corresponding to the
Prandtl-Ishlinskĭı-operator PIc1,i,c2,i , see an example in Figure 10.

Moreover, a data pair (c1, c2) has been computed by minimizing the sum over the L2-difference between
ζi,ctanh

and ψc1,c2 for all i ∈ {1, . . . , 58}, leading to c1 = 11.7463 and c2 = 0.1636.
If only the computed parameter pairs for the curves generated for decreasing inputs i.e., the pairs belonging

to the FORCs, are considered, and also the pairs belonging to the three shortest definition intervals are ignored,
we get the appropriate subset ((c1,i, c2,i))

55
i=30 of 26 parameter pairs. Computing for this subset the mean and

the standard deviation of the corresponding values for c1,i and c2,i leads to meani(c1,i) = 13.3218, meani(c2,i) =
0.116617, std(c1,i) = 2.67912, and std(c2,i) = 0.043755.
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Figure 11. Input-output plot for PImeani(c1,i),meani(c2,i),c3 [u],
PImeani(c1,i),meani(c2,i)±stdi(c2,i),c3 [u], and PImeani(c1,i),meani(c2,i)±2 stdi(c2,i),c3 [u], for the initial
state λ0 ≡ 0 and an input function u increasing linearly from 0 to 1.8, decreasing linearly after-
wards to 0 and increasing linearly to 1.8 afterwards, Left-hand side: evolution of 0 — input
u, 1 — PImeani(c1,i),meani(c2,i)−2 stdi(c2,i),c3 [u], 2 — PImeani(c1,i),meani(c2,i)−stdi(c2,i),c3 [u],
3 — PImeani(c1,i),meani(c2,i),c3 [u], 4 — PImeani(c1,i),meani(c2,i)+stdi(c2,i),c3 [u], 5 —
PImeani(c1,i),meani(c2,i)+2 stdi(c2,i),c3 [u], right-hand side: input-output plots for 1–5.

One could now use this data to start further investigations. As simple example, we consider
PImeani(c1,i),meani(c2,i),c3 [u], PImeani(c1,i),meani(c2,i)±stdi(c2,i),c3 [u], and PImeani(c1,i),meani(c2,i)±2 stdi(c2,i),c3 [u],
for the initial state λ0 ≡ 0 and an input function u increasing linearly from 0 to 1.8, decreasing afterwards
linearly to 0 and increasing linearly to 1.8 leading to the outputs shown in Figure 11.

As an example for forward UQ, we now assume that the value of c2 can be represented by a ran-

dom variable C2 with with density ρC2
that is derived from the distribution N

(
meani(c2,i), (stdi(c2,i))

2
)

=

N
(

0.116617, (0.043755)
2
)

by ignoring ] −∞, 0.0000001] and rescaling, see the left-hand side of Figure 12. In

the right-hand side of this figure, an input function u, the graph of PImeani(c1,i),meani(c2,i)[u] (graph output
does not change in this scale, if meani(c2,i) = 0.116617 is replaced by E(C2) = 0.11712) and the graph of
[0, T ] 3 t 7→ E

(
PImeani(c1,i),C2

[u](t)
)

with λ0 ≡ 0 are shown. In this example there is only a small difference
between these graphs.

If all computed parameter pairs are considered, computing the mean and the standard deviation for all
values for c1 and c2, we get meani,all(c1,i) = 16.0156, meani,all(c2,i) = 4.71742, stdi,all(c1,i) = 13.3218, and
stdi,all(c2,i) = 7.94603. In view of these values, it is obvious, that one can not use them to derive a satisfying
assumption for the random variables representing the positive parameters c1 and c2.

We could consider N
(
m1, δ

2
1

)
and N

(
m2, δ

2
2

)
for some positive constants m1,m2, δ1, δ2 and could perform

some truncation, to derive random variables C1 and C2 to be used in UQ to represent an appropriate approx-
imation for c1 and c2. But, this could only be justified if the pairs ((c1,i, c2,i))

58
i=1 or the pairs ((c1,i, c2,i))

55
i=30

could be considered as typical independent samples for N
(
m1, δ

2
1

)
and N

(
m2, δ

2
2

)
. A typical example for the

cloud generated by this kind of samples is shown in Figure 13 for
(
N
(
1, 12

)
, N
(

2,
(
1
2

)2))
.

Considering the computed parameter pairs ((c1,i, c2,i))
58
i=1, see Figure 14, it is obvious that we can not get

these set of pairs as samples if we assume that the parameters can be represented by two independent normal
distributed random variables, even if the correlation between (c1,i)i and (c2,i)i is only −0.0737148. Also the 26

data pairs ((c1,i, c2,i))
55
i=30 in the appropriate subset introduced in Section 5.3, see Figure 15, with a corresponding

correlation of −0.532375, can not be derived as samples in this way.
Hence, we are interested in finding a more general random variable (C∗1 , C

∗
2 ) with values in (0,∞)× (0,∞)

such that either ((c1,i, c2,i))
58
i=1 or ((c1,i, c2,i))

55
i=30 could be considered as typical samples of this random variable.
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Figure 12. Left-hand side: Density ρ2 of random variable C2 describing c2 derived from

N
(

meani(c1,2), (stdi(c2,2))
2
)

= N
(

0.116617, (0.043755)
2
)

by ignoring (−∞, 0.0000001] and

rescaling, expected value E(C2) = 0.11712 is marked by E. Right-hand side: an Input
function u (marked by 0), graph of PImeani(c1),meani(c2)[u] (marked by 1) and graph of

E
(
PImeani(c1,i),C2

[u]
)

(marked by 2).

Figure 13. 58 independent samples for (A1, A2) =
(
N
(

1, (1)
2
)
, N
(

2,
(
1
2

)2))
.

Figure 14. Sample pairs
(
c1,1, c2,1

)
, · · · ,

(
c1,58, c2,58

)
. Left-hand side: plot of all pairs, right-

hand side: zoom plot.
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Figure 15. Appropriate subset
(
c1,30, c2,30

)
, · · · ,

(
c1,55, c2,55

)
of 26 parameter pairs introduced

in Section 5.3.

5.4. Applications of Bayes’ Theorem

Now, we will use Bayes’ Theorem to derive a probability density on (0,∞) × (0,∞) by considering the
measured data, aiming to generate C∗1 , C

∗
2 as discussed above.

Let vobs be a vector containing the sets of the non–trivial discrete values for the initial loading curve used to
derived their approximations in Sections 5.2 and 5.3, i.e.,

vobs =

({(
1
2 (L(ti,k)− L(ti,0))

)Ki

k=1
if i ≤ 29,(

1
2 (L(ti,0)− L(ti,k))

)Ki

k=1
if i > 29,

)58

i=1

∈ RK1 × RK2 × · · · × RK58 . (5.2)

We consider on (0,∞) × (0,∞) the uniform probability density π0 for (0, 250) × (0.0000001, 25) as priori
density. Updating this priori density by following Bayes’ Theorem of Inverse Problems, see, e.g., Section 8.1
from [14] and Sections 2.8 and 6.2 from [15], we get the posterior probability density πnew on (0,∞)× (0,∞)
defined by

πnew (c1, c2) =
`
(
c1, c2|vobs

)
π0(c1, c2)∫∞

0

∫∞
0
` (c′1, c

′
2|vobs)π0(c′1, c

′
2)dc′2dc′1

(5.3)

with `
(
(c′1, c

′
2)|vobs

)
being the likelihood that the parameter pair has the value (c′1, c

′
2) if the output vobs is

observed. To derive the forward function Ψc1,c2 : (0,∞)× (0,∞) allowing to formulate the likelihood function,
we use a method similar to the derivation of (5.1). We consider (4.5) with u(t) := tanh(c3I(t)), tb = ti,0,
tb = ti,0, and tc = ti,k for all k = 0, . . . ,Ki. Using that L(ti,k) and L(ti,0) are approximations of PIc1,c2 [u](ti,k)

and PIc1,c2 [u](ti,0), we end up with the assumption that there is a sample γ =
(

(γi,k)
Ki

k=0

)58
i=1

of a random

variable Γ =
(

(Γi,k)
Ki

k=0

)58
i=1

on RK1+1 × RK2+1 × · · · × RK58+1 such that

ψc1,c2

(
|tanh(c3I(ti,k))− tanh(c3I(ti,0))|

2

)
=

1

2

{
L(ti,k) + γi,k − (L(ti,0) + γi,0) , if i ≤ 29,

L(ti,0) + γi,0 − (L(ti,k) + γi,k) , if i > 29,
∀ k ∈ {0, 1, . . . ,Ki}, i ∈ {1, . . . , 58}. (5.4)

Now, defining the forward function Ψ : (0,∞)× (0,∞)→ RK1 × RK2 × · · · × RK58 by

Ψ (c1, c2) :=

((
ψc1,c2

(
|tanh(c3I(ti,k))− tanh(c3I(ti,0))|

2

))Ki

k=1

)58

i=1

. (5.5)
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and

η :=

({(
1
2 (γi,0 − γi,k)

)Ki

k=1
if i ≤ 29,(

1
2 (γi,k − γi,0)

)Ki

k=1
if i > 29,

)58

i=1

∈ RK1 × RK2 × · · · × RK58 , (5.6)

we have

Ψ (c1, c2) + η = vobs (5.7)

and that η is a sample for H̃ :=

({(
1
2 (Γi,0 − Γi,k)

)Ki

k=1
if i ≤ 29,(

1
2 (Γi,k − Γi,0)

)Ki

k=1
if i > 29,

)58

i=1

and that vobs is a sample for

Ψ (c1, c2) + H̃. Hence, we have to consider the likelihood function ` associated to function mapping (c′1, c
′
2) ∈

(0,∞)× (0,∞) to the random variable Ψ (c′1, c
′
2) + H̃.

In the following, we assume that the components

Γ1,0,Γ1,1, . . . ,Γ1,K1
,Γ2,0,Γ2,1, . . . ,Γ2,K2

, . . . ,Γ58,0,Γ58,1, . . . ,Γ58,K58
, of Γ

are independent random variables. Moreover, we assume that we have some σ > 0 such that Γ1,1,Γ1,1, . . . ,Γ1,K1
,

Γ2,1,Γ2,1, . . . ,Γ2,K2
, . . . ,Γ58,1,Γ58,1, . . . ,Γ50,K58

have the distribution N(0, σ2) representing the measurement
error, i.e., the error between PIc1,c2 [u](ti,k) and L(ti,k).

For i ∈ {1, . . . , 58}, it is assumed that γi,0 contains in addition to the measurement error between
PIc1,c2 [u](ti,0) and L(ti,0) also the error generated by evaluating (4.5) for tb = ti,0 and not for tb being the
time t∗i near to ti,0 such that the continuous function I has the local extremum in t∗i . Since t∗i may be different
from ti,0, (4.5) only holds with some additional error term. Hence, we assume that Γ1,0,Γ2,0, . . . ,Γ58,0 have the
distribution N(0, (2σ)2).

Now, one can show that H̃ has the density ρ∗ : RK1 × RK2 × · · · × RK58 → [0,∞) satisfying

ρ∗
((

(wi,k)
Ki

k=1

)58
i=1

)
=

(
2√

2πσ2

)∑58
i=1Ki

(
58∏
i=1

√
1

4Ki + 1

)

exp

− 2

σ2

58∑
i=1

 Kj∑
k=1

w2
i,k −

(
1

4
+Ki

)−1 Kj∑
k=1

wi,k

2

 . (5.8)

For (c′1, c
′
2) ∈ (0,∞)× (0,∞) it holds that Ψ (c′1, c

′
2) + H̃ has the density

RK1 × RK2 × · · · × RK58 3
(

(wi,k)
Ki

k=1

)58
i=1
7→ ρ∗

((
(wi,k)

Ki

k=1

)58
i=1
−Ψ(c′1, c

′
2)

)
,

such that we can define `

(
(c′1, c

′
2)

∣∣∣∣∣ ((wi,k)
Ki

k=1

)58
i=1

)
to be the formulae on the right-hand side.
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Figure 16. Normalized likelihood for the standard deviation 0.01 and 0.02 for the noise in the
measured length. Left-hand side: 3D plot, right-hand side contour plot with isolines.

The normalized likelihood function `norm is defined by

`norm

(
(c′1, c

′
2)

∣∣∣∣∣ ((wi,k)
Ki

k=1

)58
i=1

)
=

`

(
(c′1, c

′
2)

∣∣∣∣∣ ((wi,k)
Ki

k=1

)58
i=1

)

max(c′′1 ,c
′′
2 )∈(0,∞)2 `

(
(c′′1 , c

′′
2)

∣∣∣∣∣ ((wi,k)
Ki

k=1

)58
i=1

) . (5.9)

We can replace the likelihood in (5.3) by the normalized likelihood without changing the result, also if we use
a numerical approximation for the maximum instead of true maximum in the evaluation.

For σ = 0.01 corresponding functions plots for `norm
(
(c′1, c

′
2)
∣∣vobs) can be found in Figure 16, the position for

numerical maximum for the likelihood is (c1, c2) = (12.2253, 0.1519). For σ = 0.05 the corresponding functions
plots are shown in Figure 17, the position for numerical maximum for the likelihood is the same as for σ = 0.01.

Hence, we see that this likelihood function will generate a posterior probability density which is numerical
equal to 0 except for a small region, such that the 58 computed pairs (c1,i, c2,i) are obviously no typical samples
for this probability density.

Recalling the derivation of the likelihood function and [14, 15], one realizes that this function is derived from
a probability density for a noise disturbed output with using one parameter pair (c1, c2) for all possible initial
loading curves. Therefore, the Bayes’ theorem generated a density on (0,∞)× (0,∞) that represents somehow
the informations about the position of this one parameter pair that can be extracted by investigating the
observed values in vobs and does not contain information for dealing with different parameter pairs for different
subsets of the observation, i.e., this application of Bayes’ theorem could not generated a density leading to the
requested random variable (C∗1 , C

∗
2 ).

5.5. Further research for UQ for magneto-mechanical component

5.5.1. UQ-issues for further research

We would like to find a probability density on (0,∞)× (0,∞) such that the 58 computed pairs of parameter
values or the appropriate subset of 26 parameter pairs introduced on Section 5.3 are typical samples for for
this probability density. A further investigation of Bayes’ theorem as discussed for example in [14, 15] yields
that applying this theorem would require to use these probability densities as parameter instead of the number



18 O. KLEIN ET AL.

Figure 17. Normalized likelihood for the standard deviation 0.05 and 0.1 for the noise in the
measured length. Left-hand side: 3D plot, right-hand side contour plot with isolines, top: input
data range as in Figure 16, bottom: input data range adapted to considered likelihood function.

pairs (c1, c2) considered in Section 5.4, and that Bayes’ theorem would return a probability density over a set
of probability density on (0,∞)× (0,∞) as result.

If one should apply now Bayes’ theorem or try to determine the probability density on (0,∞) × (0,∞)
maximizing the likelihood will be subject of further research.

5.5.2. Modeling issues

The considered data are derived from length change over magnetic field data. Hence, to be compatible with the
thermodynamical consistent model derived in [4], one would need to replace the generalized Prandtl-Ishlinskĭı
operator Gc1,c2,c3 [H](t) by a function evaluation involving also the counter clockwise potential operator of an
hysteresis operator appropriate to model the magnetization, e.g., the counter clockwise potential operator to
Gc1,c2,c3 . Corresponding investigations will be subject of further research.

6. Conclusion

The output of hysteresis operators depend on parameters, but their values may be not exactly known when
modeling real world processes.
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These parameter can be considered as random variables and the methods of uncertainty quantification (UQ)
allow to investigate the influence of the uncertainty on the output of the model and to determine the random
variable representing the information on the parameter.

Acknowledgements. O. Klein would like to thank Prof. C. Schillings, University of Mannheim, for fruitful discussions.
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[1] M. Al Janaideh, C. Visone, D. Davino and P. Krejč́ı. The generalized Prandtl-Ishlinskii model: relation with the Preisach
nonlinearity and inverse compensation error, in 2014 American Control Conference (ACC) June 4-6, 2014. Portland, Oregon,
USA (2014).
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[7] O. Klein and P. Krejč́ı, Asymptotic behaviour of evolution equations involving outwards pointing hysteresis operators. Phys.

B 343 (2004) 53–58.
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[18] C. Visone and M. Sjöström, Exact invertible hysteresis models based on play operators. Phys. B: Condens. Matter 343 (2004)

148–152.
[19] Y. Zhang, Stochastic responses of multi-degree-of-freedom uncertain hysteretic systems (2011).


	On forward and inverse uncertainty quantification for models involving hysteresis operators
	1 Uncertainties in models with hysteresis operatorsand uncertainty quantification
	2 The play operator with deterministic data 
	3 Forward UQ for the play operator with stochastic yield limit
	4 Generalized Prandtl-Ishlinskiı operators
	5 Identification and inverse UQ
	5.1 Considered situation
	5.2 Identification of c3 
	5.3 Identification of c1,i and c2,i 
	5.4 Applications of Bayes' Theorem
	5.5 Further research for UQ for magneto-mechanical component
	5.5.1 UQ-issues for further research
	5.5.2 Modeling issues


	6 Conclusion 

	References

