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(57) ABSTRACT

A method for generating redundant configuration in FPGA
devices includes: analysing the configuration pertaining to a
given design to be configured, or already configured, in the
FPGA device, in order to identify programmed and empty
configuration memory portions, configuring the FPGA
device for implementing said design, measuring the power
consumption of the configured FPGA device, copying the
configuration from at least some subsets of the programmed
portion to subsets of the empty portion, (a) verifying the
configuration read back from said subsets of the empty
portion with the configuration data read from said subsets of
the programmed portion, (b) verifying whether the function-
ality of the design after the copy is still correct, (¢) mea-
suring the power consumption of the FPGA device, and
verifying whether the power consumption of the FPGA
device after the copy is acceptable according to pre-defined
criteria, if the verification steps (a), (b) and (c) are all
successful the redundant configuration is correctly gener-
ated, and if the verification steps (a), (b) and (c) are not all
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successful the method restarts from the beginning choosing
other subsets of the empty portion of the FPGA device for
hosting the configuration data from said subsets of the
programmed portion.

13 Claims, 7 Drawing Sheets
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1
METHOD FOR GENERATING REDUNDANT
CONFIGURATION IN FPGAS

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention generally relates to Field Program-
mable Gate Arrays (FPGAs) and more particularly to tech-
niques for generating redundant configuration within those
FPGA devices. The redundant configuration can be
exploited by properly-devised circuits for detecting and
correcting upsets in the configuration memory and mitigat-
ing their effects on the implemented functionality.

Description of the Prior Art

FPGAs are integrated circuits that may be programmed to
perform specific logic functions, as disclosed in “Virtex
UltraScale FPGAs Data Sheet: DC and AC Switching Char-
acteristics”, Xilinx Inc. DS893 (v1.7.1) Apr. 4, 2016 and
“Stratix 10 Device Overview S10-OVERVIEW?”, Altera
Corp. 2015 Dec. 4.

These integrated circuits typically consist of an array of
programmable resources. These programmable resources
can include dedicated input and output blocks (IOBs) and
configurable logic blocks (CLBs), random access memory
blocks (BRAMSs), micro-processors, clock managers, delay
locked loops and so forth.

Each programmable resource typically includes both pro-
grammable interconnect and programmable logic. The pro-
grammable interconnect typically includes a large number of
lines, of various lengths, which can be short-circuited or
isolated by the so called programmable interconnect points
(PIPs).

FPGAs are widely adopted in a variety of applications
from consumer electronics, such as Smart TVs, to niche
applications, such as avionics and electronics for space, for
implementing fast logic due to their re-configurability, large
real-time processing capabilities and embedded high-speed
serial 10s.

However, these devices are sensitive to radiation effects
such as single event upsets (SEUs) or multiple bit upsets
(MBUs) in the configuration memory, which may alter the
implemented functionality as disclosed in M. Wirthlin,
“High-Reliability FPGA-Based Systems: Space, High-En-
ergy Physics, and Beyond”, in Proc. of the IEEE, vol. 103,
no. 3, pp. 379-389, March 2015. doi: 10.1109/
JPROC.2015.2404212 and H. Quinn, “Radiation effects in
reconfigurable FPGAs. Semicond. Sci. Technol., vol. 32, no.
4 (8 pp), March 2017 doi: https://doi.org/10.1088/1361-
6641/aa5716.

Therefore, these effects must be properly mitigated in
order to guarantee a reliable operation of the device.

Special families of FPGAs (e.g., the Xilinx® Virtex-5QV,
as disclosed in “Radiation-Hardened, Space-Grade Virtex-
5QV Family Overview” Xilinx Inc. DS192 (v1.4) Nov. 12,
2014) have been designed for space applications, but their
high cost (few 10 k$), with respect to their standard coun-
terpart (~5008%), usually limits their usage in other applica-
tions, including the control of particle accelerators, medical
applications or electronics for Nuclear and Sub-Nuclear
Physics experiments.

Therefore, there is a strong interest in finding solutions for
enabling the usage of standard FPGAs also in such appli-
cations.
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Methods based on triple modular redundancy, as dis-
closed in L. Sterpone and M. Violante, “Analysis of The
Robustness of The TMR Architecture in SRAM-based
FPGAs”, IEEE Trans. on Nucl. Sci., vol. 52, no. 5, pp.
1545-1549, October 2005. doi: 10.1109/TNS.2005.856543,
and periodic correction of the configuration, i.e., configura-
tion scrubbing, as disclosed in I. Herrera-Alzu and M.
Lopez-Vallejo, “Design Techniques for Xilinx® Virtex
FPGA Configuration Memory Scrubbers”, IEEE Trans.
Nucl. Sci., vol. 60, no. 1, pp. 376385, February 2013., in A.
Stoddard, A. Gruwell, P. Zabriskie and M. J. Wirthlin, “A
Hybrid Approach to FPGA Configuration Scrubbing”, IEEE
Trans. on Nucl. Sci., vol. 64, no. 1, pp. 497-503, January
2017. doi: 10.1109/TNS.2016.2636666, and in M. Berg, C.
Poivey, D. Petrick, D. Espinosa, A. Lesea, K. A. LaBel, M.
Friendlich, H. Kim, A. Phan, “Effectiveness of Internal
Versus External SEU Scrubbing Mitigation Strategies in a
Xilinx FPGA: Design, Test, and Analysis”, IEEE Trans.
Nucl. Sci., vol. 55, no. 4, pp. 2259-2266, August 2008 doi:
10.1109/TNS.2008.2001422, are used in order to correct
SBUs and MBUs, which become more significant as the
technological scaling proceeds towards smaller feature
sizes.

The reason for coupling scrubbing to modular redundancy
is that fault masking techniques require to avoid the accu-
mulation of errors in the FPGA, as disclosed in A. Manuz-
zato, S. Gerardin, A. Paccagnella, L. Sterpone, M. Violante,
“Effectiveness of TMR-Based Techniques to Mitigate
Alpha-Induced SEU Accumulation in Commercial SRAM-
Based FPGAs”, IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp.
1968-1973, August 2008 doi: 10.1109/TNS.2008.2000850
and in P. S. Ostler, M. P. Caffrey, D. S. Gibelyou, P. S.
Graham, K. S. Morgan, B. H. Pratt, H. M. Quinn, and M. J.
Wirthlin, “SRAM FPGA reliability analysis for harsh radia-
tion environments”, IEEE Trans. Nucl. Sci., vol. 56, no. 6,
pp- 3519-3526, December 2009.

Some FPGAs include a dedicated self-correction circuitry
for configuration error detection and correction (EDAC)
based on extra parity bits added to the actual configuration
data.

These circuitries normally are limited by the amount of
parity bits in the maximum number of errors they can detect
and correct.

In latest generation devices, the correction circuitry can
detect double bit errors and correct single bit errors detection
(SECDED) at each configuration memory location, which
normally includes thousands of bits.

Other scrubbing architectures, such as disclosed in Xilinx
Inc., “LogiCORE IP Soft Error Mitigation Controller”, v4.0,
2013, can correct an arbitrary number of errors since they
are based on external radiation-hardened memories which
preserve a golden copy of the FPGA configuration. Being
external components, these memories add up to the overall
system complexity, cost and power consumption.

Scrubbing techniques based on configuration redundancy
have been developed in order to avoid external memories
and correct MBUs at the same time.

Although it cannot be classified as a scrubber, the solution
disclosed in G. C. Steiner, “Method And Apparatus For Error
Mitigation Of Programmable Logic Devices Configuration
Memory”, U.S. Pat. No. 7,298,168B1, Nov. 20, 2007, shows
an FPGA architecture and a design implementation flow
aimed at generating redundant configuration at the bit level.

Identical configuration bits are grouped into voting groups
and the outputs from the voters determine the actual behav-
iour of the logic in the fabric. Since it requires a dedicated
FPGA architecture, this approach can be pursued only by
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vendors fabricating devices and it cannot be implemented at
the user level. Moreover, it does not allow to detect upsets,
but only to mask them, therefore it is not effective against the
accumulation of upsets and it does not allow to log them.

The solution described in P. H. Alfke, “System for pre-
venting radiation failures in programmable logic devices”,
U.S. Pat. No. 6,104,211A, Aug. 15, 2000 and the work
presented in 1. Herrera-Alzu and M. Lopez-Vallejo, “Self-
reference scrubber for TMR systems based on xilinx virtex
FPGAs”, Lecture Notes Comput. Sci., vol. 6951, pp. 133-
142, 2011, LNCS. are both based on configuration redun-
dancy at the device level. Three identical FPGAs implement
the same design and therefore host the same configuration.
The main limitations of this approach are the need for three
devices, the increase of the power consumption by a factor
three and the need for an additional device or resources to
perform scrubbing and majority voting of the outputs.

Another approach based on configuration redundancy at
the frame level is disclosed in J. Tonfat, F. L. Kastensmidt,
P. Rech, R. Reis, and H. M. Quinn, “Analyzing the Effec-
tiveness of a Frame-Level Redundancy Scrubbing Tech-
nique for SRAM-based FPGAs”, IEEE Trans. Nucl. Sci.,
vol. 62, no. 6, pp. 3080-3087, December 2015, for a Xilinx®
Virtex-5 FPGA. The technique requires a custom design
flow, which is based on a legacy tool (Xilinx® ISE), its
ability to export layouts in the Xilinx® Design Language
(XDL) format, and the Rapidsmith academic CAD tool as
disclosed in C. Lavin, M. Padilla, J. Lamprecht, P. Lundri-
gan, B. Nelson, and B. Hutchings, “RapidSmith: Do-it-
yourself CAD tools for xilinx FPGAs”, in Proc. 2011 21st
Int. Conf. F. Program. Log. Appl., September 2011, pp.
349-355. The Rapidsmith tool is used for replicating the
layout of a module three times and therefore generating
three identical subsets of the configuration, therefore the
Authors exploit modular redundancy to generate configura-
tion redundancy.

The disclosed solution requires to find three identical
subsets of the FPGA device for hosting the three identical
layouts, which may not be possible for designs occupying a
higher percentage of the device resources.

In this implementation the scrubbing logic and a voter for
the three modules are implemented in the fabric. This
solution leads to a power consumption increase related to the
additional programmable resources used. However, as dis-
closed in R. Giordano, A. Aloisio, V. Bocci, M. Capodiferro,
V. Izzo, L. Sterpone, M. Violante, “Layout and Radiation
Tolerance Issues in High-Speed Links”, IEEE Trans. Nucl.
Sci. vol. 62, no. 6, pp. 3177-3185, December 2015. doi:
10.1109/TNS.2015.2498307 the impact on power consump-
tion is milder with respect to solutions based on redundant
devices, where also the device quiescent power is triple.

Unfortunately, newer FPGA families, such as the 7-Se-
ries, the Ultrascale or the Ultrascale+, are not supported by
the Rapidsmith tool, and latest generation FPGAs are not
supported by ISE either. In addition to that, the new Xilinx®
CAD tool Vivado, recommended for designs based on
7-Series onwards, does not support the XDL. New initia-
tives, such as disclosed in “RAPIDSMITH 2: A Library for
Low-level Manipulation of Vivado Designs at the Cell/BEL
Level”, B. Nelson, T. Haroldsen, T. Townsend, [Online]
Available: https://github.com/byuccl/RapidSmith2/blob/
master/doc/TechReport.pdf, have been launched for
enabling custom design flows also with the Vivado tool.

However, the usage of third party layout tools adds up to
the complexity of the design flow and it usually does not
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4

allow the designer to choose the latest generation devices,
since dedicated support must be implemented for each new
FPGA family.

SUMMARY OF THE INVENTION

The present invention aims at solving these and other
problems by providing a method and an apparatus for
generating redundant configuration in FPGA devices.

The basic idea of the present invention is to generate
redundant configurations.

In particular, the method is based on the combination of
the verification of the copy of configuration frames, of the
measurement of the power absorbed by the device, and of
the testing of the functionality during the copy of each
configuration frame or of a set of frames. The generated
redundant configuration can be used by dedicated circuits in
order to detect and correct configuration upsets by means of
majority voting.

This objective is achieved by means of a method for
generating redundant configuration in FPGA device, com-
prising the steps of:

analysing the configuration corresponding to a given
design to be configured, or already configured, in the
FPGA device, in order to identify programmed and
empty configuration memory portions,

configuring the FPGA device for implementing said
design,

measuring the power consumption of the configured
FPGA device,

copying the configuration from at least some subsets of
the programmed portion to subsets of the empty por-
tion,

(a) veritying the configuration read back from said subsets
of the empty portion with the configuration data read
from said subsets of the programmed portion,

(b) verifying whether the functionality of the design after
the copy is still correct,

(c) measuring the power consumption of the FPGA
device, and verifying whether the power consumption
variation of the FPGA device after the copy is accept-
able according to pre-defined criteria,

if the verification steps (a), (b) and (c) are all successful
the redundant configuration is correctly generated, and

if the verification steps (a), (b) and (c) are not all suc-
cessful the method restarts from the beginning choos-
ing other subsets of the empty portion of the FPGA
device for copying the configuration data from said
programmed portion.

BRIEF DESCRIPTION OF DRAWING

The characteristics and other advantages of the present
invention will become apparent from the description of an
embodiment illustrated in the appended drawings, provided
purely by way of no limiting example, in which:

FIG. 1 shows an exemplary embodiment of the layout of
programmable resources and configuration frames in an
FPGA,

FIG. 2 shows an example of a setup for redundancy
generation in a FPGA with four power domains,

FIGS. 3A and 3B show examples of attempted frame
copies; in particular FIG. 3A shows a successful frame copy
and FIG. 3B shows a failed frame copy,

FIGS. 4A, 4B and 4C show examples of the current time
evolution as a function of the frame address measured by the
first ammeter (Al) during the initial configuration (FIG.
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4A), during a passed power consumption test (FIG. 4B) and
during a failed one (FIG. 4C),

FIGS. 5A, 5B, 5C and 5D show examples of a design
configured in the programmable resources of the FPGA;
FIG. 5A shows the initial configuration implementing cor-
rect functionality, before the copy has been performed, FIG.
5B shows a first example of the configuration after the copy
of a frame, where bits corresponding to PIPs are altered and
generate a short circuit, FIG. 5C shows a second example of
the configuration after the copy of a frame, where bits
corresponding to a LUT are altered and change its logic
function, and FIG. 5D shows a third example of the con-
figuration after the copy of a frame, where bits correspond-
ing to PIPs are altered, but they do not impact the initial,
correct functionality.

FIG. 6 shows a flow diagram for the generation of a
redundant frame sequence, and

FIG. 7 shows another example of a setup for redundancy
generation with an internal replication controller in a FPGA
with four power domains.

DETAILED DESCRIPTION OF THE
INVENTIONS

In this description, any reference to “an embodiment™ will
indicate that a particular configuration, structure or feature
described in regard to the implementation of the invention is
comprised in at least one embodiment. Therefore, the phrase
“in an embodiment” and other similar phrases, which may
be present in different parts of this description, will not
necessarily be all related to the same embodiment. Further-
more, any particular configuration, structure or feature may
be combined in one or more embodiments in any way
deemed appropriate.

The references below are therefore used only for the sake
of simplicity, and do not limit the protection scope or
extension of the various embodiments.

All user-programmable features of FPGA devices are
controlled by memory cells, which must be configured
according to the design to be implemented.

These memory cells are collectively known as configu-
ration memory, as disclosed in “7-Series FPGAs Configu-
ration User Guide”, Xilinx Inc., San Jose, Calif. 2016
https://www xilinx.com/support/documentation/user_gui-
des/ugd70_7Series_Config.pdf.

The configuration memory cells define, for example, logic
equations for CLBs, signal routing for PIPs, input/output
voltage standards for IOBs, and all other aspects of the
design. The device configuration memory is logically par-
titioned in the so-called “frames”, which are arranged ver-
tically. The frame is the smallest accessible configuration
fragment and in recent devices can include a few thousands
of bits as shown in Table 1.

TABLE 1

Frame sizes in recent Xilinx ® FPGA familie:

Family Virtex-5  Virtex-6  7-Series  Ultra-scale  Ultra-scale+

Size (bits) 1312 2592 3232 3936 2976

From a configuration perspective, the FPGA structure can
be divided into rows and columns (see FIG. 1).

FIG. 1 shows the layout of the programmable resources
and configuration frames in an FPGA. A row (e.g., reference
number 12) consists of a sequence of columns related to
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6
resources such as CLBs, IOB s, BRAMs and so forth. Other
rows 11, 13, and 14 are also shown.

In particular, reference number 1 refers to a IOB column,
reference number 2 refers to a 10 Interconnect column,
reference numbers 3 to 8 refer to CLB columns, reference
number 9 refers to BRAM column and reference number 10
refers to BRAM Interconnect column.

Each column requires one or more frames to be config-
ured. Unused columns correspond to configuration frames
set to a default, predictable value.

It is important to note that the configuration memory is
pretty different from standard memories, which are used
only to store information. In fact, since each configuration
bit controls a physical resource, any change may have an
impact on the device behaviour, both logically and electri-
cally. An important consequence of this peculiarity is that it
is not possible to store any data in any frame, as it might lead
to an incorrect operation of the device.

A typical design flow for FPGAs ends with the generation
of a configuration file, the bitstream, to be loaded onto the
device in order to implement the design functionality. In
order to analyse the configuration content of the design, it is
possible to dump the frame content for each frame address
from the bitstream file or, after programming the FPGA
device, by reading back the configuration from it.

This can be performed by means of a custom software
program, referred to as the “analysis script”. The same
analysis script can also group frames into sequences of
empty frames, i.e., frames which are going to be loaded with
their default data, and programmed frames, i.e., frames
which are going to be loaded with data different from the
default.

For a given design, the script determines which frames are
programmed and which are not, and it produces a list of
programmed and empty sequences. In the following, it is
described an example of a list of frame sequences generated
by a configuration analysis script.

# List of Programmed Frame Sequences

# e.g. the following line describes a sequence of pro-
grammed frames

# starting at address 0x0000001D ending at address
0x0000009D and

# consisting of 43 frames (frame addresses do not grow
linearly)

PROGRAMMED 0x0000001D 0x0000009D 00000043

# e.g. the following line describes a sequence of default
value

# frames starting at address 0x00000100 ending at address
0x00000C9A

# and consisting of 817 frames

# (frame addresses do not grow linearly)

EMPTY 0x00000100 0x00000C9A 00000817

PROGRAMMED 0x00000C9B 0x00000D23 00000039

EMPTY 0x00000D80 0x00000C9A 00000344

PROGRAMMED 0x00001280 0x0000129F 00000032

EMPTY 0x00020000 0x00C201FE 00006126

Modern FPGAs enable read and write access to configu-
ration frames by means of the so-called Configuration
Access Ports referred to as CAPs. In fact, it is possible to
write software or hardware controllers, which permit to
access individual frames via the CAP of the FPGA.

It is possible to configure the FPGA with the bitstream
pertaining to the design and then use the above-mentioned
controller to readback the configuration from the device
and/or to generate redundant copies of programmed frames
into empty frames.
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However, care must be taken in this operation as the
content of the configuration memory has a physical impact
on the device and not any frame is compatible to host the
content from any other frame.

Moreover, the type of each frame is normally unknown to
the designer since FPGA vendors do not disclose such
implementation details. In any case, copying configuration
from a frame, or set of frames, to another frame, or set of
frames, may lead to misbehaviours of the circuit or to an
unintended increase of the power consumption related to
driver contentions on the programmable interconnect.

The solution described in this document consists of a
method for the generation of redundant configuration which
is completely independent of such details of the underlying
hardware. The solution is based on a dedicated controller
connected to an FPGA and a number of ammeters, one per
each FPGA power domain (let N be the number of power
domains) and a power supply.

FIG. 2 shows an example, where the FPGA 30 has four
power domains, each connected to an output channel of the
power supply 40, through an ammeter A, (with i=1, 2, 3, 4).

Each ammeter is a device for measuring the electric
current through a wire or a circuit element, and it measures
the correspondent currents 1, I,, 15, L, associated to each
power domain.

The power supply 40 is a device providing the required
supply voltages for proper operation of the FPGA, V,, V,,
V3, V,. The number of power domains and the required
supply voltage at each domain depend on the specific FPGA
device and they are normally specified in its datasheet.

The replication controller 20 exchanges functional input/
output signals 50 with the design 32 configured in the FPGA
and configuration input/output signals 52 with the Configu-
ration Access Port (CAP) 34 of the device.

All the current measurements I,, I,, I, 1, are fed back to
the dedicated controller 20 by means of signals 54.

For each frame of each sequence of frames identified by
the analysis script, the controller 20, by means of the signals
52 accesses the CAP 34 to copy the configuration from a
source frame address SRC to a destination frame address
DST.

Moreover, after the copy, the controller 20 reads back the
configuration data from the CAP 34 by means of the signals
52 and compares them with the data it attempted to write.

If there is a match the copy is successful, otherwise the
copy is failed. It might fail, for instance, if the destination
frames configure different resources with respect to the
source frames.

FIGS. 3A and 3B show examples of attempted frame
copies. The controller 20 reads (arrow A) the frame data
from the SRC address through the CAP 34, writes (arrow B)
the same data at the DST address through the CAP 34 and
reads the data back (arrow C) from the DST address through
the CAP 34 for verification.

FIG. 3A shows a successful frame copy and FIG. 3B
shows a failed frame copy, as the read back state (‘1”) of bit
200 does not match with the written state (‘0”).

For instance, attempting to copy the configuration from a
CLB column frame to a IO Interconnect column frame
might be unsuccessful, as the configuration cells are con-
nected to different hardware resources and their state might
be different when read back.

For example, a certain bit could be read only at the ‘1°
state, attempting to write a ‘0’ in it might be ineffective.
When read back, the bit would still result as a “1°.

When the copy is successful, the controller 20 performs a
power consumption test by measuring the current values I,
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8
1,, 15, 1, drawn by the FPGA on its power domains, measured
before (I,(SRC), with i=1, . . ., 4) and after the copy
T'(SRC), with i=1, . . ., 4).

A simple method is to evaluate the drawn current differ-
ences and compare them to pre-defined threshold values
(AI” for i=1, . .., 4), which can be computed as a function
of SRC, i.e., AI” =AI” (SRC).

If U~I'| <AI" (SRC) for i=1, . . . A, o)

the power consumption variation is considered normal,
otherwise an internal fault, such as a short circuit, is
assumed.

The threshold values can be determined by analysing the
power consumption of the device during the initial configu-
ration of the source frame sequence to be copied.

The threshold values are in general a function of the time
evolution of the current versus the frame address, 1°=1°(f)
for i=1, . . ., n, where f varies over the frame addresses of
the configured sequence (=0, . . ., SRC).

For example, it is possible to choose the threshold values
as:

AL (SRC)=alI(SRC+1)-I°(SRC)|,

where a is a coefficient suitably chosen by the designer.

FIG. 4 shows examples of the current time evolution
measured by the first ammeter A; during the initial configu-
ration as a function of the frame address (FIG. 4A), during
a passed power consumption test (FIG. 4B) and during a
failed one (FIG. 4C). The figures show the value for the SRC
93.

Other more complex methods can be envisaged in order
to evaluate whether the power consumption is correct.

For instance, by taking into account the time evolution of
the currents as a function of the source frame address at the
power domains during the redundancy generation process
L(f) and the time evolution of the currents 1°,(f) as a function
of the frame address during the initial configuration, and

considering them as vectors of the & sequence space, it is
possible to state that the power consumption test is success-
ful if

e AGRAIES <

fori=1, ..., N,
where N is the number of power domains, K, are N real

@

numbers, O is an operator of the & @€ space, where the
symbol & denotes the tensor product, [[O(I,(), I°,(D)|| is the

norm of the vector O(I,(f), I°(D)) in the £ Q& space.

The controller 20 also runs a functional test on the design
32 in order to verify if its behaviour is still correct after the
copy.

The functional test is performed by comparing the actual
output signals 50 of the design 32 with the expected ones,
i.e., the correct ones. In other words, the functional test
verifies that the redundancy generation process has not
corrupted the functionality of 32. This may happen if the
new configuration written into the redundant frames inter-
acts with the functionality of the design.

FIGS. 5A, 5B, 5C and 5D show examples of the configu-
ration pertaining to a design 64 and 66 before and after some
frame copy attempts.

FIG. 5A shows the initial correct functionality of 32,
before the copy has been performed.

FIG. 5B shows a first example, where the bits 60 altered
by the copy corrupt the functionality of 32 by generating a
short circuit 62.
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FIG. 5C shows a second example, where the bits 60
altered by the copy corrupt the functionality of 32 by
changing the logic function of the look-up-table 64.

FIG. 5D shows a third example, where the altered bits 60
leave the functionality of 32 unchanged.

In some embodiments, the controller 20 may implement
the same functionality of the design 32 and it may provide
the correct outputs to be compared against the FPGA outputs
50.

In some other embodiments, the functional test might also
be a built-in self-test, i.e., a mechanism that permits the
design 32 to check its own functionality and output a
passed/failed signal, among signals 50, to the controller 20.

If the copy fails, if the power consumption is not correct
with respect to the predefined criteria, or if the functional
test is unsuccesstul, the controller 20 restarts by restoring the
previous configuration of the destination frame, the control-
ler 20 updates DST to a different value and the controller 20
retries the copy operation.

FIG. 6 is a flow diagram showing the generation steps of
a redundant frame sequence.

At step 100, the procedure begins.

At step 104, the source frame address SRC is set to the
address of the frame to be copied and the destination frame
address DST is set to the address of an empty frame.

In the subsequent step 106, the procedure measures the
absorbed current on the FPGA power domains before the
copy of the configuration frame IL(SRC), i=1, . . . , N,
wherein N indicates the number of power domains com-
prised in the considered FPGA.

At step 108, the procedure creates a backup copy of the
configuration data at the DST address and then copies the
configuration data from the SRC address to the DST address.

In the subsequent step 110, the procedure reads back the
configuration data written at the DST address in the previous
step.

Then at step 112, the configuration data read back at step
110 is compared with the configuration data written at step
108 to verify whether the copy is correct.

The implementation of this comparison depends on how
the controller 20 is implemented.

In the case the controller is implemented as a digital
circuit, the comparison is probably implemented as a binary
bit-to-bit comparator.

In the case the controller 20 is implemented as a software
program running on a microprocessor, the comparison is
implemented as a function comparing two input variables
containing the configuration data of the frames.

It has to be considered that there is a huge number of
possible implementations for this operation, and here two
examples have been provided.

In FIG. 6, if the copy is correct, the procedure goes to step
114, otherwise, the procedure continues at step 118.

At step 114, the absorbed currents at the FPGA power
domains, i.e., the values I',(SRC), i=1, . . . , N, are measured.

Then, at step 116 it is verified whether the “power
consumption” test and the “functional” test are passed

In positive case the procedure jumps to step 120 and in
negative case the procedure goes to step 118.

At step 118, the frame at address DST is restored to its
configuration before the copy, the DST address is changed to
another empty frame address, for instance to the next frame
in the empty frame sequence, and the procedure returns to
step 106.

It is possible to choose the new DST address in different
ways according to the design requirements. For instance, it
is possible to choose the new address as the first which
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allows to find a contiguous number of empty frames for
storing the remaining part of the frame sequence. Moreover,
it is possible to avoid selected frame intervals in order to
leave free frames for additional logic to be configured in the
FPGA after the redundancy generation.

At point 120, it is verified whether all the frames of the
sequence have been processed, i.e., whether the last frame of
the sequence has been reached.

In the positive case the procedure goes to step 122, to
process the next frame sequence, and in the negative case the
procedure goes back to step 104.

For each frame sequence, depending on whether or not it
is critical for the design operation, a different number of
redundant copies can be added, from a minimum of 0 (no
redundancy) to a maximum value depending on the free
resources in the device and on the required reliability level.

Normally, the total number of replicas, including the
original configuration, is an odd value to make it possible to
majority vote the bits of the copied frames.

It is important to highlight that copied configuration in
general does not generate operating circuits.

Only the original configuration pertains to an actual
operating circuit, which receives the necessary inputs (e.g.,
data, clock, resets) and actually drives the outputs.

In this case, the configuration redundancy generation does
not increase the dynamic power consumption of the original
design.

It can however increase the quiescent power consumption
due to the activation of additional resources in the device.

At the end of the configuration redundancy generation, a
list of redundant frame sequences and of frame sequences
pertaining to empty FPGA configuration portions is pro-
duced by the analysis script.

This information can be used by dedicated scrubbers in
order to detect and correct configuration upsets by means of
majority voting or comparison to the default value.

It is important to remark that in other embodiments of this
invention, the proposed flow diagram can be modified for
copying subsets of each frame, for instance the bits in
specific ranges (e.g., bits from 0 to 31, bits from 45 to 62,
bit 66, bits from 1000 to 1005 and so forth). In this case, the
frame read back at step 108 before the copy is used. The bits
in the specified subsets are set at the value they have at the
SRC address and the other bits are left unchanged. The
so-modified frame is then written to the DST address. In this
case, it is possible to use both empty and programmed
frames as destination frames for storing the redundant
configuration, provided that at least the bits to be overwritten
are unused by the design 32.

It is important to remark that in other embodiments of this
invention, the same flow diagram of FIG. 6 can be imple-
mented for processing the frame sequence by copying sets of
frames rather than single frames. In other words, the frame
sequence could be partitioned in sets of frames, rather than
in frames. Each set can include a plurality of frames and
each set can be copied according the flow shown in FIG. 6,
where SRC and DST are now the starting source and
destination frame addresses for each set. The sequence can
itself be considered as a set of frames, so the flow shown in
FIG. 6 could also be applied to the whole sequence at once.

It is important to remark that in other embodiments of the
invention, the controller 20 can be implemented in the same
FPGA device, by properly configuring part of its program-
mable resources.

Other embodiments might use the internal CAP offered by
most of the modern devices.
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Further other embodiments, might exploit analog-to-digi-
tal converters (ADCs) embedded in the FPGA for monitor-
ing external voltages (see for example FIG. 7).

When coupled to the external shunt resistors R, R,, Rj,
R,, an internal ADC module can be profitably exploited to
monitor the voltage drop on the resistors (AV,, AV,, AV,
AV ,) through signals 58.

Since the resistances of R, R,, R;, R, are known, the
controller 20 can determine the currents drawn by the FPGA
power domains I, 15, 15, I, by means of Ohm’s law.

It is important to remark that, in the disclosed solution,
logic and configuration redundancies are completely
decoupled.

Techniques such as Triple Modular Redundancy (TMR)
can be adopted for enhancing logic reliability in parallel to
this approach, but they are not necessary for performing
configuration scrubbing.

Scrubbing techniques built upon TMR-based Frame-
Level Redundancy (TFLR), such as the scientific publica-
tion J. Tonfat, F. L. Kastensmidt, P. Rech, R. Reis, and H. M.
Quinn, “Analyzing the Effectiveness of a Frame-Level
Redundancy Scrubbing Technique for SRAM-based
FPGAs”, IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 3080-
3087, December 2015, offer benefits related to logic redun-
dancy, but this TFLR solution requires to find three identical
subsets of the FPGA device for hosting the same layout three
times. Such a requirement might not be met by designs
occupying a higher percentage of the device resources.

Moreover, this TFLR solution introduce an additional
power consumption due to the operation of the replicas.

It has to be highlighted that the total current I, drawn by
a configured FPGA can be split in two contributions:

1. the quiescent current related to the device itself and
referred as I, which does not depend on the used resources;
and

2. the current related to the used logic resources referred
as I, such that [ =1 +1.

Table 2 shows the average current drawn at the core
power domain (power supply at 1.0V) by a Xilinx® 7K70T
FPGA when configured with a benchmark design.

The measured current at power up is 1, after configura-
tion with the initial bitstream of the benchmark design is I,
and after replication of the frames, performed by means of
the method disclosed in this description, is 1.

The currents related to the resources configured by the
initial bitstream and to the replicated design, are therefore
biepenls . . .

The relative increment in power consumption for tripli-
cating the design frames is

60%( Inf — Irc].

Irc

TABLE 2

Average current drawn by a Xilinx ® 7K70T FPGA
at the core power domain.

I, (mA) I, (mA) I-(mA) I,. (mA) Lr(mA)

57 80 94 23 37

For a TFLR approach, neglecting the voting logic and
assuming each of the replicas exhibits the same power
consumption of the others, the power would grow by
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3irc = Irc
200%( ]

Irc

Since the proposed technique does not require the redun-
dant frames to be associated to operating logic, the power
consumption penalty is significantly lower.

The solution proposed in this document advances the
prior art in multiple ways.

It describes a novel redundancy generation technique
aimed for scrubbing the configuration of FPGAs.

It leads to a negligible additional power consumption with
respect to the prior art. In fact, for selected benchmark
designs the power consumption penalty related to the gen-
eration of redundant frames can be as low as 60%, while it
can reach 200% for TFLR techniques.

The described technique does not require to generate
redundant layouts and therefore does not require to find
identical subsets of the FPGA device for hosting them. The
technique is therefore applicable to a greater deal of designs,
with respect to the TFLR of the prior art.

The proposed solution allows the designer to avoid the
usage of third-party layout tools and to simplify the design
flow, which is not possible with TFLR of the prior art.

In the proposed approach configuration redundancy and
modular redundancy are completely decoupled, therefore
the power consumption associated to redundant modules is
avoided.

The proposed solution is applicable to multiple FPGA
devices and families, including latest generation devices,
provided they offer an interface for accessing the configu-
ration.

When coupled to dedicated scrubbers, this solution per-
mits to correct single and multiple bit upsets and makes it
possible to reduce the increment in power consumption
related to the accumulation of configuration upsets.

Moreover, this method is compatible by design with
n-modular redundancy (also with n different from 3) and it
could be extended for changing the number of redundant
copies and the pertaining voting logic at run-time, if needed.

The redundant configuration can be scrubbed during
operation by voting the configuration frames as described in
R. Giordano et al., “Redundant-Configuration Scrubbing of
SRAM-based FPGAs”, IEEE Trans. Nucl. Sci. vol. 64, no.
9, September 2017. doi: 10.1109/TNS.2017.2730960.

In fact, the cited document shows how to exploit con-
figuration redundancy to correct single and multiple bit
upsets and it makes it possible to reduce the increase in
power consumption related to the accumulation of configu-
ration upsets.

The present description has tackled some of the possible
variants, but it will be apparent to the man skilled in the art
that other embodiments may also be implemented, wherein
some elements may be replaced with other technically
equivalent elements. The present invention is not therefore
limited to the explanatory examples described herein, but
may be subject to many modifications, improvements or
replacements of equivalent parts and elements without
departing from the basic inventive idea, as set out in the
following claims.

The invention claimed is:

1. A method for generating a redundant configuration in
an FPGA device, the FPGA device being connected to a
power supply that provides required supply voltages for
proper operation of the FPGA device, the FPGA device
comprising a design and a Configuration Access Port (CAP),
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the method being operated by a replication controller, the
method comprising the steps of:

identifying sets of programmed and empty configuration
memory frames of the FPGA device pertaining to the
design,

configuring the FPGA device with configuration data for
implementing a functionality of the design,

measuring a first power consumption of the configured
FPGA device,

writing a copy of the configuration data from at least some
subsets of the set of programmed frames into at least
some subsets of the set of empty frames,

(a) verifying whether the copy is correct by comparing the
configuration data read back from the at least some
subsets of the set of empty frames against the configu-
ration data read from the at least some subsets of the set
of programmed frames,

(b) running a functional test on the design in order to
verify if the functionality of the FPGA device is still
correct after the step of writing the copy,

(c) measuring a second power consumption of the FPGA
device after the step of writing the copy, and veritying
whether a variation between the first power consump-
tion and the second power consumption of the FPGA
device complies with predefined criteria, and

restarting the method from the beginning choosing other
subsets of the set of empty frames of the configuration
memory of the FPGA device for hosting the configu-
ration data from the at least some subsets of the set of
programmed frames if any of the following conditions
is met:

the copy, verified at step a), is not correct; or,

the functionality of the design, verified at step b), is not
correct; or,

the variation of the power consumption, verified at step c),
does not comply with the predefined criteria.

2. The method according to claim 1, further comprising
analyzing the configuration data pertaining to the design to
identify each sequence of frames at least in a subset of the
set of programed frames, wherein for each frame of each
identified sequence of the set of programmed frames, the
replication controller, by means of signals, accesses the
Configuration Access Port (CAP) to copy the configuration
data from a source frame address (SRC) to a destination
frame address (DST).

3. The method according to claim 2, wherein the step of
identifying comprises identifying each sequence of frames at
least in a subset of the set of programmed frames, wherein
for each frame of each identified sequence of the set of
programmed frames, the replication controller, by means of
signals, accesses the Configuration Access Port (CAP) to
copy a subset of the frame configuration data from a source
frame address (SRC) to a destination frame address (DST).

4. The method according to claim 2, wherein the step of
identifying comprises identifying each sequence of frames at
least in a subset of the set of programmed frames, wherein
for each identified sequence of the set of programmed
frames, the replication controller, by means of signals
accesses the Configuration Access Port (CAP) to copy a part
of'the sequence consisting of a plurality of frames starting at
a source frame address (SRC) to a homologous plurality of
frames starting at a destination frame address (DST).

5. The method according to claim 2, comprising the steps
of:

after the step of writing the copy, reading back by means
of the replication controller the configuration data from
the Configuration Access Port (CAP), and
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comparing the configuration data with the configuration
data read back by the replication controller, and

verifying if the configuration data matches with the con-
figuration data read back by the replication controller,
in positive case the verification step (a) is successful,
otherwise the verification step (a) is not successful.

6. The method according to claim 2, wherein the verifi-
cation step (b) is performed by comparing the actual output
signals of the design with the expected ones, and verifying
that the redundancy generation process has not corrupted the
functionality of the design.

7. The method according to claim 2, wherein the verifi-
cation step (b) is performed by means of a built-in self-test,
a mechanism that permits to the design to check its own
functionality and output a passed/failed signal to the repli-
cation controller.

8. The method according to claim 1, comprising the steps
of:

measuring the currents drawn by the FPGA device on its

power domains, before the step of writing the copy
(Ii(SRC)), and after the step of writing the copy (I'i
(SRC)), where i=1, . .. ;N and N is the number of power
domains of the FPGA device,

evaluating the drawn current differences Ili(SRC)-I'i

(SRO)I, and

comparing the drawn current differences to pre-defined

threshold values (AIthi(SRC))

wherein, the verification step (c) is successful if

Ti(SRC)-I'i(SRC)|<Althi(SRC)

fori=1,... N.

9. The method according to claim 8, wherein said pre-
defined threshold values (Althi(SRC)) are computed for each
frame at least in a subset of the set of programmed frames
to be copied in the step of writing the copy as a function of
a pertaining source frame address (SRC).

10. The method according to claim 9, comprising:

taking into account time evolution of the currents at the

power domains after the step of writing the copy as a
function of the source frame address (Ii(f)) and the time
evolution of the currents during the initial configuration
as a function of the frame address (10i(f)) of the design
where =0, . . . ,SRC varies over all the copied frame
source addresses,

considering the time evolution of the currents as vectors

of a 12 sequence space,

wherein, the verification step (c) is successful if

M

o Joi()2<Ki

fori=1,..., N,

where N is the number of power domains comprised in the
considered FPGA, Ki are N real numbers, O is an
operator of the 12®12 space, the symbol & denotes the
tensor product, ||O(Li(f), 10i(f))|| is the norm of the
vector O(Ti(f), 10i(f)) in the 12&12 space.

11. The method according to claim 1, wherein the method

further comprises the steps of:

setting a source frame address (SRC) equal to an address
of a programmed frame to be copied and a destination
frame address (DST) equal to the address of an empty
frame,

measuring an absorbed current on FPGA power domains
before a next step of writing the copy of the configu-
ration data [i(SRC), where i=1, . . ., N, and N indicates
the number of power domains comprised in the con-
sidered FPGA device,

@
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creating a backup copy of the configuration data at the
destination address (DST) and then writing a copy of
configuration data from the source address (SRC) to the
destination address (DST),

reading back the configuration data written in the previous
step at the destination address (DST),

comparing the configuration data read back at the previ-
ous step with the configuration data written at the step
of writing the copy to verify whether the copy is
correct, if the copy is correct, the absorbed currents at
the FPGA power domains, are measured, otherwise the
destination address (DST) is changed to another empty
frame address,

verifying whether the verification steps (b) and (c) are
successful:

in negative case the frame at the destination address
(DST) is restored to its configuration backed up before
the step of writing the copy, the destination address
(DST) is changed to another empty frame address and
the method returns to the measuring step,

in positive case it is verified whether all the frames of the
sequence have been processed, and in positive case the
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method goes to the next frame sequence, and in nega-
tive case the method goes back to processing the next
frame in the sequence of frames.
12. The method according to claim 1, wherein a genera-

tion of redundant configuration data can be performed

during an operation of the design in order to dynamically
change a number of redundant copies of each identified
sequence of the subsets of the set of programmed frames.
13. A system comprising:
an FPGA device connected to a power supply that pro-
vides required supply voltages for proper operation of
the FPGA device, wherein the FPGA device comprises:
a replication controller,
a design,
a Configuration Access Port (CAP), and
a sub-system for measuring a current for each FPGA
power domain,
wherein the replication controller is configured for
executing the method according to claim 1.
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