
Chapter 6

Holonomic rolling nonprehensile
manipulation primitive

Alejandro Donaire, Fabio Ruggiero, Vincenzo Lippiello, Bruno Siciliano

Abstract In this chapter, the design of nonlinear controllers for non-
prehensile holonomic rolling system is reviewed. A general model for the class
of non-prehensile rolling system considered in this work is first formulated.
Then, both the input-state linearisation approach and the interconnection
and damping assignment passivity-based control technique for rolling systems
are addressed. The class of control designs presented in this chapter make use
of energy concepts and physical properties. Three benchmark examples are
used to illustrate the control design presented, namely the disk-on-disk, the
ball-and-beam, and the eccentric disk-on-disk
This chapter is based on the works presented in [82, 173, 277].
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Table 6.1: Main symbols used in this chapter.

Definition Symbol

Frame attached to the CoM of the hand H
Frame attached to the CoM of the object O
Angle of the hand in W ✓h 2 R
Position of H in W ph(✓h) 2 R2

Position of O in W po 2 R2

Angle of the object in W ✓o 2 R
Arclength parameter for the hand sh 2 R
Arclength parameter for the object so 2 R
Rotation of H with respect to W R(✓h) 2 SO(2)
Rotation of O with respect to W R(✓o) 2 SO(2)

Configuration vector q =
⇥
q1 q2

⇤T 2 R2

Mass matrix M(q) =


m11(q) m12(q)
m12(q) m22(q)

�
2 R2⇥2

Coriolis matrix C(q, q̇) =


c11 c12
c21 c22

�
2 R2⇥2

Gravity vector g(q) =
⇥
g1(q) g2(q)

⇤T 2 R2

Inertia of the hand Ih 2 R
Mass of the hand mh > 0
Inertia of the object Io 2 R
Mass of the object mo > 0
Gravity acceleration g = 9.81 m/s2

Selection vector e=
⇥
0 1

⇤T 2 R2

Momentum vector p = M(q)q̇ 2 Rn

Hand torque applied at the hand’s center of rota-
tion

⌧h 2 R

Hand acceleration ah 2 R
Radius of the actuated disk (DoD and eccentric
DoD setups)

⇢h > 0

Radius of the upper disk (DoD setup and eccentric
DoD setups) and radius of the rolling ball (BnB
setup)

⇢ > 0

Distance between the beam’s CoM and its surface
where the ball rolls (BnB setup)

dh > 0

Hamiltonian function H : R4 ! R
Desired Hamiltonian function Hd : R4 ! R
Desired mass matrix Md(q) 2 R2⇥2

6.1 Brief introduction

The manipulation problem of nonprehensile planar rolling concerns tasks that
involve an actuated manipulator, which in this chapter is called the hand,
and an object that is manipulated without form or force closure grasps [252].
There exist many examples of such robotic systems, the disk-on-disk [83, 265],
the ball-and-beam [126, 236], and the butterfly robot [49, 184, 303] among the
benchmarks presented in the literature. In detail, DoD is composed of an up-
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per disk (object) that can roll without slipping on the rim of a lower actuated
disk (hand). The BnB consists of a beam (hand) actuated by a torque around
its CoM together with a ball (object) rolling on it. The butterfly robot is com-
posed of an actuated butterfly-shaped link (hand) and a ball (object) that
can freely roll on the rim of the link. The control objective in these examples
is to balance the object and drive the hand towards the desired configuration.
The shared characteristic of these planar systems is the holonomic nature of
the pure rolling constraint. A constraint is said to be holonomic if it comes
from an integrable kinematic constraint that can be expressed in the so-called
Pfa�an form [284]. The integrability condition allows instantaneous motion
in every admissible direction, that is just one in the case of planar systems
like the ones addressed in this chapter.

This chapter presents control designs for nonprehensile planar rolling sys-
tems based on two techniques: input-state FLin and IDA-PBC. The designs
are illustrated on two benchmarks, namely the disk-on-disk and the ball-and-
beam systems. In addition, a di↵erent system, referred to as eccentric DoD, is
used to demonstrate a novel procedure to design IDA-PBC controllers. This
last example is a variant of the DoD system, where the center of rotation of
the hand and its geometric center are not coincident.

This chapter is organised as follows. First, a general model of nonprehensile
planar rolling systems is presented. Then, a control design based on FLin is
presented to design controllers for nonprehensile planar rolling systems. In a
subsequence section, the IDA-PBC technique is used to design controllers for
nonprehensile planar rolling systems. In each section, the control designs are
applied to all or some of the benchmark examples. The chapter is wrapped
up with discussion and conclusions.

6.2 Dynamic model of nonprehensile holonomic rolling
manipulation systems

In this section, the model of a general class of nonprehensile planar rolling
systems shown in Fig. 6.1 is formulated. Previous models are derived under
the assumption that the hand can only rotate around its center of mass [83,
265, 173]. However, the development in this section relax this assumption and
allows the formulation of the dynamics of a larger class of rolling tasks [277].
Consider the inertial world fixed frame W, which is without loss of generality
attached to the holder where the hand is actuated (i.e., the center of rotation
of the hand).

At least locally, the shapes should be of class C2. Any point of the

hand shape is given by the chart ch
h
(sh) =

⇥
uh(sh) vh(sh)

⇤T 2 R2, ex-
pressed with respect to H, while any point of the object shape is given by

co
o
(so) =

⇥
uo(so) vo(so)

⇤T 2 R2, expressed with respect to O. Notice that
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Fig. 6.1: A general nonprehensile planar rolling manipulation system with the
center of rotation of the hand (indicated by the ⇥ symbol) not corresponding
to its center of mass. The world fixed frame W is in red. The hand frame H
and the object frame O, in green and blue, respectively, are placed at their
respective CoM.

sh increases counterclockwise along the hand, while so increases clockwise
along the object. With this choice, the pure rolling assumption is ṡh = ṡo.
Without loss of generality, the frames W and H coincide at ✓h = 0, the point
sh = 0 is at the intersection between the vertical (gravitational) axis of W
and the hand shape (i.e., ch(0) =

⇥
0 vh(0)

⇤T
in W), and thus sh = so at

all times during rolling. Therefore, the contact location will be specified only
by sh throughout the remainder of the paper. As the first assumption, the
hand and the object maintain pure rolling contact for all time. The arclength
parametrization implies the property kch0

h
k= 1, with the symbol 0 indicating

the derivative with respect to the parameter sh. The same holds for co
o
(sh).

At the contact point ch
h
(sh), the tangent vector to the shapes is expressed

as th(sh) = ch0
h

2 R2 forming an angle �h(sh) = atan2(v0
h
(sh), u0

h
(sh)) in

H. The same tangent can be expressed with respect to O with an angle
�o(sh) = atan2(v0

o
(sh), u0

o
(sh)). The signed curvatures of the shapes are de-

fined as: h(sh) = �0
h
(sh) = u0

h
(sh)v00h(sh)� u00

h
(sh)v0h(sh), o(sh) = �0

o
(sh) =

u0
o
(sh)v00o (sh) � u00

o
(sh)v0o(sh). The relative curvature at the contact point is

given by
r(sh) = h(sh)� o(sh). (6.1)

Notice that h(sh) > 0 and o(sh) < 0 denote convexity at the contact point
for the hand and the object, respectively. Hence, r(sh) > 0 guarantees a
single contact point at least locally [265]. The following constraint expresses
the angle of the tangent th(sh) with respect to W : ✓h+�h(sh) = ✓o+�o(sh).
Therefore, taking into account (6.1), the following relations hold
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✓o = ✓h + �h(sh)� �o(sh), (6.2a)

✓̇o = ✓̇h + r(sh)ṡh. (6.2b)

Assuming that R(✓) 2 SO(2) is the rotation matrix in the 2D space, notice

that the relation Ṙ(✓) = R(✓̄)✓̇ holds with ✓̄ = ✓ +
⇡

2
. The position of

the CoM of the hand in W is denoted by p
h
(✓h) =

⇥
uw(✓h) vw(✓h)

⇤T
. The

coincidence between the contact points on both the hand and the object
is expressed by p

h
(✓h) + R(✓h)chh(sh) = p

o
+ R(✓o)coo(sh), yielding to the

equation p
o
= p

h
(✓h)+R(✓h)chh(sh)�R(✓o)coo(sh), and, consequently, ṗo

=

�(q)✓̇h + ⌘(q)ṡh =
⇥
�(q) ⌘(q)

⇤
q̇, with q =

⇥
✓h sh

⇤T
and

� = p8
h
+R(✓̄h)c

h

h
�R(✓̄o)c

o

o
, (6.3a)

⌘ = R(✓h)c
h0
h
�R(✓o)c

o0
o
� rR(✓̄o)c

o

o
, (6.3b)

in which dependencies have been dropped, while (6.2b) is included and (6.2a)
has to be plugged in. The symbol 8 indicates the derivative with respect to
✓h. For this class of systems the kinetic energy is given by

T =
1

2

⇣
Ih✓̇

2
h
+mhṗ

T

h
(✓h)ṗh

(✓h) +moṗ
T

o
ṗ
o
+ Io✓̇

2
o

⌘
=

1

2
pTM�1(q)p,

where the elements of the mass matrix are given by m11(q) = Ih + Io +
mhp8T

h
p8
h
+mo�T (q)�(q), m12(q) = Ior(sh)+mo�(q)T⌘(q), and m22(q) =

Io2r(sh) +mo⌘(q)T⌘(q). The potential energy is, instead, given by

V (q) = geT2 (mopo
(q) +mhph

(q)). (6.4)

Given the kinetic and potential energy functions, then the dynamics of a
mechanical system can be readily derived using the Euler-Lagrange equations
or equivalently the Hamilton canonical equation of motion [160].

6.3 Input-state feedback linearisation

The scope of this section is to find and apply a general di↵eomorphism to
achieve an input-state FLin of the whole dynamics. Such state transformation
renders the system in the so-called normal form (i.e., a chain of integrators)
without internal dynamics. Given some assumptions on the shapes of both
the object and the hand, EFL is employed to stabilize the system.

For a brief mathematical background regarding input-state linearisation
and di↵erential flatness, please see [173].
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6.3.1 Hypotheses on the shapes and input-state linearisation

Having in mind the derivation in Section 6.2, the dynamic model is derived
through the Euler-Lagrange formalism. The so-called Lagrange function is

given by L = T�V . The dynamic model equations are then given by
d

dt

@L
@q̇i

�
@L
@qi

= ⌧i, with i = 1, 2 and ⌧i the associated generalized force acting on the

ith generalized coordinate. Therefore, by computing the Lagrange equations
and considering the Christo↵el symbols of the first type [284], the dynamic

model can be written as M(q)q̈+C(q, q̇)q̇+ g(q) = ⌧ , where ⌧ =
⇥
⌧h 0

⇤T

represents the generalized input force, g(q) =

✓
@V(q)
@q

◆T

, and C(q, q̇) is a

suitable matrix whose generic element is given by

cij(q, q̇) =
1

2

2X

k=1

✓
@mij(q)

@qk
+
@mik(q)

@qj
� @mjk(q)

@qi

◆
q̇k, (6.5)

with i, j = 1, 2. By neglecting dependencies, the dynamic model can be writ-
ten in the following extended form

m11✓̈h +m12s̈h + c11✓̇h + c12ṡh + g1 = ⌧h, (6.6a)

m12✓̈h +m22s̈h + c21✓̇h + c22ṡh + g2 = 0. (6.6b)

During experimentation, when highly-geared harmonic drive plus DC mo-
tors are present, the hand’s angular acceleration is more convenient than the
hand’s torque [265]. It is thus suitable to rewrite (6.6) with ✓̈h = ah as input

✓̈h = ah, (6.7a)

s̈h = �m�1
22 (m12ah + c21✓̇h + c22ṡh + g2), (6.7b)

where dependencies have been neglected. The equation relating ⌧h and ah is
given by

⌧h = ⇠(q, q̇) + �(q)ah, (6.8)

with ⇠(q, q̇) = g1 + c11✓̇h + c12ṡh � m12

m22
(g2 + c21✓̇h + c22ṡh) and �(q) =

m11 �
m2

12

m22
.

Assumption 6.3.1 The Coriolis terms c21(q, q̇) and c22(q, q̇) are equal to
zero. ⇤
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Remark 6.3.1 Looking at (6.5), Assumption 6.3.1 is verified when terms
m12 = m21 and m22 do not depend on q, and when m11 depends only on
✓h. Looking at the particular expressions of mij , this means that r has to
be constant, i.e. 0

r
= 0, the combination of the products �(q)T⌘(q) and

⌘(q)T⌘(q) do not depend on q, and the product �(q)T�(q) depends only
on ✓h. Considering (6.3) and the expressions of h(sh) and o(sh), the afore-
mentioned properties are thus governed by the shapes of both the hand and
the object. ⇤

Assumption 6.3.1 simplifies (6.7) as follows

✓̈h = ah, (6.9a)

s̈h = � 1

m22
(m12ah + g2(q)). (6.9b)

By indicating the state of the system as x =
⇥
x1 x2 x3 x4

⇤T
=

⇥
✓h ✓̇h sh ṡh

⇤T 2
R4, (6.9) can be written in the a�ne state-space form ẋ = f(x)+b(x)u, with
u = ah and

f(x) =


x2 0 x4 �g2(x)

m22

�T
2 R4, (6.10a)

b =
h
0 1 0 �m12

m22

iT
2 R4. (6.10b)

In order to check whether (6.9) is input-state FLin, the controllability ma-
trix T(x) =

⇥
b adf b ad2f b ad3f b

⇤
2 R4⇥4 has to be invertible in a certain

region ⌦, and the set given by the first three columns ofT(x) has to be involu-
tive. Taking into account (6.10), the detailed expression of the controllability
matrix is

T(x) =

2

66664

0 �1 0 0
1 0 0 0

0
m21

m22
0 t34

�m21

b22
0 t43 t44

3

77775
, (6.11)

with t34 =
1

m22

@g2(x)

@x1
� m12

m2
22

@g2(x)

@x3
, t43 =

m12

m2
22

@g2(x)

@x3
� 1

m22

@g2(x)

@x1
, and

t44 = x4
m12

m22

@2g2(x)

@x2
3

� x2

m22

@2g2(x)

@x2
1

. Defining the region ⌦ =
n
x 2 R4 :

@g2(x)

@x1
6= m12

m22

@g2(x)

@x3

o
, it is possible to prove that T(x) in (6.11) is made

by linearly independent columns: the first three of them build an involutive
set (proofs are omitted for brevity). The system (6.9) is then input-state FLin
in ⌦.
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To bring (6.9) in the following normal form

⇢
żi = zi+1

żn = v
, (6.12)

with i = 1, . . . , n� 1, and v 2 R and zi 2 R a new input and state variable,
respectively, a di↵eomorphism

z =
⇥
z1 z2 · · · zn

⇤T
= �(x) =

h
z1 Lf z1 . . . Ln�1

f z1
iT

(6.13)

has to be found. Hence, in order to compute the first component z1, the
following equations

@z1
@x

adif b = 0, (6.14a)

@z1
@x

adn�1

f b 6= 0, (6.14b)

with i = 0, . . . , n � 2, must hold for the vector fields (6.10). In particular,
looking at the expression of the first three columns of T(x), condition (6.14a)

yields
@z1
@x2

�m12

m22

@z1
@x4

= 0,
m12

m22

@z1
@x3

� @z1
@x1

= 0, and
@z1
@x4

t43 = 0. The solution

to this system is then given by z1 =
m12

m22
x1+x3. It is easy to verify that such

a choice for z1 also satisfies (6.14b). Therefore, the complete di↵eomorphism
is given by

�(x) =

2

664

z1
z2
z3
z4

3

775 =

2

664

y
ẏ
ÿ

y(3)

3

775 =

2

666666664

m12

m22
x1 + x3

m12

m22
x2 + x4

�g2(x)

m22

� 1

m22

✓
@g2(x)

@x1
x2 +

@g2(x)

@x3
x4

◆

3

777777775

, (6.15)

where y(j) is the jth-order derivative, with j � 3. The input transformation
ah = ↵(x) + �(x)v finally renders (6.9) in the normal form (6.12), with
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↵(x) = �

✓
@2g2(x)

@x2
1

x2 �
g2(x)

m22

@g2(x)

@x3
+
@2g2(x)

@x2
3

x4

◆

✓
@g2(x)

@x1
� m12

m22

@g2(x)

@x3

◆ , (6.16a)

�(x) = �m22

✓
@g2(x)

@x1
� m12

m22

@g2(x)

@x3

◆�1

. (6.16b)

This is the core result since, under Assumption 6.3.1, a general di↵eomor-
phism is found to change a nonprehensile 2D rolling manipulation system
into a normal form where simple linear controllers can be applied.

Therefore, in general, any suitable approach can be employed to control
the normal form (6.12). The EFL technique [120] is here considered . In
detail, a change of coordinates is applied to (6.9) through (6.15). To get the
normal form, the EFL technique does not use the feedback transformation
ah = ↵(x) + �(x)v, but ah = ↵(x?) + �(x?)v, where x? is the desired state1

(in feedforward). The new virtual input v is instead designed as an extended
PIDn�1 plus a feedforward action

v = z?4 +
4X

i=0

kiei, (6.17a)

e0 =

Z
t

o

e1(⌧)d⌧, (6.17b)

ei = z?
i
� zi, (6.17c)

with ki positive gains such that the resulting characteristic polynomial is
Hurwitz.

6.3.2 Case studies

6.3.2.1 Disk-on-disk

This case study considers the balancing of a disk free to roll on an actu-
ated disk. Referring to Fig. 6.2, the shape of the hand, i.e. the actuated

disk, is parametrized by ch
h
(sh) = ⇢h

h
� sin

sh
⇢h

cos
sh
⇢h

iT
. The upper disk’s

shape is parametrized by co
o
(sh) = �⇢o

h
sin

sh
⇢o

cos
sh
⇢o

iT
. Considering (6.1),

the relative curvature is given by r =
⇢h + ⇢o
⇢h⇢o

. The upper disk angular

1 Eventually retrieved from z? through ��1.
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Fig. 6.2: A representation of the DoD system. In red the world fixed frame
W. In green the hand frame H, while in blue the object frame O, placed at
the respective CoMs .

velocity is given by ✓̇o = ✓̇h + r ṡh. The vectors �(q) and ⌘(q) are com-

puted like in (6.3): �(q) = �(⇢h+⇢o)


cos

✓
✓h +

sh
⇢h

◆
sin

✓
✓h +

sh
⇢h

◆�T
, and

⌘(q) = �⇢or

cos

✓
✓h +

sh
⇢h

◆
sin

✓
✓h +

sh
⇢h

◆�T
. Therefore, the parameters

of the DoD dynamic model are m11 = Ih + Io +mo(⇢h + ⇢o)2, m12 = m21 =

Ior + mo

(⇢h + ⇢o)2

⇢h
, m22 = Io2r + mo⇢2o

2
r
, c11 = c12 = c21 = c22 = 0,

g1 = �mog(⇢h + ⇢o) sin

✓
✓h +

sh
⇢h

◆
and g2 = �mog⇢or sin

✓
✓h +

sh
⇢h

◆
. No-

tice that the quantity ✓h +
sh
⇢h

is the angle of the object’s CoM with re-

spect to the vertical axis of W. It is possible to verify that the DoD dy-
namic model fully verifies Assumption 6.3.1. Hence, considering the acceler-
ation ah of the actuated disk as input, the DoD dynamics can be written as
in (6.9) with ⌧h as in (6.8). The a�ne state space form assumes the follow-

ing vector fields (6.10) f(x) =

2

4
x2 0 x4

mog⇢o sin

✓
x1 +

x3

⇢h

◆

Ior +mo⇢2or

3

5
T

and b =


0 1 0 �mo⇢2o +mo⇢h⇢o + Io

r(mo⇢2o + Io)

�T
. Computing the matrix T(x) as in (6.11),

it is possible to verify that the approximate dynamic model is input-state lin-

earizable in the region ⌦ =

⇢
x 2 R4 : cos

✓
x1 +

x3

⇢h

◆
6= 0 ) |x1 +

x3

⇢h
|< ⇡

2

�
.

Notice that such a region is not restrictive because, with no bound on other
states, ⌦ covers all practical situations since outside it the disk falls down
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from the hand. Finally, the di↵eomorphism (6.15) is

�(x) =
hm12

m22
x1 + x3

m12

m22
x2 + x4

mog⇢o sin

✓
x1 +

x3

⇢h

◆

Ior +mo⇢2or

mog⇢or

✓
x2 +

x4

⇢h

◆
cos

✓
x1 +

x3

⇢h

◆

b22

3

5
T

,

with

↵(x) =

sin

✓
x1 +

x3

⇢h

◆
x2 �

✓
mog⇢or
b22⇢h

sin

✓
x1 +

x3

⇢h

◆
+

x4

⇢2
h

◆
cos

✓
x1 +

x3

⇢h

◆

✓
1� b12

b22⇢h

◆
cos

✓
x1 +

x3

⇢h

◆

and �(x) = m22

✓
mog⇢or

✓
1� m12

m22⇢h

◆
cos

✓
x1 +

x3

⇢3

◆◆�1

. The control is

again performed with the EFL technique described in Section 6.3.1.

Remark 6.3.2 Notice that in this case study the only possibility of balancing

is with the object directly above the hand’s CoM, i.e. ✓h+
sh
⇢h

= 0. As noticed

in [265], any other balancing position leads to constant angular acceleration
resulting in unbounded velocities.The di↵erential flatness loses thus some
sense for the disk on disk. ⇤

Looking at �(x), stabilizing the origin z = 04 is equivalent to stabilizing

x = 04 and then x1 +
x3

⇢h
= 0. However, notice that through the following

further change of coordinates z̄ =


z1 �

✓
m12 �m22⇢h

m22
✓?
h

◆
z2 z3 z4

�T
2

R4 it is possible to balance the object with ✓h at a desired constant angle ✓?
h
=

x?

1. It is easy to verify that such additional di↵eomorphism does not change
the normal form (6.12) expressed now in terms of z̄. With some algebra, it is

possible to show that stabilizing the origin z̄ = 04 yields x1 = x?

1, x1+
x3

⇢h
= 0

and x2 = x4 = 0.
The input-state FLin plus the EFL controller are employed in [173] on a

real-hardware DoD device.

6.3.2.2 Ball-and-beam

Referring to Fig. 6.3, the beam can rotate around its center of mass while
the ball can only roll along the beam. The shape of the hand, i.e., the

beam, is parametrized through ch
h
(sh) =

⇥
�sh dh

⇤T
. The ball’s shape is
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Fig. 6.3: A representation of the BnB system. In red the world fixed frame
W. In green the hand frame H, while in blue the object frame O, placed at
the respective CoMs.

parametrized by co
o
(sh) = �⇢o

h
sin

sh
⇢o

cos
sh
⇢o

iT
. Considering (6.1), the

signed curvatures of the beam and the ball are h = 0 and o = ⇢�1
o

,
respectively. The relative curvature is thus given by r = ⇢�1

o
. The ball’s

angular velocity is instead given by (6.2b) ✓̇o = ✓̇h +
ṡh
⇢o

. In order to com-

pute the mass matrix of the system, the vectors �(q) and ⌘(q) in (6.3) are

�(q) =
⇥
�(⇢o + dh) cos ✓h + sh sin ✓h �(⇢o + dh) sin ✓h � sh cos ✓h

⇤T
, and

⌘(q) =
⇥
� cos(✓h) � sin(✓h)

⇤T
. Therefore, the parameters of the BnB dy-

namic model are m11 = Ih + Io + mod2h + 2modh⇢o + mo⇢2o + mos2h,

m12 = m21 =
Io
⇢o

+ modh + mo⇢o, m22 =
Io
⇢2
o

+ mo, c11 = moshṡh,

c12 = mosh✓̇h, c21 = mosh✓̇h, c22 = 0, g1 = �mog((dh+⇢o) sin ✓h+sh cos ✓h)
and g2 = �mog sin ✓h. Considering the acceleration ah of the beam as in-
put, the system can be written as in (6.7), with ⌧h as in (6.8). However, it
is possible to verify that Assumption 6.3.1 is not verified for the ball and
beam case since c21 6= 0. Even if r is constant and the products �(q)T⌘(q)
and ⌘(q)T⌘(q) do not depend on q, the product �(q)T�(q) does not depend
only on ✓h, but it depends on the arclength parameter. Therefore, the ball
and beam system is not input-state linearizable. This result is well known in
the literature, nevertheless, in many cases it is possible to approximate c21 to
zero [127]. This is true for small velocities of the beam, small masses of the
ball and not so long beam. Hence, by putting c21 = 0, only for control design
purposes, it is possible to write the approximated ball and beam system like
in (6.9). The a�ne state space form of the approximated ball and beam sys-

tem has the following vector fields (6.10) f(x) =


x2 0 x4

mo⇢2og sinx1

Io +mo⇢2o

�T

and b =


0 1 0 �⇢o

mo⇢2o + dhmo⇢o + Io
Io +mo⇢2o

�T
. Computing the matrix T(x)

as in (6.11), it is possible to verify that the approximate dynamic model is
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input-state FLin in the region ⌦ =
n
x 2 R4 : cos ✓h 6= 0 ) |✓h|<

⇡

2

o
. No-

tice that such a region is not restrictive because, with no bound on other
states, ⌦ covers all practical situations since outside it the ball falls down
from the hand. Finally, it is possible to compute the di↵eomorphism (6.15)

�(x) =
hm12

m22
x1 + x3

m12

m22
x2 + x4

mog

b22
sinx1

mogx2

m22
cosx1

iT
, yielding the

normal form

ż1 = z2, (6.18a)

ż2 = z3, (6.18b)

ż3 = z4, (6.18c)

ż4 = �(x)|�1

x=��1
(z)

⇣
ah � ↵(x)|x=��1

(z)

⌘
, (6.18d)

with ↵(x) = mogx2 tanx1 and �(x) =
m22

mog cosx1
from (6.16). The control

is then performed with the EFL technique described in Section 6.3.1.
The designed controller for the BnB system is tested in simulation within [173],

showing acceptable performance despite the employed assumption to make
the BnB system as input-state feedback linearisable.

6.4 Passivity-based approach

6.4.1 Background on passivity-based control

6.4.1.1 Port-Hamiltonian systems

The pH framework allows modeling of mechanical systems including the in-
formation about the energy transfer explicitly. The canonical Hamiltonian
equations of motion are


q̇
ṗ

�
=


O2 I2
�I2 O2

�
rH(q,p) +


02

g
i
(q)

�
u, (6.19)

where g
i
(q) 2 R2 is the input mapping vector. The function H is the Hamil-

tonian, which represents the total energy (kinetic plus potential) stored in
the system, having the form

H(q,p) =
1

2
pTM�1(q)p+ V (q).
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A full development of the Hamilton canonical equations of motion can be
found in [160].

6.4.1.2 Interconnection and damping assignment

The stabilisation problem of the dynamics (6.19) to the desired equilibrium
(q,p) = (q?,02) is achieved using the IDA-PBC by assigning the target
dynamics to the closed loop [236]


q̇
ṗ

�
=


O2 M�1(q)Md(q)

�Md(q)M
�1(q) J2(q,p)

�
rHd(q,p), (6.20)

where J2(q,p) 2 R2⇥2 is the desired interconnection matrix. The desired
total energy function is given by

Hd(q,p) =
1

2
pTM�1

d
(q)p+ Vd(q), (6.21)

with Vd(q) 2 R the desired potential energy function. Then, (q?,02) will be
a stable equilibrium configuration of the closed-loop (6.20) if

C.1 Md(q) is symmetric and positive definite;
C.2 q? = argminVd(q);
C.3 J2(q,p) is skew-symmetric.

The stabilization of the desired equilibrium is achieved by identifying the
class of Hamiltonian systems that can be obtained via feedback. The con-
ditions under which this feedback law exists are the matching conditions,
i.e., matching the original dynamic system (6.19) and the target dynamic
system (6.20):

(6.22)


O2 I2
�I2 O2

�
rH +


02

g
i
(q)

�
u =


02 M�1Md

�MdM
�1 J2

�
rHd,

where the dependency of the functions on their argument has been drop to
simplify the notation. The first line in (6.22) is straightforwardly satisfied,
while the second line in (6.22) corresponds to the following set of PDEs

g ?
i
(q)

�
rqH(q,p)�Md(q)M

�1(q)rqHd(q,p) + J2(q,p)M
�1
d

(q)p
�
= 0,

(6.23)

where g?
i
(q) 2 R1⇥2 is the full rank left annihilator of g

i
(q), which satisfies

g?
i
(q)g

i
(q) = 0. The PDEs (6.23) can be separated into the two subsets of
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PDEs, namely

(6.24)g ?
i

�
rq(p

TM�1(q)p)�Md(q)M
�1(q)rq(p

TM�1
d

(q)p)

+ 2J2(q,p)M
�1
d

(q)p
�
= 0,

(6.25)g ?
i

�
rqV (q)�Md(q)M

�1(q)rqVd(q)
�
= 0,

where (6.24) and (6.25) are the kinetic and the potential energy match-
ing equations, respectively. By solving (6.24)-(6.25) for Md(q), Vd(q) and
J2(q,p), subject to C.1, C.2, and C.3, the energy shaping control is given
by

(6.26)ues = (gT

i
(q)g

i
(q))�1gT

i
(q)(rqH(q,p)�Md(q)M

�1(q)rqHd(q,p)

+ J2(q,p)M
�1
d

(q)p).

It is worth remarking that not every desired Md(q), Vd(q) and J2(q,p) can
be chosen, but only those solving (6.24)-(6.25) subject to the conditions C.1,
C.2, and C.3.

By applying (6.26) to the Hamiltonian dynamics (6.19), the closed-loop
target dynamics (6.20) is obtained. Damping aimed at achieving asymptotic
stability is then injected through

udi = �Kvg
T

i
(q)rpHd(q,p), (6.27)

where Kv > 0 is a gain. The damping injection (6.27) and the energy shaping
control (6.26) are then assembled to generate the IDA-PBC

u = ues + udi. (6.28)

Therefore, through this adjustment, the closed-loop dynamics (6.20) takes
the form


q̇
ṗ

�
=


O2 M�1(q)Md(q)

�Md(q)M
�1(q) J2(q,p)�Rd(q)

�
rHd(q,p), (6.29)

where Rd(q) = g
i
(q)KvgT

i
(q) 2 R2⇥2 is the positive-(semi)definite dissipa-

tion matrix [235, 236].
The stability of desired equilibrium is analysed by using the desired Hamil-

tonian (6.21) as a Lyapunov function and computing its time derivative along
the trajectories of the closed-loop dynamics (6.29) as follows

Ḣd(q,p) = rpH
T

d
ṗ+rqH

T

d
q̇

= �pTM�1
d

g
i
Kvg

T

i
M�1

d
p  0,
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which ensures stability of the desired equilibrium. Asymptotic stability fol-
lows from LaSalle’s invariance principle [152], or equivalently from detectabil-
ity of the signal y

d
= KvgT

i
M�1

d
p [323].

6.4.1.3 Integral control

In many cases, the presence of disturbances deteriorates the control system’s
performance, or in the worst case, will produce instabilities. A typical sce-
nario in practice is to consider constant disturbances, which account for slow-
varying perturbations. The dynamics of the closed-loop (6.29) under the ac-
tion of a matched disturbance is

q̇
ṗ

�
=


O2 M�1(q)Md(q)

�Md(q)M
�1(q) J2(q,p)�Rd(q)

�
rHd(q,p) +


02

g
i
(q)

�
(v + �d),

(6.30)
where �d 2 R is the matched constant disturbance considered here and v 2 R
is a control input that will be used to compensate for the unknown distur-
bance. To obtain the dynamics (6.30), the control u = ues + udi + v and the
disturbance �d are used in (6.19). Notice that the disturbance shifts the equi-
librium of the closed loop, defined by zero velocities (equivalently p = 02),
from the desired equilibrium q? to a new equilibrium q̄, which is the solution
of

�Md(q̄)M(q̄)�1rqVd(q̄) + g
i
(q̄)�d = 02.

This shows that the controller does not achieve the control objective in the
presence of constant disturbances since q will not reach the desired value at
the steady-state as desired. This motivates the implementation of an outer-
loop controller to reject constant unknown disturbances.

In this section, the methodology to design integral-based controllers and
enhance the robustness of the energy shaping controller reported in [82] will
be introduced. The fundamental idea proposed in [82] is to find a dynamic
control law v(q,p, ⇣), where ⇣ 2 R is the state of the controller, and a change
of coordinates such that the closed-loop dynamics that include the controller
state expressed in the new coordinates can be written as a port-Hamiltonian
system, thus stability is ensured. The proposed target port-Hamiltonian dy-
namics in new coordinates z 2 R5, where the state vector has been augmented
by adding the controller state. The target port-Hamiltonian system is

2

4
ż1
ż2
ż3

3

5 =

2

4
��1 M�1Md ��2

�MdM
�1 �Kvgi

gT

i
�g

i
K3

�T

2 K3gT

i
��3

3

5

2

4
rz1Hz

rz2Hz

rz3Hz

3

5 , (6.31)

with Hamiltonian

Hz(z) =
1

2
zT2 M

�1
d

z2 + Vz(z1) +
1

2
KI(z3 � z?3)

2, (6.32)
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where
Vz(z1) = Vd(q)

���
q=z1

, (6.33)

and the gains are equal to

�1 , K1M
�1g

i
gT

i
M�1,

�2 , K2M
�1g

i
,

�3 , K2K3g
T

i
M�1

d
g
i
,

z?3 , K�1
I

�
KvK2g

T

i
M�1

d
g
i
+K3

��1
�d,

where the new coordinates z =  (q,p, ⇣) are obtained by the state transfor-
mation

z1 = q, (6.34)

z2 = p+K1gi
gT

i
M�1rVd(q) +K2KI(⇣ � z?3)gi

, (6.35)

z3 = ⇣, (6.36)

with Kv > 0, KI > 0, K1 > 0, K3 > 0 and K2 =
�
gT

i
M�1

d
g
i

��1
.

Notice that Hamiltonian Hz in (6.32) has a minimum at z? = (q?,0n, z?3),
which is the desired equilibrium. Therefore, we look for a control law that
render the extended closed-loop dynamics in the form (6.31) to ensure sta-
bility of the equilibrium z?. As shown in [82], the control law is obtained
by matching the dynamics (6.30) and (6.31), and using the change of coordi-
nates (6.34)-(6.36). It is shown that, under a few assumptions on the matrices
M, Md and gT

i
, the integral controller takes the form

v(q,p, ⇣) = �
"
KvK1g

T

i
M�1

d
g
i
gT

i
M�1 +K1g

>
i
Ṁ

�1

+K2KI

⇣
K2 +K3g

T

i
M�1

d
g
i
K1

⌘
gT

i
M�1

#
rVd

�
"
K1g

T

i
M�1r2VdM

�1 + (gT

i
g
i
)�1gT

i
J2M

�1
d

+K2KIK3g
T

i
M�1

d

#
p

�
⇣
KvK2g

T

i
M�1

d
g
i
+K3

⌘
KI⇣, (6.37)

and

⇣̇ =
⇣
K2g

T

i
M�1 +K3K1g

T

i
M�1

d
g
i
gT

i
M�1

⌘
rVd

+K3g
T

i
M�1

d
p. (6.38)
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The controller, composed by the control law (6.37) and the integra-
tor (6.38), does not require the information of the constant disturbance �d,
as desired. By construction, the dynamics (6.30) in a closed loop with the
integral action controller (6.37)-(6.38) can be written in the form (6.31). The
Hamiltonian form of the full closed-loop dynamics ensures the stability of
the desired equilibrium. Indeed, the Hamiltonian in (6.32) has a minimum
at the desired equilibrium z? and it qualifies as a Lyapunov function for the
dynamics (6.31). The time derivative of Hz is

Ḣz = �K1rTVd(z1)M
�1g

i
gT

i
M�1rVz �Kvz

T

2 M
�1
d

g
i
gT

i
M�1

d
z2

�KI�3KI(z3 � z?3)
2

 0,

which ensures stability. Asymptotic stability follows using LaSalle argu-
ments and verifying that the maximum invariant set included in S =
{(z1, z2, z3)|gT

i
M�1rVz = 0,gT

i
M�1

d
z2 = 0, z3 = z?3} is the desired equi-

librium z?.

6.4.2 Control design for nonprehensile systems

In this section, the IDA-PBC method is used to design controllers for the
DoD, the BnB, and the eccentric DoD. These examples show how a passivity-
based framework can be used to solve the control problem of nonprehensile
planar rolling manipulation.

6.4.3 Case studies

6.4.3.1 Disk on disk

Dynamic Model. The DoD is a rolling-balancing system shown in Fig.6.2.
The dynamics of the DoD can be described as displayed in Section 6.3.2.1.
However, now we derive the dynamics in the pH form. Besides, we write
the dynamics in terms of the angle of the hand ✓h and the deviation angle

of object respect to the upright position ' = ✓h +
sh
⇢h

. By overwriting the

configuration vector q as q =
⇥
✓h '

⇤T
, the DoD model takes the following

pH form 
q̇
ṗ

�
=


O2 I2
�I2 O2

� 
rqH
rpH

�
+


02

g
i

�
u, (6.39)

where g
i
=

⇥
1 0

⇤T
. The Hamiltonian function is
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H(q,p) =
1

2
pTM�1p+ V (q). (6.40)

The elements of the mass matrix M(q) di↵er from those in Section 6.3.2.1
because of the new definition of q. Therefore, the elements of M(q) are given
by m11 = ⇢2

h
mo + Ih, m12 = �mo⇢h(⇢o + ⇢h) and m22 = 2mo(⇢o + ⇢h)2.

The expression of the potential energy is instead V (q) = V0 cos('), with
V0 = mog(⇢o + ⇢h).
IDA-PBC Controller. The objective is to design a IDA-PBC controller
for the DoD system that stabilises the point q⇤ = (✓⇤

h
, 0), where ✓⇤

h
is the

desired equilibrium for angle of the hand. This problem is solved by using
energy shaping and damping injection as described in Section 6.4.1.2. That
is, the control design aims to find a function Vd and matrices Md and J2

that solve the KE-ME and PE-ME, (6.24) and (6.25) respectively. Thus, the
energy shaping control is obtained from (6.26) and the damping injection
control from (6.27).

Since the mass matrixM(q) of the DoD is constant, i.e., it does not depend
on the coordinates q, the desired mass matrix Md is selected as a constant
matrix as follows

Md =


a11 a12
a12 a22

�

where a11, a12 and a22 are free constant parameters. To simplify the notation,
we note

MdM
�1 = �


� �
↵ �

�
.

Then, the PE-ME (6.25) is as follows

⇥
0 1

⇤
(

0
�V0 sin(')

�
+


� �
↵ �

� 
r✓hVd

r'Vd

�)
= 0

�V0 sin(') + ↵ r✓hVd + � r'Vd = 0.

(6.41)

A solution of the partial di↵erential equation (6.41) for Vd, obtained by using
a symbolic software (e.g. Mathematica, Maple), is

Vd(q) = � 1

�
V0 cos(') +

k2
2

✓
✓h � ↵

�
'� k1

◆2

(6.42)

where k1, k2 2 R are free constant parameters to be selected such that the
potential function has a minimum at the desired equilibrium.

Since Md was chosen as a constant matrix, it is clear that the KE-
ME (6.24) is satisfied by selecting J2(q,p) = O2. The energy shaping de-
sign also requires that Md is positive definite and that Vd has an isolated
minimum at the desired equilibrium q?.
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The minimum of Vd is assigned by ensuring that the Jaccobian zero when
it is evaluated at q? and Hessian is positive when it is evaluated at q?. These
conditions are verified through

R-I) rqVd(q)|q=q⇤ = 0 ,

2

664

k2

✓
✓h � ↵

�
'� k1

◆

V0

�
sin(')� k2↵

�

✓
✓h � ↵

�
'� k1

◆

3

775

��������
q=q⇤

= 0

which is satisfied if k1 = ✓⇤
h
.

R-II) r2
q
Vd(q)|q=q⇤ > 0 ,

2

64
k2 �k2

↵

�

�k2
↵

�

V0

�
cos(') + k2

✓
↵

�

◆2

3

75

�������
q=q⇤

> 0

which is satisfied provided that k2 > 0 and � > 0 (equivalently a12m12 �
a22m11 > 0).

The positive definiteness of Md is ensured if a11 > 0 and a11a22 � a212 > 0.
Figure 6.4 shows that e↵ectively the potential energy has a minimum at

the desired equilibrium (✓?
h
,'?) = (0, 0) (the parameter values used to create

the figure satisfy all the requirements R-I and R-II above).

Fig. 6.4: Desired potential energy for the DoD case study with the pH for-
malism. In this picture ✓h = ✓.

Finally, the control law is computed from (6.26) and (6.27) as follows

u = ues + udi =

� �

�
r'V + k2

✓
�� � �↵

�

◆✓
✓h � ↵

�
'� ✓?

h

◆
+Kv � �

✓
✓̇h � ↵

�
'̇

◆
(6.43)
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where � =
m11m22 �m2

12

a11a22 � a212
and the free parameters a11, a12, a22, k2 and Kv

should satisfy

a11 > 0, k2 > 0, Kv > 0,

a11a22 � a212 > 0,

a12m12 � a22m11 > 0.

Thus, the dynamics of the DoD system (6.39) in closed loop with the
controller (6.43) can be written in the pH form


q̇
ṗ

�
=


O2 M�1Md

�MdM
�1 �Kvgi

gT

i

� 
rqHd

rpHd

�
(6.44)

with

Hd =
1

2
pTM�1

d
p+ Vd(q).

Asymptotic stability of the desired equilibrium follows directly from the fact
that the closed-loop dynamics has a pH form and the fact that the output
yd = KvgT

i
M�1

d
p is dectable [323].

Integral Controller. In this section, the dynamics (6.44) of the DoD in
closed loop with the IDA-PBC controller subject to disturbances is consid-
ered. Under this scenario, the dynamics is described as


q̇
ṗ

�
=


O2 M�1Md

�MdM
�1 �Kvgi

gT

i

� 
rqHd

rpHd

�
+


02

g
i

�
(v + �d), (6.45)

where v is the input used for integral control and �d is the disturbance. As
shown in Section 6.4.1.3 the control law (6.37)-(6.38), specialised for the DoD
case, compensates for the action of the disturbance and it preserves the sta-
bility of the desired equilibrium q?. The IDA-PBC controller and the integral
action controller were tested in both simulation and experimental setup. The
results can be found in [82]. The results showed satisfactory performance of
the closed loop and smooth time history of the control inputs and variables
of the system.

6.4.3.2 Ball and beam

Dynamic Model. The BnB system shown in Fig. 6.3 is another rolling-
balancing benchmark addressed to test the controller addressed in this sec-
tion. Now, we come back to the original definition of the configuration vector

q as in Section 6.3.2.2, that is q =
⇥
✓h sh

⇤T
. In these coordinates, the BnB

model takes the pH form (6.39) with g
i
=

⇥
1 0

⇤T
, the potential function

given by
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V (q) = mog[(dh + ⇢o) cos(✓h)� sh sin(✓h)], (6.46)

and the mass matrix elements as in Section 6.3.2.2.
IDA-PBC Controller. The control objective for the BnB system is to sta-
bilize the equilibrium q? = (0, s?

h
), where s?

h
2 R is the desired position of the

ball on the beam. The control design follows the procedure proposed in [277]
to compute energy shaping controllers for planar rolling manipulations, that
is for systems in the form (6.19).

The procedure in [277] can be summarised as follows. Consider the vector

of coordinates q =
⇥
q1 q2

⇤T
and the desired mass matrix parametrized as

follows

Md(q) = �


a11(q) a12(q)
a12(q) a22(q)

�
, (6.47)

where � = m11(q)m22(q) � m2
12(q) > 0, which allows to write the PE-

ME (6.25) as
eT2 (rqV (q)� �(q)rqVd(q)) = 0, (6.48)

with

(6.49)�(q) =


a11m22 � a12m12 a12m11 � a11m12

a12m22 � a22m12 a22m11 � a12m12

�
.

The PDE (6.48) can be equivalently written as

rq2V (q) + ↵(q)rq1Vd(q) + �(q)rq2Vd(q) = 0. (6.50)

with

↵(q) = a22(q, )m12(q)� a12(q)m22(q), (6.51)

�(q) = a12(q, )m12(q)� a22(q)m11(q). (6.52)

Then, the scalar functions ↵(q, c1) and �(q, c1) can be chosen to obtain a
suitable solution of (6.50) such that Vd(q) satisfies C.2. Once ↵(q) and �(q)
are selected, the entries a12(q) and a22(q) of the desired mass matrix are
computed as

a12(q) = �↵(q)m11(q) + �(q)m12(q)

�
, (6.53)

a22(q) = �↵(q)m12(q) + �(q)m22(q)

�
. (6.54)

By this construction, the desired mass matrix is symmetric, and thus the
condition C.1 is fulfilled if and only if a11(q) > 0 and a11(q)a22(q)�a212(q) >
0. Therefore, by selecting a11 as

a11(q) =
kaa212(q)

a22(q, c1)
> 0, (6.55)
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where ka > 1 is a constant, the positiveness of Md is satisfied if

↵(q)m12(q) + �(q)m22(q) < 0. (6.56)

If this condition cannot be satisfied, then it is necessary to re-design ↵(q) and
�(q) and find another solution for (6.50). Finally, the desired mass matrix
takes the form

(6.57)Md(q) =

2

4�
ka(↵m11 + �m12)2

(↵m12 + �m22)
�(↵m11 + �m12)

�(↵m11 + �m12) �(↵m12 + �m22)

3

5 .

In addition, the degree of freedom given by the matrix J2(q,p) is used to
satisfy the KE-ME (6.24). The interconnection matrix J2 has the following
structure

J2(q,p) =


0 j2(q,p)

�j2(q,p) 0

�
, (6.58)

with j2(q,p) a scalar function. Since eT2 J2(q,p) = �j2(q,p)eT1 , then the
KE-ME (6.24) can be expressed as

(6.59)eT2 rq(p
TM�1(q)p)� eT2 Md(q)M

�1(q)rq(p
TM�1

d
(q)p)

� 2j2(q,p)e
T

1 M
�1
d

(q)p = 0.

The scalar function j2(q,p) can be from (6.59) as follows

(6.60)j2(q,p) =
�
2eT1 M

�1
d

(q)p
��1 �

eT2 rq(p
TM�1(q)p)

� eT2 Md(q)M
�1(q)rq(p

TM�1
d

(q)p)
�
,

and the IDA-PBC law can be finally computed from (6.26).
Notice that the method used to satisfy the KE-ME, inspired by [264], pro-

vides a solution that is not always well-defined. Close to the equilibrium, the
numerator of (6.60), which has a quadratic dependence on p, tends towards
zero faster than the denominator, which depends linearly on p, which would
avoid singularities. Despite this, a study about the denominator of the re-
lation (6.60) reveals that, far from the equilibrium, it might be nullified if
the equality (↵(q)m12(q) + �(q)m22(q))p1 = (↵(q)m11(q) + �(q)m12(q))p2
holds. This situation is addressed in practice by saturating the denominator
of (6.60) when its absolute value is smaller than a suitable threshold. The
simplification of the design proposed here is at the expense of the presence
of possible singular solutions of (6.60), but these can always be numerically
managed in the controller implementation. Recently, this problem has been
overcome in [8].

For the BnB case study, the functions ↵(q) and �(q) are selected as
↵(✓h) = ksinc(✓h) and �(✓h) = �sinc(✓h), where k 2 R is a constant pa-
rameter. Notice that the sinc(·) function is analytic everywhere. Assuming
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the domain of interest as �⇡ < ✓h < ⇡, then 0 < sinc(✓h) < 1. Using these
functions in (6.50), the PE-ME becomes

(6.61)�mog sin(✓h) + ksinc(✓h)r✓hVd(q)� sinc(✓h)rshVd(q) = 0.

A solution of (6.61) is given by

Vd(q) =
mog✓2h
2k

+ f

✓
✓h + ksh

k

◆
, (6.62)

where f(·) is a function to be selected to satisfy C.2. Then, f(·) is chosen
such that the desired potential function (6.62) results as follows

Vd(q) =
mog✓2h
2k

� cos

✓
kf
k

[✓h + k (sh � s?
h
)]

◆
, (6.63)

with kf 2 R a constant parameter. The Jacobian of Vd(q) is computed to
verify that q? is a minimum of the desired potential function (6.63), which
yields

(6.64)rVd(q) =

2

664

mog

k
✓h +

kf
k

sin

✓
kf
k
[✓h + k(sh � s?

h
)]

◆

kf sin

✓
kf
k
[✓h + k(sh � s?

h
)]

◆

3

775 ,

where it is possible to verify that rVd(q) is zero at q?. Then, the correspond-
ing Hessian is given by

(6.65)r2Vd(q) =

2

64
mog

k
+

k2
f

k2
cos�

k2
f

k
cos�

k2
f

k
cos� k2

f
cos�

3

75 ,

with � =
kf
k

[✓h + k (sh � s?
h
)]. It is possible to verify thatr2Vd(q) is positive

definite at the desired equilibrium q? if k > 0 and kf 6= 0. The conditions
on the Jacobian and the Hessian of Vd(q) ensure that the desired potential
function Vd(q) has a minimum at the desired equilibrium q?.

In addition, the inequality (6.56) must be satisfied to ensure the positive-
ness of Md. Using the selected functions ↵(q) and �(q), the inequality (6.56)
becomes

km12 �m22 < 0, (6.66)

which has the straightforward solution k <
m22

m12
. Since

m22

m12
> 0, the param-

eter k has to be selected to satisfy 0 < k <
m22

m12
.

Finally, the entries a12(q) and a22(q) of Md(q) are computed from (6.53)
and (6.54) as follows
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a12(q) = � sinc(✓h)(km11(sh)�m12)

�
, (6.67)

a22(q) = � sinc(✓h)(km12 �m22)

�
,

while a11(q) is computed as in (6.55). Therefore, the desired mass matrix is

Md(q) =

2

4 �ka (km11(sh)�m12)
2

(km12 �m22)
�sinc(✓h) (km11(sh)�m12)

�sinc(✓h) (km11(sh)�m12) �sinc(✓h)(km12 �m22)

3

5 .

(6.68)

The KE-ME (6.24) is satisfied using (6.60), and the IDA-PBC control law is
computed from (6.28).

Figures 6.5 and 6.6 show the desired potential function (6.63) and a trajec-
tory from a particular initial condition. As expected, the trajectory converges
to the minimum, that is the desired equilibrium q?. An exhaustive simulation
study of the the closed loop has been presented in [277].

Fig. 6.5: Desired potential function and coordinate trajectory for the BnB
case study with the pH formalism.

6.4.3.3 Eccentric disk-on-disk

Dynamic Model. The eccentric DoD system is represented in Fig. 6.7 [277].
In this system, the hand is the actuated bottom disk and the object is the
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Fig. 6.6: Desired potential function and coordinate trajectory for the BnB
case study with the pH formalism.

non-actuated disk that sits on top. With respect to the classic DoD seen
before, the hand’s CoM and the actuation point are at a distance � > 0. It

can be shown that the mass matrix elements are m11 = cb1 + cb2 cos

✓
sh
⇢h

◆
,

m12 = cb3 + cb4 cos

✓
sh
⇢h

◆
, and m22 = Io2r +mo⇢2o

2
r
, where cb1 = Ih + Io +

�2(mh +mo) +mo(⇢h + ⇢o)2, cb2 = 2�mo(⇢h + ⇢o), cb3 = Ior +mo

(⇢h+⇢o)
2

⇢h
,

and cb4 = mo�⇢or. The potential energy (6.4) for the eccentric DoD is

V (q) = g(mo(⇢h + ⇢o) cos

✓
✓h +

sh
⇢h

◆
+ (mo +mh)� cos(✓h)). (6.69)

A detailed derivation of this model can be found in [277].
IDA-PBC Controller. The control objective is to balance the object on
top of the hand. In this configuration, the CoM of the hand can be placed
above or below its center of actuation. In both cases it is possible, under a
suitable change of coordinates, to express the desired equilibrium point as
q? = (0, 0) in both cases.

The controller for the eccentric DoD is computed using the same procedure
used for the BnB in Section 6.4.3.2. Thus, the functions ↵(q) and �(q) are

selected as ↵(✓h, sh) = sinc

✓
✓h +

sh
⇢h

◆
and �(✓h, sh, k) = ksinc

✓
✓h +

sh
⇢h

◆
,

where k 2 R is a constant parameter. The function sinc(·) satisfies 0 <

sinc

✓
✓h +

sh
⇢h

◆
< 1 in the domain of interest �⇡ <

✓
✓h +

sh
⇢h

◆
< ⇡. Using
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Fig. 6.7: A schematic of the eccentric DoD system.

the selected function ↵(q) and �(q) in (6.50) yields

(6.70)
�cv sin

✓
✓h +

sh
⇢h

◆
+ sinc

✓
✓h +

sh
⇢h

◆
r✓hVd(q)

+ ksinc

✓
✓h +

sh
⇢h

◆
rshVd(q) = 0,

where cv = mog
⇢h + ⇢o
⇢h

is a positive constant parameter. A solution for

(6.70) is given by

Vd(q) =
cv✓2h(⇢h � k) + 2cv✓hsh

2⇢h
+ f(sh � k✓h), (6.71)

where f(·) is a function to be chosen. To satisfy C.2, f(·) is selected such
that the desired potential function (6.71) becomes

Vd(q) =
cv✓2h(⇢h � k) + 2cv✓hsh

2⇢h
+ kf (sh � k✓h)

2, (6.72)

where kf 2 R is a controller gain.
To verify that q? is a minimum for (6.72), the Jacobian and the Hessian

of the potential function are computed. The Jacobian is

rVd(q) =

2

64

cv(�k✓h + ✓h⇢h + sh)

⇢h
+ 2kkf (k✓h � sh)

cv✓h
⇢h

� 2kkf✓h + 2kfsh

3

75 , (6.73)

where it is possible to verify that rVd(q) is zero at q?. Also, the Hessian of
Vd(q) is
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r2Vd(q) =

2

64
cv + 2k2kf � cvk

⇢h
�2kkf +

cv
⇢h

�2kkf +
cv
⇢h

2kf

3

75 . (6.74)

It is possible to verify that r2Vd(q) is positive definite at the desired equilib-

rium q? if k > �⇢h and kf >
cv

2⇢h(k + ⇢h)
. These conditions on the Jacobian

and Hessian of the desired potential function ensure that Vd(q) has a mini-
mum at the desired equilibrium q?.

Following the design procedure sketched out in Section 6.4.3.2, the in-
equality (6.56) must be solved. Using the functions ↵(q) and �(q) selected
above, equation (6.56) yields

m12(sh) + km22 < 0, (6.75)

which has the straightforward solution k < �m12(sh)

m22
. Since it is possible

to verify that ⇢h >
(cb3 � cb4)

m22
and together with the previous condition

k > �⇢h, then the gain k must satisfy �⇢h < k < �cb3 � cb4
m22

.

Finally, the entries of Md(q) are computed as in (6.53) and (6.54)

a12(q) = �
sinc

✓
✓h +

sh
⇢h

◆
(m11(sh) + km12(sh))

�
, (6.76)

a22(q) = �
sinc

✓
✓h +

sh
⇢h

◆
(m12(sh) + km22)

�
,

while a11(q) is taken as in (6.55). The desired mass matrix is thus positive
definite and it can be written as

Md(q)

=

2

664
�a11 �(m11 + km12)sinc

✓
✓h +

sh
⇢h

◆

�(m11 + km12)sinc

✓
✓h +

sh
⇢h

◆
�(m12 + km22sinc

✓
✓h +

sh
⇢h

◆
)

3

775 .

(6.77)

The KE-ME (6.24) is satisfied using (6.60), while the IDA-PBC control law is
computed from (6.28). The controller has been implemented in an real setup
and the experiments show a satisfactory performance of the closed loop. The
results can be found in [277].
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6.5 Discussion and conclusion

This chapter investigated the control design for nonprehensile planar rolling
manipulation using FLin techniques, PBC methods, and pH theory. The dy-
namic model of nonprehensile holonomic rolling manipulation systems was
presented in its general form and then used for control design purposes.

The first class of controllers presented in this chapter was obtained using
FLin, thus requiring the cancellation of all system nonlinearities. Upon cer-
tain conditions given by the shapes of the hand the object in contact with it,
it has been possible to found a di↵eomorphism rendering the original system
in a normal form (i.e., a chain of integrators). Therefore, any linear tech-
nique can be, in principle, employed. In this chapter, the EFL technique was
employed on two benchmark systems: the DoD and the BnB.

The second class of controllers developed in this chapter was designed using
IDA-PBC methods and pH dynamics. Two di↵erent designs were followed
within this framework. First, the classical IDA-PBC procedure to stabilise
mechanical systems was used to obtain a controller for the DoD. Also, an
integral action controller was added in the loop to robustify the control system
against disturbances. It was shown that the closed loop dynamics preserve the
pH structure and thus its intrinsic passivity properties. This design requires
solving a set of PDEs, which results from the so-called matching equation.
To simplify solving PDEs, an alternative procedure was used to design the
second class of controllers. This procedure was successfully applied to the
BnB and the eccentric DoD systems.

The e↵ectiveness of the controllers presented in this chapter was verified
by simulations and experiments on real physical set-ups, and the results re-
ported in [83, 82, 173, 277]. These positive results show that the set of meth-
ods presented in this chapter is suitable for controlling nonprehensile planar
rolling manipulation systems and provides a potential framework for the con-
trol design of general dynamic robotic manipulation tasks. Future research
will aim at the development of a framework for a general class of dynamic
manipulations.


