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Measuring object displacement and deformation in image sequences is an important task in 
remote sensing, photogrammetry and computer vision and a vast number of approaches have 
been introduced (Leprince et al., 2007; Alba et al., 2008; Debella-Gilo & Kääb, 2011). In the �eld 
of environmental sciences, applications are, for instance, in the studies of landslides, tectonic 
displacements, glaciers, and river �ows (Manfreda et al., 2018). Tracking algorithms are vastly 
utilized for monitoring purposes in terrestrial settings and in satellite remote sensing, which 
need to be adapted for the application with UAV imagery because resolution, frequency and 
perspective are di�erent. For instance, geometric and radiometric distortion need to be minimal 
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for successful feature tracking, which can be a large issue for UAV imagery in contrast to satellite 
imagery with much smaller image scales (Gruen, 2012).

Using UAV systems for multi-temporal data acquisition as well as capturing images with high 
frequencies during single �ights enables lateral change-detection of moving objects. And if the 
topography is known, a full recovery of the 3D motion vector is possible. �e underlying idea is 
the detection or de�nition of points or areas of interest, which are tracked through consecutive 
images or frames considering the similarity measures. 

In this chapter, pre-processing steps to successful image tracking and vector scaling are intro-
duced. A�erwards, two possible strategies of tracking, i.e. feature-based and patch-based, are 
explained. Furthermore, di�erent choices of tracking in image sequences are discussed. And 
�nally, examples are given in di�erent �elds.

3.3.1  Image pre-processing

UAV image sequences can be either acquired during multiple �ight campaigns to observe phe-
nomena evolving at slow rates, e.g. landslide monitoring or during a single campaign focusing 
on faster change rates, e.g. lava or river �ows. In both cases, information about the terrain has 
to be considered to calculate scaled motion vectors (chapter 3.3.1.1). �erea�er, frame co-regis-
tration is necessary for precise tracking of objects. �is step becomes more critical when image 
sequences of high frequencies are captured (chapter 3.3.1.2). Finally, image �ltering may be re-
quired to increase the robustness of image tracking (chapter 3.3.1.3).

3.3.1.1  Image ortho-recti�cation

It is important to account for impacts of camera perspective and relief to avoid false scaling of 
tracking vectors. �e objective is the projection of the original image, which might be captured 
from oblique viewing angles looking at unlevelled terrain, into an image plane to calculate a dis-
tortion-free photo where the scale remains constant (Figure 3.3-1). Without this transformation, 
correct measurements would solely be possible if a planar terrain is captured from nadir view. 
To achieve the conversion from central projection, i.e. lines of projection intersect at one point 
(projection centre), to parallel projection, i.e. lines of projection are orthogonal to the projection 
plane, knowledge about the interior camera geometry, the camera position and orientation dur-
ing the moment of capture, and the topography is required. �is information can be retrieved, 
capturing overlapping images and using SfM photogrammetry. �e result is an orthophoto al-
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lowing for distance and angle measurements. You can �nd more details regarding the process of 
calculating an orthophoto in chapter 2.2.

Figure 3.3-1: Captured scene can be distorted due to the in�uence of camera perspective and 
relief hindering scaled measurements. Oblique view at a planar terrain leads to increased scale 
overestimation with increasing distance to the camera projection centre. Terrain deviating from 

a plane leads to increased scale underestimation with decreased projection centre to object 
distance. Information about the relief has to be implemented for correct transformation of central 

projection to parallel projection. All �gures were prepared by the authors for this chapter.

3.3.1.2  Image co-registration

To track the displacement of fast-moving objects, such as particles on water, it becomes nec-
essary to capture images in a fast sequence, for instance, using videos. In most circumstances, 
UAVs are not able to capture the entire event from a stable position and orientation among 
others due to vehicle dri�s and tilts caused by wind and due to vibrations of the sensor. If these 
movements are not mitigated, they will a�ect the calculation of correct �ow velocity vectors. 
�erefore, image sequences need to be stabilized exploiting �xed targets, which can be identi�ed 
in the image sequence.

Image stabilization can be achieved by identifying manually tie points or performing an au-
tomatic detection and matching of points of interest (chapter 3.3.2 and 2.2). �e information of 
the corresponding points is used to retrieve the parameters of a transformation matrix between 
the two images. Usually, either an a�ne transformation with six parameters (two scales, two 
shi�s, one rotation, and on shear) is considered (Figure 3.3-2b) or a homography with eight 
parameters is estimated, where lines between both images still remain straight lines a�er the 
transformation (Figure 3.3-2c). With the retrieved transformation matrix, the source image will 
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be converted requiring the interpolation of a new image. In the end, the co-registered image se-
quence has to be ortho-recti�ed for correct scaling of tracks (chapter 3.3.1.1) applying the same 
transformation to all images.

It has to be noted that the approach via tie points assumes that the surface is a plane, which 
can be a suitable approximation for higher �ying heights and/or relatively �at terrain. Another 
requirement is that the UAV imagery captures stable areas distributed around the area of inter-
est. �is is not possible in all scenarios, for instance, if large areas are a�ected by movements. In 
such cases, other possibilities need to be considered. One option can be direct referencing (chap-
ter 2.1). However, accuracy demands regarding position estimation with dGNSS, orientation 
reconstruction with the IMU, and camera synchronisation are very high, and future research has 
to reveal whether such an approach will be possible.

Figure 3.3-2: Distortion of the image due to o�-nadir image acquisition and/or sloping terrain. 
(a) Un-distorted image. (b) Distorted image describable with a�ne transformation. 

(c) Distorted image describable with perspective transformation (homography).

3.3.1.3  Image �ltering

Tracking objects in image sequences can be sensitive to noise and low signal strength leading 
to ambiguities. Especially in environmental applications di�culties due to lighting conditions 
(e.g. glares and shadow) or water turbidity (e.g. transparent, clear water) have to be mitigated. 
�erefore, di�erent image processing approaches might be considered to increase the robustness 
of data analysis.

Applying a low-pass �lter is a possible method to decrease image noise. An option of image 
smoothing is convolution. A kernel or window with a speci�c size is applied to the original im-
age (Figure 3.3-6). Possible kernels are a Gaussian kernel (Figure 3.3-3b), where the weight of 
the pixel decreases with distance to the centre pixel, a median kernel, which is especially suitable 
for salt and pepper noises, or a bilateral kernel, where the noise is reduced, but the edges are 
preserved. Further image improvements are possible via contrast enhancement (Dellenback et 
al., 2000), gamma correction (Tauro et al., 2017), histogram equalization (Dal Sasso et al., 2018) 
or intensity threshold criterion (Jodeau et al., 2008).
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Another option to increase the robustness of image sequence analysis is the calculation of 
image derivatives, for instance, considering edges applying a Laplace operator (Figure 3.3-3c). 
To improve the signal strength, the histogram of the radiometric pixel values of an image can 
be modi�ed. An example is the adaptive histogram equalization that ampli�es the contrast in 
distinct image regions instead of applying a global histogram change (Pizer et al., 1987). Another 
approach to improve the signal for tracking is the calculation of derivatives from SfM (chap-
ter 2.2), or Lidar (chapter 2.6) derived digital elevation models (chapter 3.4), e.g. considering 
hillshades to identify traceable features in the terrain.

Figure 3.3-3: Di�erent options of image �ltering to reduce the impact of image noise or to increase 
the tracking robustness. (a) Original image. (b) Gaussian �ltered image for smoothing. 

(c) Laplace �ltered image to keep edges only for tracking.

3.3.2  Feature-based tracking

Feature-based tracking in image sequences can be separated into three processing steps: fea-
ture detection, feature description, and feature matching. �ese steps are similar to the im-
age matching approach during SfM, which was introduced in chapter 2.2. �e result of fea-
ture-based matching is in most scenarios a sparse set of correspondences. To �nd distinct and 
traceable image points, assumptions about the required feature shape are made. �e feature 
has to reveal a large contrast to its neighbourhood, and the strong intensity changes have to 
occur in at least two directions. First- or second-order derivatives of the image can be calcu-
lated to assess the radiometric gradients and their orientation. In �at areas, no changes in all 
directions are measurable. Along edges, intensity changes occur solely in one direction result-
ing in ambiguous feature matches. �us, blobs or corners are the interest operators of choice 
(Figure 3.3-4). As blob features were already introduced in detail in chapter 2.2, the focus lies 
on corner features.
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Figure 3.3-4: Examples of unsuitable features as well as corners and blobs as suitable features 
for tracking. (a) Un�ltered, raw image. (b) Radiometric gradient �ltered image.

An example of a corner feature detector is the Harris feature (Harris & Stephens, 1988). Image 
gradients are calculated via convolution using the Sobel operator. �us, �rst derivatives are esti-
mated for both image directions. Within local neighbourhoods, the distribution of the retrieved 
gradient intensities is assessed, and corresponding eigenvalues are calculated, making the feature 
detector rotation invariant. Finally, a score is computed from the eigenvalues. Both eigenvalues 
are high for corners. If they are only high for one eigenvector or low for both eigenvectors, an 
edge or �at area has been detected, respectively. Another corner feature is the Shi-Tomasi feature 
(Shi & Tomasi, 1994), which is especially designed for tracking tasks. �e approach is similar to 
the Harris detector, however, the score function is di�erent as both eigenvalues solely have to be 
above a minimum threshold.

Another possibility to extract features can be simply performed through the binarization of 
the images and identifying a threshold value, which allows to separate the background from 
the particles represented by brighter colours. �us, the pixels at a higher intensity than the 
threshold will keep their value unaltered and pixels at lower intensities will be assigned a black 
colour (Figure 3.3-5). �e procedure described above is called global threshold, but there are 
also other methods in the literature, such as: i) local threshold, which overcomes the limits 
of the global approach, varying the value of the threshold within the image depending on 
the light intensity, or ii) Otsu’s method (Otsu, 1979) which performs clustering-based image 
thresholding.

Figure 3.3-5: Binarization of radiometric information to apply a threshold (histogram) 
to keep points of interest, in this case, �oating particles at the water surface.
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�e extracted features can be either used to estimate descriptors considering their local neigh-
bourhood and subsequently matching these features or the features can be considered as points 
of interest for a subsequent patch-based matching approach.

3.3.3  Patch-based tracking

Patch-based tracking approaches de�ne areas or patches, which are then tracked by searching 
for the corresponding location of the highest similarity in the next image. �e areas to track can 
be chosen manually, de�ning regular grids, or considering the locations of detected features 
(chapter 3.3.2) to create templates. Dense sets of correspondences are possible, e.g. in the case of 
the de�nition of grids with high resolution. In patch-based tracking techniques correspondenc-
es are found at locations where matching costs are minimal. Tracking can either be performed 
in the spatial or the frequency domain.

3.3.3.1  Tracking in the spatial domain

�e most common approaches in the spatial domain are represented by the similarity and op-
timization algorithms. In the case of similarity estimates kernels of �nite size, with radiometric 
information extracted from the source image, are searched for in the target image. �us, the 
kernel is moved across the search image to �nd the position, where the kernel information 
and the overlapping local target information are most similar (Figure 3.3-6). Di�erent kernel 
functions can be applied in the convolution, e.g. considering the sum of squared di�erences 
(SSD). Another frequently used template matching function is the normalized cross-corre-
lation (NCC), which accounts for brightness and contrast changes to increase the matching 
robustness. �e results of the kernel applications are similarity maps, where the similarity peak 
(e.g. for SSD and NCC negative and positive, respectively) corresponds to the �nal position of 
the tracked feature.
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Figure 3.3-6: Patch-based tracking approaches. Kernel k with information of image x-1 (source 
image) sliding across search image x (target image). At each pixel position xi,j in the extracted 

patch of the search image, corresponding to the overlapping area of the kernel, is computed with 
the kernel applying di�erent functions. Di�erent similarity measures R can be considered, e.g. 

SSD (sum of squared di�erences) or NCC (normalized cross-correlation). Image displays a cross-
correlation map, where NCC values were computed using a moving window over the search area. 

Diagram illustrates a 1D representation of sub-pixel interpolation by estimating the extreme 
value for a Gaussian �tted curve to NCC values along the x-axis of similarity image.

SSD and NCC have the disadvantage that both measures are sensitive to rotation, scale chang-
es and shear. However, other patch-based matching such as optimization algorithms can over-
come these constraints. An example is represented by the least-square-matching (LSM; Acker-
mann, 1984; Förstner, 1982). LSM searches for the transformation matrix between two image 
patches such that the square of sums of grey value di�erences is minimized. For instance, if it 
is assumed that the corresponding patches are located in a plane, six parameters of an a�ne 
transformation are estimated (Figure 5.3-2b). �is enables the tracking of distorted features, 
e.g. at stretching landslides, buckling glaciers, or rotating particles on rivers. �e optical �ow 
algorithm Lucas-Kanade (Lucas & Kanade, 1981), increasingly used in hydrological tracking 
tasks, is another optimization approach �tting an a�ne model to the motion �eld. Sub-pixel 
accurate measurements are possible, and the statistical output of the adjustment can be used 
to assess the matching quality. Due to the non-linearity of the adjustment, approximation 
values are required, which can be provided assuming solely minimal changes between images 
(e.g. in the case of high-speed imagery or very slow-moving objects), using the results of other 
matching approaches (e.g. NCC) as �rst estimates, or considering hierarchical approaches 
(chapter 3.3.3.3).



267

3.3  Image sequence processing

3.3.3.2  Tracking in the frequency domain

To �nd the position of highest similarity, it is also possible to estimate displacements in the 
frequency domain using the Fourier transformation. �e phase correlation approach (e.g. De 
Castro & Morandi, 1987) calculates the cross-correlation between the Fourier transformed 
search and kernel patch to retrieve the phase shi� in the frequency domain and thus lateral 
shi� between both image patches in the spatial domain (Figure 3.3-7). Finding matches in the 
frequency domain is signi�cantly faster than measuring in the spatial domain.

Figure 3.3-7: Simpli�ed 1D representation of measuring phase shi� θ between search (target) 
and source object in the frequency domain to retrieve displacement.

3.3.3.3  Improving robustness and accuracy

In most cases of patch-based tracking, the feature to track will not be located at the pixel centre 
in the search image due to signal discretization, i.e. the conversion of a continuous signal to a 
discrete (integer) value during the image capture process. �us, to improve the matching accura-
cy sub-pixel estimation can be necessary. One approach is the �tting of a paraboloid (Figure 3.3-
6) at the position of the highest score in the similarity map and then extracting the coordinates 
at the local extreme value. �e advantage of that method is that also the strength of the match 
can be evaluated considering the steepness of the paraboloid. Further parameters for quality 
assessment of the similarity measure are height and uniqueness of the estimated values.

Patch-based matching approaches can be further improved regarding their robustness and ac-
curacy with hierarchical methods, which build image pyramids made o� increasingly downsam-
pled images to incrementally decrease image resolution (Figure 3.3-8). �e tracking will start 
at the highest pyramid level, thus at the image with the lowest resolution. �e search area can 
cover nearly the entire image. �e position of the matching result is used as an approximation 
to con�ne the search area in the next pyramid level. �ese steps are repeated until the last level 
with the full image resolution, where the �nal location of the match is extracted. �e hierarchical 
approach enables to mitigate the impact of choosing the right kernel and search window sizes. 
�e larger the kernel is chosen, the less sensitive it is to ambiguities due to repeating patterns and 
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the smaller it is chosen, the higher the accuracy will be because more details are captured. And 
the larger and smaller the search window is chosen, the larger displacements can be captured 
and the faster processing times are achieved, respectively. �erefore, applying image pyramids 
allows for processing from the stage of high robustness at the �rst low-resolution levels to the 
stage of high accuracies at the last high-resolution levels.

Figure 3.3-8: Applying image pyramids to improve the tracking robustness and accuracy. �e 
highest level corresponds to the image of the lowest resolution (�rst image), and the base level 

corresponds to the image of the highest resolution (last image). �e matching result at each level 
serves as an approximation for the next level. �e kernel has the same number of pixels in each 

level, and therefore di�erent areas of the scenery are covered. Note that kernel 
size and downsampling are not scaled accordingly in this example to 

enhance the visibility of changes at di�erent levels.

A further option to increase the accuracy of the tracking is the application of �ltering algorithms 
to the �nal tracks. �ese can be either used globally, considering, e.g. the average and standard 
deviation of all measured displacements to identify outliers, or locally, considering, e.g. displace-
ment statistics only within a speci�ed neighbourhood. �e latter approach is especially useful 
for objects with complex movement patterns.

3.3.4  Tracking strategies

Di�erent spatial tracking strategies are possible for successful estimation of velocities and direc-
tion of moving objects in UAV image sequences. First of all, it has to be considered if tracking 
is performed in stationary image sectors, thus where in each subsequent image tracking starts 
again at the same image coordinate, i.e. Euler approach, or if the track of a speci�c target in the 
image sequence is searched for, i.e. Lagrangian approach. �e Euler method is generally compu-
tationally more e�cient with respect to the Lagrangian method. In return, the latter approach 
is able to perform measures also with low tracer density, whereas the former relies on abun-
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dant seeding density. To identify matching regions or features, the concept of similarity between 
groups of particles in two consecutive images is used, but it is also possible to use multi-frame 
algorithms that use three or more consecutive frames to solve the problem of correspondences.

Once the particle positions are identi�ed, the velocity is estimated by dividing the displace-
ment of particles between consecutive frames by the time interval between the pair of images. A 
�nite di�erence scheme is applied implicitly for calculating the velocity. �erefore, the temporal 
accuracy is directly correlated to the image frequency. Sampling frequency must be identi�ed 
properly in order to avoid over- or undersampling that may lead to missed features or high ve-
locity uncertainties if displacements are happening at the sub-pixel range, respectively. Di�erent 
temporal tracking strategies are possible with di�erent temporal bases, overlap and resolutions 
(Schwalbe, 2013, Figure 3.3-9). For instance, in a scenario of very slow-moving particles cap-
tured with high framerates, instead of tracking consecutive frames illustrated by strategy two in 
Figure 3.3-9, it might be suitable to skip frames and track features subsampling frames at a lower 
frequency. �is may help to enhance the visibility of shi�s and movements of objects within each 
frame. �ereby, features or patches might be detected, e.g. every frame or every second frame 
(strategy four and three in Figure 3.3-9, respectively).

Figure 3.3-9: Temporal matching strategies (a�er Schwalbe, 2013).

To transform the measurements within the image sequences into displacements in a scaled co-
ordinate system and correspondingly to metric velocity values, it is necessary to reference the 
tracking result (chapter 3.3.1.1). Referencing can be either performed prior to the tracking pro-
cessing or a�erwards. Executing the tracking in the original image, and thus transforming the 
image measurement a�erwards, only considering the coordinates of the tracked particles, entails 
the advantage that interpolation errors, especially in strongly tilted images, are avoided.
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3.3.5  UAV monitoring applications

�e applications of tracking approaches to UAV data are vast and therefore entail very case-spe-
ci�c challenges. �erefore, we display three common �elds of application – hydrology (chap-
ter 4.3), geomorphology (chapter 4.2) and glaciology (chapter 4.5) – to highlight di�erent ad-
vantages, challenges and limits of image sequence analysis of UAV-based data.

3.3.5.1  Stream�ow

Image-based �ow velocity measurement with UAV imagery is a valuable emerging �ow gaug-
ing technique, which can also be applied to terrestrial images captured by �xed station or 
mobile stations (Eltner et al., 2020). �e advantage of using UAVs is the possibility for greater 
coverage of the river surface at multiple locations, including potentially inaccessible sites. 
Furthermore, they tend to fail less at high �ow conditions compared to classical monitoring 
systems.

A vast number of methodological approaches are available to compute water surface veloci-
ties. �e most frequently adopted algorithms are large scale particle velocimetry (LSPIV, Le Coz 
et al., 2010), belonging to the Euler tracking strategy, and particle tracking velocimetry (PTV, 
Tauro & Grimaldi, 2017), belonging to the Lagrangian tracking strategy. LSPIV is an adaption 
of particle image velocimetry (PIV, Creutin et al., 2003). In contrast to PIV, LSPIV can be used 
for a wider range of physical phenomena due to its capacity to cover larger areas and to adopt 
low-cost cameras. Regardless of the speci�c algorithm considered for tracking, the estimated 
velocity is recovered from the information of tracing features on the water surface, i.e. natural 
foam, seeds, woody debris, and turbulence-driven pattern. 

Accuracy assessments of UAV image velocimetry revealed that stationary UAV measure-
ments are in strong agreement with established �ow gauging approaches. To better under-
stand the complexity of 2D river �ow structures, following major points have to be respected: 
i) the stability of the camera, ii) a good compromise between �ight altitude, camera resolution, 
tracer particle size and river width (Lewis & Rhoads, 2018), iii) the potential necessity of non-
oblique UAV imagery at wider rivers to enable the coverage of the entire cross-section, and 
iv) the presence of a traceable pattern on the water surface. Seeding density is one of the most 
relevant parameters in the determination of reliable velocity �elds. When facing low seeding 
density conditions, the number of analysed frames should be increased for more accurate 
results (Dal Sasso et al., 2018).
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3.3.5.2  Landslide

UAVs o�er a cost-e�ective, time-e�cient, �exible and safe data collection solution to improve 
the spatio-temporal resolution of landslide movement maps (chapter 4.2), e.g. through the com-
parison of SfM-derived co-registered digital surface models (DSM) or using multi-temporal or-
thophotos. Landslide tracking techniques applied to satellite, airborne or terrestrial data cannot 
be easily transferred to UAV-imagery, due to the di�erent monitoring scales. �erefore, Lucieer 
et al. (2014) applied the COSI-Corr (co-registration of optically sensed images and correlation) 
algorithm (Ayoub et al., 2009) to hill shaded DSMs, instead of RGB imagery, to measure land-
slide movements. In a further step, other UAV-derived morphological attributes, such as slope, 
openness and curvature, can be considered (Peppa et al., 2017). Furthermore, feature tracking 
approaches based on terrain break-lines can be more suitable to detect landslide movements 
with important surface deformation, whereas NCC-based correlation can be more appropriate 
when targeting small landscape elements.

�e presence of vegetation can become an important challenge. For instance, image cross-cor-
relation performance decreases when terrain surface is covered with grass. And vegetation’s neg-
ative e�ect on correlation is even more pronounced when images were produced in di�erent 
seasons (e.g. spring and winter). Although some errors are expected, especially over regions with 
rotational failures, UAV-based methods o�er a reliable quanti�cation of translational earth-�ow 
activity, in particular, movement of ground material pieces, vegetation patches and landslide 
toes (Lucieer et al., 2014; Peppa et al., 2017).

3.3.5.3  Glacier

Similarly to landslide monitoring, UAV-acquired data can be bene�cial to better understand gla-
cial dynamics (chapter 4.5). However, applying UAV image-based processing can be particularly 
challenging in these landscapes due to large uniform surfaces, but whose texture can be enhanced 
by the presence of dust or debris. One of the challenges when quantifying glacier velocity is iso-
lating ice movement from other surface displacements (e.g. debris slope collapse or falling blocks 
from the moraine on the ice surface) (Rossini et al., 2018). Application of a multi-scale mode, 
implemented in COSI-Corr, allowed for the exclusion of the majority of these noises. �e best 
results involved a trade-o� between limited noise, when using larger correlation windows, and 
�ne-scale details. Besides orthomosaic, hillshaded DSMs and DSM derivates, e.g. detected edges, 
can also provide a globally coherent output. Feature-tracking algorithms used to compute glacier 
surface velocity can perform similarly compared to manual digitalization, and they enable �ne 
spatio-temporal displacement quanti�cation of debris-covered glaciers (Rossini et al., 2018).
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