
How Can Chemometrics Support the Development of Point of Need
Devices?
The necessity to establish novel solutions for decentralized monitoring is attracting attention in all
fields of analytical chemistry, i.e., clinical, pharmaceutical, environmental, agri-food. The research
around the terms “point-of-need”, “point-of-care”, “lab-on-chip”, “biosensor”, “microfluidics”, etc.
is/has been always aimed at the possibility to produce easy-to-use and fast-response devices to be
used by nonspecialists. However, the routes to produce the optimal device might be time-consuming
and costly. In this Feature, we would like to highlight the role of chemometric-based approaches that
are useful in the conceptualization, production, and data analysis in developing reliable portable
devices and also decrease the amount of experiments (thus, costs) at the same time. Readers will be
provided a concise overview regarding the most employed chemometric tools used for target
identification, design of experiments, data analysis, and digitalization of results applied to the
development of diverse portable analytical platforms. This Feature provides a tutorial perspective
regarding all the major methods and applications that have been currently developed. In particular,
the presence of a concise and informative table assists analytical chemists in utilizing the right
chemometrics-based tool depending on the architectures and transduction.
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■ DECENTRALIZED ANALYTICAL CHEMISTRY

The role of analytical chemistry to provide facile and affordable
solutions for the major fields of action, namely, clinical,
pharmaceutical, environmental, and agri-food, is continuously
facing challenges.1,2 The research and the economic efforts,
along with the development of innovative and breakthrough
point-of-need tools (including point-of-care and lab-on-chip
devices), represents a hot topic in the analytical sciences.
Although few of these efforts have been capable of generating
marketable solutions, the glucose biosensor for diabetic
patients and the lateral flow immunoassay strip for pregnancy
tests still roughly encompasses the total market. Public
authorities, nonprofit foundations, and private companies,
e.g., EU Commission, NIH, Bill and Melinda Gates, Wellcome
Trust, AIRC, Roche, Samsung, Google, etc., are committed to
funding researchers who aim to enable nonspecialized
customers and citizens, worldwide, to be actively involved in

monitoring analytes. Devices to improve self-healthcare
(diagnostics and personalized treatments), tools for evaluating
environmental pollution and the effectiveness of remediation,
and portable solutions to improve crop productivity while
adapting to the effects of climate change are only a few of the
contexts where analytical chemistry plays a leading role.3−5

The COVID-19 pandemic is only the last example that
highlights the necessity of user-friendly, rapid, and affordable
devices for the use of nonspecialists, as already established by
the WHO with the ASSURED criteria.6,7 In addition to this,
the obvious limitations existing in developing/remote
countries, in the frame of the 2030 Agenda for Sustainable
Development (UN), represent a clear objective to be extended
within a multidisciplinary vision.8 The research around the
various architectures and principles of analytical methods, e.g.,
electrochemistry, colorimetry, fluorimetry, spectrophotometry,
spectrometry, chromatography, has been merged to other
disciplines such as biology, biochemistry, organic chemistry,
material science, engineering, and microfabrication, with the
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aim to reduce tasks for the end-user, to improve the reliability
and (possibly) to reduce costs (e.g., the use of eco-friendly
materials like paper-based substrates,9−11 the synthesis of
biomimetic nanomaterials,12,13 the rational design of recog-
nition probes (aptamers), the multiplexing approach, micro-
fluidics for lowering sample treatment/chemicals use/waste
management.)14−16 Among all the aforementioned objectives,
a common feature is recognized: making analytical processes
more convenient in terms of (i) fabrication (use of synthetic
materials instead of animal sources, e.g., oligonucleotide
aptamers vs antibodies), (ii) application (in situ use, e.g.,
point-of-care vs laboratory-bounded), (iii) environment
(reduction of waste production, e.g., paper vs plastic), (iv)
social impact (improving citizen participation, e.g., non-
specialists vs skilled personnel), and (v) economics (limiting
the use of prime matters/maintenance, e.g., microfluidics vs
bulky/expensive approaches). However, the path from
conceptualization to market, through design and data analysis,
still appears dependent on a univariate paradigm.17 The choice
of a target, optimization of a sensor, analysis of a signal, noise
discrimination, and evaluation of experimental parameters, e.g.,
stability, reproducibility, shelf life, are mainly derived from
linear correlation. For instance, the amount of an enzyme to
develop a biosensor is optimized by assuming other
experimental parameters are irrelevant and/or the presence
of interfering species in complex matrixes might limit real
application. Although this approach works in many cases, the
adoption of statistical methods to understand the additive
effect of multiple species, to evaluate the correlation of
experimental variables on signal output, and to discriminate/
classify multitargets simultaneously, represent a useful
opportunity for moving toward a multivariate perspective.18

Plenty of information can be extracted from data if more than
one variable is considered at the same time: the understanding
of how more inputs correlate with each other and affect the
output can potentially improve both the analytical perform-
ances and the cost of portable devices.19 The aim of this
Feature is to highlight the use of chemometrics for the
development of portable analytical devices, with a holistic
description. Although other content on chemometrics applied
to portable devices has been reported in the literature,19−21

some novel aspects are included in this Feature: (1) the
perspective is extended to aspects that are often not addressed,
such as target identification and digitalization, and (2) the
reported examples are focused on diverse disciplines around
the world of portable devices, microfluidics, selective
biosensors, nonspecific array, optical readouts, etc. All the
steps from bench to market, namely, target identification,
device optimization, signal treatment and data digitalization,
can benefit from the adoption of chemometrics. Readers
working in the field of point-of-needs would be able to
consider the use of novel routes for enhancing their research.
As reported in the preface of the book “Chemometrics in
Electroanalysis”,21 Prof. Scholtz used the following words:
“Still, only a few electrochemists and electroanalysts make use of it,
probably because their attention is completely absorbed by the
purely electrochemical problems, leaving not much time to study
chemometrics.” This Feature is intended for those operating
within the field of point-of-need devices that still do not
consider the use of chemometrics to improve their outputs.
Light theoretical descriptions are combined with practical
evidence to support the realization of novel analytical tools.

■ CHEMOMETRICS AT A GLANCE

Chemometrics was defined for the first time by a young
assistant professor writing a grant application as “the art of
extracting chemically relevant information from data produced
in chemical experiments”.22 It was 1972, and the professor was
Svante Wold (professor of organic chemistry at Umeå
University, Sweden), today frequently remembered as the
“father of chemometrics”. A few years later, together with his
colleague Bruce Kowalski (professor of analytical chemistry,
University of Washington, Seattle, WA), he founded the
International Chemometrics Society. As clearly explained by
Wold himself in different occasions, the main goal of this new
discipline was to get chemically relevant information out of
measured chemical data (e.g., design of experiment, DoE,
multivariate analysis),23−25 and to represent and display this
information. These complementary tasks clearly demanded
knowledge of statistics and applied mathematics, but the
approach has always been the fit-for-use: “We must remain
chemists and adapt statistics to chemistry instead of vice versa. And
chemometrics must continue to be motivated by chemical problem
solving, not by method development.”22 From the 70s up to 90s,
the development of computerized instruments (especially in
analytical and physical-organic chemistry) made data acquis-
ition easier and cheaper. In those years, chemometrics became
established and a big effort was put on designing novel
algorithms for data information extraction and optimization,
analogous to what biologists, psychologists, and economists
have done with biometrics, psychometrics, and econometrics,
respectively.26−28 In the late 90s, the application of computer
and informatics technology in chemistry led to the coining of
the counterpart of bioinformatics in chemistry: chemo-
informatics.29,30 Chemoinformatics is the use of informatics
methods to solve chemical problems,30,31 thus including
chemical database systems and structures, computer assisted
structural elucidation, computer-assisted drug and chemical
synthesis design, and molecular modeling.29,32,33 Mainly born
as a tool to support analytical and physical-chemical data
analysis, today chemometrics is applied in both academia and
industry to broader areas of analytical chemistry, process
optimization, drug design, biomarker discovery, material
design, food science, digital and signal processing, image
analysis, and omics sciences with the potential to revolutionize
the very intellectual roots of problem solving.33−35 The first big
challenge for chemometrics is the reduction of the amount of
experiments. Reasons for reducing the number of experiments
are trivial: experiments are expensive, time-consuming, and
sometimes pose ethical issues (e.g., animal experimentation).
Minimizing the number of experiments, without compromising
the information content therein, is arguably the main aim of a
scientist. To this aim, we can use experimental design, also
known as Design of Experiment (DoE): a mathematical
framework for planning experiments by changing all involved
variables simultaneously, thus extracting the maximum amount
of information in the fewest number of experiments. Different
mathematical strategies exist and have been extensively
described elsewhere.36−40 However, rather than the difficulty
stemming from mathematical aspects, the main stumbling
block is the mental attitude required to switch from changing
from the one-variable-at-a-time strategy (OVAT) to DoE,
which is still underrepresented in the scientific community.24

When optimizing a biosensor, many variables must be taken
into account: the pH, the concentration of the target analyte,
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temperature, time of reaction, and other parameters depending
on the working principle. DoE, by means of, e.g., factorial
designs40 or D-optimal design methodologies,41 allows one to
identify the minimum essential experiments needed to span all
sources of the variation and suggests that resulting
experimental data will identify the optimal conditions, the
variables that most influence the results, and those that do not.
In addition to DoE, chemometrics tools and, more generally,
statistical tools of data-mining, are commonly used to extract
hidden information and enlightening relationships among data.
In the simplest case, data come or can be summarized in a
block of data X, a m × n matrix in which for each of the m
samples, n experimental variables, or molecular descriptors are
reported. Starting from the assumption that the n variables
frequently are more than the m samples, they are likely to be
correlated, and they can be missing in some samples,
multivariate analysis25 (MVA) is the elected way to extract
information through data analysis.42 We can distinguish two
approaches for the application of MVA: unsupervised and
supervised. In the unsupervised setting, the goal is to explore
the variance in a single block of data X. For that, a matrix
factorization can be performed without any a priori knowledge
(e.g., no information about the class label of data, the number
of classes, etc.), so that natural patterns can be elucidated. This
approach is ideal to explore data in an unbiased fashion,
especially in an early phase of the investigation, when no or
little information on variable or analytes involved in the
process is available. Among unsupervised multivariate analysis
tools, principal component analysis (PCA) is the workhorse in
chemometrics. PCA is used to reduce the complexity and the
dimensionality of a set of data contained in a matrix by
rationalizing the variance and providing an overview of all
observations or samples in the data table.43 The idea around
PCA is to reduce the dimensionality of a data set consisting of
a large number of variables, by obtaining novel variables
(principal components) that are obtained by a combination of
former variables: it allows one to retain as much as possible the
variability present in the data set and to reduce noise and
redundancy. By inspecting a PCA model, groupings, trends,
and outliers can also be found. However, in some cases we do
have an a priori additional knowledge of the samples, for
example, concentration, dose, age, gender. In this scenario, we
can use supervised models to explore the variance in a block of
data X that allows the prediction of a response block Y, that is,
our additional knowledge. The latter may contain quantitative
data, which puts one in the regression domain, or categorical
data (i.e., healthy versus disease samples), which puts one in
the classification domain. This method helps shift the question
from “What is in there (X)?” to either “What is its relation to Y
(quantitative)?” or “What is the difference between the classes
in Y (categorical)?”.43 As a result, providing that no
overfitting44 is occurring (i.e., The model we are building to
rationalize relationships among observations is too closely or
purely fitting the training data with poor predictive ability on
novel data), supervised methods can point to the variables that
lead to the desired quantization or classification. Popular
supervised multivariate analysis tools are partial least squares
regression45 (PLS, e.g., age, dose concentration) and its
extension to classification problems, known as PLS discrim-
inant analysis46 (PLS-DA, e.g., control vs treated, healthy vs
disease). Sparse and other variants of those techniques also
exist.47−49 When there is an high imbalance between the
number of training samples in each class and/or where only

one category is of interest (e.g., traceability problems, food
authentication, and in the context of personalized medicine)
class modeling tools are used instead.50 Instead of looking for
differences among samples belonging to different categories,
class modeling techniques focus on the dis/similarities
between the samples belonging to a particular category.50,51

In the last decades, novel data mining techniques have been
developed to identify relationships and trends in large,
multidimensional big data sets as might be obtained from
modern high-throughput screening (HTS) or untargeted
omics analyses, namely, substructural analysis,52 discriminant
analysis,53 neural networks,54−56 decision trees,57,58 support
vector machine,59 and kernel algorithms.60 However, it is
almost impossible to define the best modeling technique a
priori: an initial benchmark study is necessary to determine the
most appropriate one. Despite the mathematic complexity
added to new algorithms, the final goal is still the same: to
provide interpretable, thus useful, models with adequate
predictive ability.

■ TARGET IDENTIFICATION
Point-of-need devices are built to sensitively, accurately, and
selectively detect an analyte (or group of analytes) of interest.
A question arises: how was that particular analyte (or group of
analytes) identified as most related to a specific pathophysio-
logical condition we aim to monitor? The process of target
analyte identification or, more popularly nowadays, of
biomarker discovery, deserves a dedicated research effort
which can be speeded up by chemometrics. We can distinguish
two possible approaches for target identification: hypothesis-
based and discovery-based, Figure 1. The hypothesis-based

approach is grounded on the mechanistic understanding of
biochemical processes behind the pathophysiological condition
of interest: understanding that diabetes mellitus increases
blood glucose levels led to the identification of glycosylated
hemoglobin as an ideal biomarker for diagnosis of diabetes.61,62

The same happens for pregnancy tests.63 Discovery-based

Figure 1. (A) Hypothesis-based approach focused on cystic fibrosis
(CF). People affected by CF have CTFR (membrane protein)
malfunctioning (ii), leading to chloride ions accumulation within cells.
Sweat chloride detection is used to diagnose CF. (B) Discovery-based
approach with the use of PCA: (i) score plot that displays variability
among samples, (ii) loading plot that displays contribution of original
variables (X, Y, Z, three possible biomarkers), and (iii) biplot that
visualizes the correlation among samples and original variables.

Analytical Chemistry pubs.acs.org/ac Feature

https://dx.doi.org/10.1021/acs.analchem.0c04151
Anal. Chem. 2021, 93, 2713−2722

2715

https://pubs.acs.org/doi/10.1021/acs.analchem.0c04151?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c04151?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c04151?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c04151?fig=fig1&ref=pdf
pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c04151?ref=pdf


approaches, on the other hand, aim to identify statistically
significant changes in molecular species associated with the
pathophysiological state of interest. For instance, the breast
and ovarian cancer-associated gene BRCA1 was identified by
positional cloning of a region on chromosome 17 that is
frequently deleted in breast cancer.64

Today, in the high-throughput omics era, where generating
data is arguably easier and faster than interpreting results, the
discovery-based approach is predominant. Especially in the
early stages of an investigation, appropriately sized data sets
undergo statistical analysis to data reduction and classification
in a purely data-driven fashion. In such a multivariable domain,
multivariate analysis is the natural choice to identify a panel of
complementary target analytes that can effectively discriminate
the samples under investigation better than a single one (i.e.,
univariate approach).65 Taking into account the correlation
structure of the data and the synergies and antagonisms
plausibly existing among the potential analytes, the multivariate
approach outperforms the univariate one in sensitivity,
specificity, and reliability and were successfully used for
diagnostics and prognostic biomarkers discovery.66 As an
example, one of the few Food and Drug Administration (FDA)
approved biomarkers62 is the one for ovarian cancer (Ova1),
discovered by artificial neural network (ANN) modeling of the
plasma proteome of women with ovarian cancer compared to
women with benign gynecological diseases.67 As a result, a
panel of five biomarkers was found to outperform the
previously known ovarian cancer biomarker, CA125,68 in the
ability to discriminate between invasive ovarian cancer and
benign lesions.62,69 When the dimension of the cohorts is
limited or the interest is focused on the phenomenological
characterization of the disease,51 multivariate biomarker
discovery is achieved through the building of exploratory
models. In this case, PCA and hierarchical cluster analysis
(HCA) are predominantly used to reduce the dimensionality
of the data and elucidating a natural pattern. Recently, a Sparse
Mean approach was proposed as most sensitive and best able
to identify the specifically perturbed variables in PCA-based
methods.70 When multiple sources of variability are present,
PCA may suffer from an interpretational problem and other
strategies can be used, e.g., ANOVA simultaneous component
analysis, (ASCA),71 and ANOVA principal component analysis
(ANOVA-PCA).72 However, such unsupervised, exploratory
methods may not be the most straightforward choice for target
identification, as they are not designed to specifically find
differences among groups, while target analytes and biomarkers
are supposed to be unique molecular signature of a certain
group.73 Among supervised classification methods, PLS-DA,
support-vector machine, random forest, and artificial neural
networks are used to force the method to provide the desired
classification as well as to predict the classification of new
samples. When a statistically significant discrimination among
classes (e.g., disease and healthy) is found, it means that a
mathematical relationship between the data and the categorical
variable y (e.g., the class) was established and therefore it can
be used to predict the class of novel samples. As anticipated,
supervised methods suffer from the risk of overfitting, which
arises when the fitting of training data is so well that both the
predictive features of the data and noise are incorporated into
the model, which will imply poor model performance in the
prediction stage. In order to verify that the model holds a true
biochemical meaning and avoid overfitting, we can focus on
variable selection74 and validation to verify that the predictive

features identified are not noise and to test the predictive
ability of the model beyond the training data, respectively.44,75

All in all, even if supervised methods are preferred in the target
identification step, it is good practice to start the analysis with
unsupervised methods: if the desired classification is already
visible in a PCA scores plot, for instance, the supervised
algorithms can be applied with less probability of overfitting. A
discovery-based approach can then evolve into a hypothesis-
based approach, since it is not sufficient to prove that an
analyte can discriminate two or more groups of samples: a
biochemical mechanistic explanation is needed to support the
discovery. Indeed, one of the bottlenecks of a discovery-based,
data-driven target identification is to validate the robustness
and to prove clinical applicability of the proposed markers,
thus to prove interpretability of the model. In this context, it is
crucial to combine the data-driven approach with expert
knowledge throughout the entire process of target identi-
fication: from sample sizing to collection, from data modeling
to result interpretation and validation.

■ DESIGN AND OPTIMIZATION OF THE DEVICE
As written above, a common way to develop point of need
devices is represented by a single variable optimization. This
approach appears inconvenient by two perspectives: number of
experiments and reliability of optimization.76 To optimize a
device composed of N variables, L levels, and with a number of
R repetitions, N × L × R experiments are required: for
instance, 75 experiments are needed to optimize (variable-by-
variable) 5 variables with 5 levels, repeated 3 times. Even if the
OVAT approach might work in some cases, the number of
experiments increases quickly, along with time and cost.77 In
addition, the presence of interaction among variables is not
taken into account at all. The lack of information related to
variable correlation might lead to a “falsely” optimized final
device, thus negatively weighing on the performance.
Generally, if the interactions among variables are high, then
a great difference is observed between the optimizations
obtained by univariate and multivariate approaches. To
overcome this limitation, DoE allows to observe all the
variables simultaneously, by adopting statistical multivariate
methods that have the goal of lowering resources and
improving outcomes.78,79 However, even if the multivariate
vision contains the above-discussed advantages, a clarification
should be given: if N variables are considered, and each of
them is investigated at L levels, all the possible combinations
are LN, e.g., 2 variables with 10 values lead to 102 = 100
experiments, namely, full factorial. In this case, the multivariate
approach to define the correlation of just two variables
produces a high number of experiments. The adoption of DoE
might help analytical chemists understanding the effect of
variables on response. Designs are obtained by combining the
variables through well-defined rules. If the aim is to evaluate
the effect of variables on the response, especially when a
process is unknown, a Plackett−Burman (P−B) design can be
used for screening experiments:80 it is known as a screening
design, and it is intended as linear combinations of two levels
of each variable, i.e., the upper level is signed as “+” and the
lower level is signed as “−”. This is a very economic approach,
for screening the contribution of a high number of variables
(N) using a number of experiments equal to N + 1 that is a
multiple of 4, e.g., 11 variables can be screened using 12
experiments (Figure 2A). However, it is very important to
highlight that this approach (1) is useful to individuate the
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most relevant variables on response to be further investigated,
(2) considers all the interactions negligible, and (3) is effective
for linear data behavior.
If the contribution of a factor is relevant, this should not be

inserted in this DoE, while also existing interactions should be
considered while performing a P−B design. When data are not
linear, e.g., quadratic behavior is present, central composite,
and Box−Behnken experimental designs can be successfully
used for obtaining response surfaces (the relation between
different experimental variables and the responses) to define an
optimum. The central composite design (CCD) is adopted on
a lower number of factors (generally 2−5) with respect to the
P−B design. CCD allows one to estimate the constants, the
linear terms, the interactions between variables, and the
quadratic terms, according to the selected model (usually, the
interactions among more than two terms are not taken into
account).83 It should be thought as a cube of objects (as for
factorial design) plus a second set of objects distributed in the
form of a star which goes beyond the limits of the cube to
provide that estimation of curvature (Figure 2B). In this case
the number of experiments (N) is defined by the following
equation: N = 2F + 2F + C, where F is the number of factors
and C is the number of central points (the points where all
factors are set up at their center value). Additionally, CCD
permits one to reuse previous factorial experiments (block-
ing):84 if the experiments are too long, one can decide to carry
out two blocks of experiments, i.e., cube points, star points.
Alternatively, the Box−Behnken design (BBD) represents a
valuable choice to the CCD:85 BBD tries to minimize the
effects of extreme values like these provided by the star points
in CCD. For this purpose, a cube and some central points are
still used but, unlike CCD, samples are not positioned in the
vertices but in the middle of the edges, and star samples are
not used (Figure 2C). BBD needs less experiments than
analogous CCD: BBD is very useful when extreme experiments
are undesired, and “blocking” is generally not available. The
number of experiments required for BBD of F factors and C
central points is given by the following formula N = 2F × (F −
1) + C. This design avoids combination for which all factors
are simultaneously at their highest or lowest levels, thus

avoiding experiments performed under extreme conditions.
For instance, it is commonly utilized to optimize parameters
while developing portable colorimetric device that are built on
paper substrate, i.e., microfluidic paper-based devices:86 the
optimization of the flow geometry and the amount of
deposited reagents on the paper-based strips can be finely
optimized, resulting in performance boost and time/cost
savings (only 73 experiments were used) while analyzing uric
acid in human urine. These multivariate methods, whereby all
factors are varied simultaneously, represent a good starting
point for beginners. The obtained data can be conveniently
analyzed in combination with the analysis of variance
(ANOVA) to understand the variation induced by the different
variables and to obtain the optimal compromise between the
number of experiments and chemical meaning.87

■ DATA ANALYSIS
Let us think about a single measurement like detecting blood
glucose with a portable strip: the value of produced current is
correlated to the glucose concentration within the blood
droplet. This is an example when using univariate methods can
be enough: the meaning of the variable (i.e., current) is the
same among different samples.88 Instead, a more complex
example is highlighted when data are composed by information
on the pH, target concentration, and color of the sample, as in
the case of a microfluidic device.89 In this case, data are
heterogeneous with diverse magnitude, scale, and meaning: to
obtain information from multinature data, a multivariate
approach is essential. It should be clear that specific conditions
like those relative to environmental pollution, health disease,
and food authentication are often the results of multivariables,
thus the availability of large sets of data needs to be extracted
and interpreted to get information.90 PCA is very useful for
this. It is largely used for pattern recognition of data set
acquired with multiarray systems such as the electronic nose
and tongue.91−93 As reported in Figure 3A, PCA combined to
a lab-on-chip device composed of sensitized beads for
recognition of interleukin-1β (IL-1β), C-reactive protein
(CRP), and metalloproteinase-8 (MMP-8) allowed one to
discriminate between periodontally healthy and unhealthy
patients and increase the diagnostic value of IL-1β and MMP-8
biomarkers for periodontitis.94 In addition, a pioneering paper
demonstrated that it is possible to classifying wine samples
from different regions, through the use of electrochemical
capillary electrophoresis on a chip.97 However, the PCA’s
exploratory nature is not enough to address specific issues:
perhaps, it is useful within food science when a qualitative
answer is required, but it fails to provide models for
quantitative prediction. To overcome this, supervised chemo-
metric approaches can be used. PLS is largely adopted for
multivariate regression, for defining mathematical relationships
among variables and providing quantitative predictions.98,99 As
shown in Figure 3B, PLS has been coupled to a mobile device
for interpreting the thermal stability of raw milk by means of
the alizarol test. The smartphone app, namely, “PhotoMetrix
Pro”, is freely available in the Google Play Store. PLS allowed a
satisfactory agreement when compared with the reference
method (potentiometric).95

PLS has been successfully applied to a microfluidic system
with a 1H NMR-based metabolomic footprint, named as
“metabolomics-on-a-chip”, to identify metabolomic markers100

and to develop a small-molecule toxicity-oriented database.
PLS demonstrated to reduce the coefficient of variation for the

Figure 2. (A) P−B screening design algorithm for 11 factors, (B) (i)
representation of a CCD on three variables and (ii) a response surface
for microfluidic platform optimization. Reproduced with permission
from ref 81. Copyright 2017 Springer-Verlag Berlin Heidelberg. (C)
(i) BBD scheme and (ii) a response surface for pencil-based
electrochemical device for metal ions. Reproduced with permission
from ref 82. Copyright 2015 Elsevier B.V.
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determination of propionaldehyde in wine from 33 to 15%,
using an electrochemical biosensor.101 The combination of
PLS-DA with a microfluidic paper-based device, allowed to
overcome the limitation of univariate approaches, that were
not able to simultaneously detect acetate, cyanide, fluoride, and
phosphate ions in aqueous solution.102 Instead, a common tool
adopted for nonlinear (but also linear) response is represented
by the artificial neural networks (ANNs): they are algorithms
simulating the biological neuronal system. Differently from
previous chemometrics tools, ANNs do not require a priori
knowledge in the model.103 They are very useful both for data
exploration and qualitative/quantitative prediction for chem-
ical sensors whose answer is the result of a series of complex
interacting phenomena. As shown in Figure 3C, ANN has been
used in combination with an automated flow screen-printed
AChE-inhibition biosensor for the detection of chlorpyriphos-
oxon and malaoxon. The final configuration with two neurons
as the input layer (use of two enzymes), 10 neurons as the
hidden layer (mixtures of pesticides), and 2 neurons as the
output layer (amount of pesticides) allowed one to obtain
good quantification of mixtures in milk.96 The use of ANN also
allowed one to consider the metallic interactions among four
metals, e.g., Zn, Cd, Pb, and Cu, and simultaneously detect
them in raw propolis samples through the use of a pencil-based
electrochemical sensor.82 However, users should be aware of
the previously discussed overfitting issue that affects those
techniques: that is the reason why validation with a relevant
number of objects is highly required. In Table 1, simple cases
for users interested in approaching chemometrics tools are
reported.

Highly multivariate data coming from designed experiments,
where both the variables (x block) and responses (y block) are
multivariate, frequently in a metabolomics study, might be
modeled by multilevel methods, including the above-
mentioned ASCA71 and ANOVA-PCA.72 In addition,
ANOVA-target projection (ANOVA-TP)104 is well suited for
testing the statistical significance of the studied effects and
straightforward visualization and accurate estimation of
between- and within-class variance, and repeated measures
ANOVA (rMANOVA)105 is applicable to clinical and
personalized medicine investigations. In the context of
personalized medicine, the class-modeling approach as
Statistical Health Monitoring (SHM) can be used as for
metabolomics studies: the metabolic profile of an individual is
compared with respect to that of healthy people in a
multivariate manner to detect abnormal metabolite/pattern
concentrations.106

■ DIGITALIZATION
When thinking about the “next 20 years” scenario, we can
foresee with confidence that advances in technologies,
computerization, and miniaturization are likely to increase.
The advent of the internet of things (IoT) and of innovative
strategies based on information and communication tech-

Figure 3. (A) Score plot of PCA demonstrates the different behavior
among (circle) healthy patients and (square) periodontal-affected
ones. Reproduced with permission from ref 94. Copyright 2007 John
Wiley and Sons. (B) PLS correlations between the predicted and
measured saffron samples with a portable electronic nose made with
10 metal oxide sensors. Reproduced with permission from ref 95.
Copyright 2018 Springer Science Business Media, LLC, part of
Springer Nature. (C) (i) ANN network constructed based on a set of
data which is divided in training and external tests with different
concentrations of AChE mixtures, i.e., chlorpyriphos-oxon (CPO)
and malaoxon (MO), (ii) correlation graph between expected and
target concentrations of MO in external test with milk. Reproduced
with permission from ref 96. Copyright 2012 Elsevier B.V.

Table 1. Chemometrics Tools Applied to Portable Devices
Design and Optimization

tool type of device chemometrics remarks ref

CCD PPy/HRP-SPE for
Ochratoxin A

Optimal setup with lowest
experiments

107

CCD Colorimetric μPAD
for glucose

Interactions evaluation, and
1.2% absolute error

81

CCD Inkjet-printed PAD
for isoniazid

Only 46 experiments to
optimize the platform

108

BBD Colorimetric μPAD
for uric acid.

Setup optimization: reagents
and geometry

76

PCA Sensitized beads for
Periodontitis

New biomarkers for
periodontitis

94

PCAHCA Smartphone for
amines

Discrimination of three
amines through color maps

118

PCAANN AuNP-SPE for
Tetracycline,
cefixime

Discrimination of antibiotics
mixture

109

PLS μH NMR for NH3,
DMSO, phenol

Toxicity-oriented
“metabolomic-on-a chip”
database

88

PLS D-SPE for
propionaldehyde

Coefficient of variation from
33 to 15%

89

PLS MIP-optosense for
1−2-naphthylamine

Lowering interferents, no
pretreatment needed

111

PLS Printed tongue for Cd,
Pb, Tl, Bi

Simultaneous detection and
data reduction

116

PLSANN Pencil Electrode for
Zn, Cd, Pb, Cu

Increase the linearity of the
data

93

PLSANN Color array for volatile
N2-based

Inaccurate predictions
minimized

112

ANN Multiarray for Cd, Pb,
Hg

Decrease of complexity of the
input data

113

ANN μEllman assay for
pesticides

Differentiate five different
pesticides in mixture

119

LDA Colorimetric array for
glyphosate

100% discrimination of
herbicide anions

114

PLS-DA FTIR for morphine
and thebaine

“Signature” peaks in the
poppy IR spectra

115

PLS-DA NIR for explosives No handling variability due
to human handling

110

LDA Multifluo array for
chloropropanol

Discriminate four species in
mixture

117
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nologies (ICTs), the development of technologies like
wearables, digital biosensors, smart houses, and smart cities
will make it possible to monitor everyone in real time.120

Specifically referring to science, all areas of research will
become data-intensive, emphasis will shift from data
generation to data analysis, and knowledge of data-mining
techniques will be essential to carry out research, thus bringing
new challenges to researchers.121,122 The combination of
biosensors with IoT and ICTs strategies is also essential to
generate population health data that can be used, for instance,
to predict the outbreak of infectious diseases.123 Gartner
summarizes these concepts in its definition of big data as “high-
volume, high-velocity, and/or high-variety information assets
that demand cost-effective, innovative forms of information
processing that enable enhanced insight, decision making, and
process automation”.124 In this scenario, to quote Gasteiger,
“the application of chemoinformatics is only limited by your own
imagination!”30 Big data techniques, machine learning, signal
theory, hierarchical architecture for the detection of security
incidents in a security information system are the basis for the
entire workflow. In the past 2 decades, the combination of
multivariate techniques with the LASSO (least absolute
shrinkage and selection operator) operator gave rise to the
so-called sparse models, now popular in the chemometric
community.47,125 These methods adapt multivariate techniques
to the huge data dimensionality, generating simple and easier
to interpret models. Indeed, while the common tendency of
data mining tools is to make the analysis as simple as possible
for the end-user, leading in many cases to “black boxes” in
which advanced data interpretation is very limited, chemo-
metrics approaches like the ones mentioned above offer the
unique opportunity of clearly interpreting and visualizing
statistical analysis outcomes, and evaluating its robustness.
This is what makes chemometrics “sexy” for the years to come:
the features of being an already up-to-date tool for solving real
complex problems in an effective and still interpretable thus
user-friendly way. In addition, chemometrics offer the
possibility of integrating and interpreting the complex
multidimensional information provided by different sensors/
devices through data fusion techniques.126−128 Data can be
fused by simple concatenation of different sensor data (namely,
low-level data fusion); by fusing the features extracted from the
original data, e.g., via MVA or features selection strategies
(midlevel); by merging the different model responses only,
after each data set has been modeled independently (high-
level).129,130 When using data fusion approaches, the trade-off
to be found is in enhancing the quantity and the quality of the
information content which can be extracted without including
higher amounts of noise, not predictive information. For
instance, from information provided by wearable sensors, level
data fusion techniques and inference methods are used for
activity recognition for Parkinson’s disease monitoring,131 fall
detection and prediction, to physiological monitoring for early
risk detection and intervention.132,133 Clearly, also new issues
arise: ethical and regulatory issues concerning the require-
ments and specifications of data analysis components, the user,
and in e-Health applications, patient consent, data, and privacy
protection.113 Digital sensors and biometric monitoring should
clearly empower citizens and hold the promise of huge
potential benefits, but in order to fully exploit these devices, a
cultural effort has to be done to inform and gain users’
compliance and co-operation. In the digital and IoT era,
chemometrics will be even closer to the end users in their

everyday life, not only providing a mean to personalized, user-
centered data analysis but also preserving privacy through edge
analytics and understanding why and how their data are
analyzed.

■ CONCLUSIONS
The use of chemometrics tools represent a great resource for
developing novel devices for decentralized analysis: depending
on the analytical necessities and experimental settings, a variety
of statistical-based approaches might extract plenty of useful
information from data (sometimes not taken into account).
The adoption of the mathematical tools behind chemometrics
is reported to be essential for all the steps around portable
devices, starting from conceptualization to final application: in
fact, the research around analytical devices implementation
could benefit from chemometrics through identifying relevant
targets, optimizing architectures, analyzing data, and collecting
information. Chemometrics can make important advances in
developing analytical portable devices. It might facilitate (i) the
discovery of novel targets, e.g., hypothesis-based and discovery-
based approaches, (ii) the optimization of experiments, e.g.,
design of experiments, and (iii) the classification of data and
their processing. In addition, in the digital era, point of needs
will be increasingly connected and personalized: chemometrics
is and will be essential to mine the collected big data, derive
interpretable models for early risk detection and intervention,
and grant privacy and data protection. The aim of the paper is
to offer nonchemometricians starting approaches for develop-
ing portable analytical devices. Although it is mainly focused
on basic chemometric tools, data fusion approaches, and
approaches able to deal with highly multivariate data coming
from designed experiments such as ASCA, APCA, ANOVA-
TP, and rMANOVA should be taken into account for
outcomes from different devices. Chemometrics represents a
multidisciplinary pursuit, incorporating chemical, mathemat-
ical, and computational sciences. The adoption of models to
describe, process, and differentiate data should never be
independent from the chemical perspective, and focus must be
put on chemical interpretability and predictive ability. The
years to come bring a new challenge for chemists: to bridge the
gaps among different disciplines and to find solutions by
embracing different cultures to the same scientific question.
This Feature is a first step in this path.
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Microchem. J. 2020, 157, 104930.
(103) Abbasitabar, F.; Zare-Shahabadi, V.; Shamsipur, M.; Akhond,
M. Sens. Actuators, B 2011, 156, 181−186.
(104) Marini, F.; de Beer, D.; Joubert, E.; Walczak, B. J. Chromatogr.
A 2015, 1405, 94−102.
(105) van Der Leeden, R. Qual. Quant. 1998, 32, 15−29.
(106) Engel, J.; Blanchet, L.; Engelke, U. F.; Wevers, R. A.; Buydens,
L. M. PLoS One 2014, 9, e92452.
(107) Alonso-Lomillo, M. A.; Dominguez-Renedo, O.; Ferreira-
Goncalves, L.; Arcos-Martinez, M. J. Biosens. Bioelectron. 2010, 25,
1333−1337.
(108) Hamedpour, V.; Leardi, R.; Suzuki, K.; Citterio, D. Analyst
2018, 143, 2102−2108.
(109) Asadollahi-Baboli, M.; Mani-Varnosfaderani, A. Measurement
2014, 47, 145−149.
(110) Risoluti, R.; Gregori, A.; Schiavone, S.; Materazzi, S. Anal.
Chem. 2018, 90, 4288−4292.

Analytical Chemistry pubs.acs.org/ac Feature

https://dx.doi.org/10.1021/acs.analchem.0c04151
Anal. Chem. 2021, 93, 2713−2722

2721

http://www.itl.nist.gov/div898/handbook/
pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c04151?ref=pdf


(111) Valero-Navarro, A.; Damiani, P. C.; Fernańdez-Sańchez, J. F.;
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