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The development of tolerance triggered by a sublethal ischemic episode (preconditioning,
PC) involves a complex crosstalk between neurons, astrocytes and microglia, although
the role of the peripheral immune system in this context is largely unexplored. Here, we
report that severe cerebral ischemia caused by transient middle cerebral artery occlusion
(MCAo) in adult male mice elevates blood counts of inflammatory neutrophils and
monocytes, and plasma levels of miRNA-329-5p. These inflammatory responses are
prevented by ischemic PC induced by 15 min MCAo, 72h before the severe insult (1h
MCAo). As compared with sham-operated animals, mice subjected to either ischemic PC,
MCAo or a combination of both (PC+MCAo) display spleen contraction. However, protein
levels of Ym1 (a marker of polarization of myeloid cells towards M2/N2 protective
phenotypes) are elevated only in spleen from the experimental groups PC and
PC+MCAo, but not MCAo. Conversely, Ym1 protein levels only increase in circulating
leukocytes from mice subjected to 1h MCAo, but not in preconditioned animals, which is
coincident with a dramatic elevation of Ym1 expression in the ipsilateral cortex. By
immunofluorescence analysis, we observe that expression of Ym1 occurs in amoeboid-
shaped myeloid cells, mainly representing inflammatory monocytes/macrophages and
neutrophils. As a result of its immune-regulatory functions, ischemic PC prevents elevation
of mRNA levels of the pro-inflammatory cytokine interleukin (IL)-1b in the ipsilateral cortex,
while not affecting IL-10 mRNA increase induced by MCAo. Overall, the elevated anti-
inflammatory/pro-inflammatory ratio observed in the brain of mice pre-exposed to PC is
associated with reduced brain infarct volume and ischemic edema, and with amelioration
of functional outcome. These findings reaffirm the crucial and dualistic role of the innate
immune system in ischemic stroke pathobiology, extending these concepts to the context
of ischemic tolerance and underscoring their relevance for the identification of novel
therapeutic targets for effective stroke treatment.
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INTRODUCTION

Ischemic stroke is a major cause of death and serious long-term
disability worldwide (1). Reperfusion by pharmacological
thrombolysis or mechanical thrombectomy represents the only
acute treatment approved (2–4), highlighting the urgent need for
effective neuroprotective strategies. Interestingly, ischemic stroke
patients who previously suffered a recent transient ischemic
attack show better outcomes compared to those who did not,
suggesting that ischemic tolerance may develop following a brief
cerebral insult (5–10). In fact, ischemic tolerance consists in
endogenous neuroprotective mechanisms that can be triggered
by a non-invasive, sublethal ischemic episode (namely,
preconditioning, PC) that produces resilience to subsequent
severe ischemia (11, 12). The latter involves gene activation
and de novo protein synthesis that reprogram the brain
transcriptional response to ischemia and prompt a complex
and still unresolved protective phenotype (13–15). Mechanisms
of ischemic tolerance include preservation of mitochondrial
function and ionic homeostasis, attenuation of excitotoxic and
inflammatory processes, suppression of cell death pathways,
augmentation of neurotrophic factors and vascular remodelling
(16–20). Ischemic PC was initially thought to be mediated by
adaptive responses triggered almost exclusively in neurons (21–
23). However, more recent evidence has highlighted that innate
immune pathways participate in the development of tolerance
through Toll-like receptors (TLRs), Type I interferon (INF)
signalling and genomic reprogramming of microglia towards
reparative and protective phenotypes (24–27). In fact, in addition
to their detrimental roles, microglia could also exert beneficial
functions in stroke and/or contribute to protection by ischemic
PC, likely through activation of CXCR1 receptor by neuronally-
derived fractalkine (25, 28–31). Thus, current knowledge
highlights that the neuro-immune response to ischemic PC
involves a complex crosstalk between microglia, astrocytes and
neurons (32–34); however, the role of the peripheral immune
system in the establishment of ischemic tolerance is largely
unexplored (35–37). The relevance of the latter concept stems
from the crucial role played by peripheral immune mediators in
the evolution of ischemic brain damage (38, 39) and from the
numerous data demonstrating immune-regulatory mechanisms
shared by diverse (i.e., ischemic, inflammatory/endotoxin,
pharmacological, etc.) conditioning stimuli that might likely
affect responses occurring outside the brain (27, 40–43). For
example, adoptive transfer of monocytes isolated from mice
preconditioned with low-dose lipopolysaccharide (LPS) into
naive mice reduced MCAo-induced brain injury. These
protective monocytes are generated in the spleen and traffic to
the brain and meninges, where they suppress post-ischemic
inflammation and neutrophil influx (41). Thus, the
identification of novel pharmacological targets in the periphery
is rather intriguing, as it offers the possibility to target peripheral
responses to tune the progression of cerebral damage. Therefore,
the major aim of the present work was to characterize the
peripheral innate immune response triggered by ischemic PC
in mice subjected to transient middle cerebral artery
occlusion (MCAo).
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EXPERIMENTAL PROCEDURES

Animals
Experimental procedures were performed on 8-10 weeks old,
C57Bl/6J male mice (Charles River, Calco, Como, Italy), housed
under controlled environmental conditions (i.e., temperature of
22°C, relative humidity of 65% and 12 h light:12 h dark cycle),
with free access to food and water.

The in vivo procedures were performed in mice housed for at
least two weeks upon arrival, following the guidelines of the
Italian Ministry of Health (DL 26/2014), in accordance with the
2010/63/UE European Directive, and the protocols were
approved (n. 975/2017-PR and 701/2020-PR) by the
Committee set by the Ministry of Health at the National
Institute of Health (Rome). The study was realized observing
the ARRIVE guidelines (44) and maximal effort was made to
reduce the number of animals used and their suffering.

Mice were randomly al located to the fol lowing
experimental groups:

1) SHAM: sham surgery 24h before sacrifice;

2) PC: 15-min MCAo followed by 72h of reperfusion;

3) MCAo: 1-h MCAo (preceded by SHAM surgery 72h before)
followed by 24h of reperfusion;

5) PC +MCAo: 15-min MCAo followed, 72h later, by 1-h MCAo
and 24h of reperfusion.

The minimum sample size was evaluated using an a priori
power analysis adjusted to obtain a power of 80% at a
significance level of 0.05 (OpenEpi software 3.01, Open Source
Statistics for Public Health). On the basis of our earlier
experience with the MCAo model, we hypothesized a
difference in ischemic volume between mice subjected to
MCAo and mice exposed to a neuroprotective procedure (i.e.,
ischemic PC) of about 30 mm3 (approximately 30% reduction of
infarct size) and a variability (standard deviation) of 15. This led
to an estimated minimum sample size of 4 animals per
experimental group.

Surgical Procedure for MCAo
Focal cerebral ischemia was produced by proximal occlusion of
the middle cerebral artery, using a previously described
technique (45, 46). Briefly, the external carotid artery was
isolated in mice anaesthetized with isoflurane (1.5-2%,
vaporized in air), and a silicone-coated nylon filament
(diameter: 0.23 mm, Doccol Corporation, Redlands, CA, USA)
was introduced into the internal carotid artery up to the Willis
circle of Willis to occlude the origin of the middle cerebral artery
proven by a >70% cortical cerebral blood flow (CBF) reduction
(47). Six animals were excluded from the study because of
unsuccessful MCAo, i.e., less than 70% reduction of CBF.

Ischemic PC was reproduced using a well-established
paradigm (12, 17, 25, 48, 49), consisting in a brief (15-min)
MCAo, followed by a 72-h period of recovery and reperfusion, to
be applied before the more severe ischemia (i.e., 1h MCAo
followed by 24h of reperfusion, PC + MCAo). SHAM-control
conditions were reproduced by performing identical surgical
March 2022 | Volume 13 | Article 825834
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procedures except for filament insertion into the middle cerebral
artery. Eight animals died during or early after surgery and were
excluded from the study.

Assessment of Infarct Size, Edema and
Neurological Deficits
Cerebral ischemic damage was assessed after 24 h of reperfusion
(following 1hMCAo, preceded or not by PC). To this end, frozen
brains were sectioned by a cryostat into fifteen, 20 mm-thick
coronal slices, at 0.5 mm intervals from the frontal pole. The
slices were mounted on glass slides and stained with cresyl violet.
Infarct (pale) areas were assessed by an investigator blinded to
treatment allocation using an image analysis software (ImageJ,
version 1.30), and to calculate infarct size and edema volume
(mm3) as previously described (50).

Neurological deficits were assessed 24h after MCAo or SHAM
surgery, or 72h after PC by using the dichotomized De Simoni
composite neuroscore that allows to evaluate the general and
focal neurological dysfunctions caused by the ischemic insult (51,
52). Briefly, total score ranges from 0 (healthy) to 56 (the worst
performance in all the 13 categories) and represents the sum of 6
general deficits (fur [0-2], ears [0-2], eyes [0-4], posture [0-4],
spontaneous activity [0-4], and epileptic behavior [0-12]) and 7
focal deficits (body asymmetry [0-4], gait [0-4], climbing [0-4],
circling behavior [0-4], forelimb symmetry [0-4], compulsory
circling [0-4], and whisker response [0-4].

Western Blot Analysis
Ipsilateral (ischemic) and contralateral frontoparietal cortices
(3.2 to -3.8 mm from Bregma) (53) and spleens were rapidly
dissected 24h after MCAo or SHAM surgery, or 72h after PC,
and homogenized in ice-cold RIPA buffer containing protease
inhibitor cocktail (Sigma-Aldrich, Milan, Italy) and centrifuged
for 20 min at 20817 g at 4°C. Protein concentration was
quantified in supernatants (Bradford method, PanReac
AppliChem, ITW Reagents) and equal amounts (40 mg) were
heated for 5 min in Laemmli buffer (Sigma-Aldrich, Milan, Italy),
separated by sodium dodecyl sulphate polyacrylamide gel
electrophoresis (SDS-PAGE) in a Bio-Rad Mini Pro-tean
IIIand, then electroblotted onto nitrocellulose membrane
(NitroBind, Maine Manufacturing, Maine, U.S.A.) using a mini
trans-blot (Bio-Rad Laboratories, Hercules, CA, U.S.A.). After
blocking with 5% non-fat milk in 0.05% Tween-20 TRIS-buffered
saline (TBS-T), the blots were incubated overnight, at 4°C, with
the following primary antibodies: rabbit anti-Ym1 (1:1000;
60130, StemCell Technologies) and mouse anti-b-actin
(1:1.000; sc-69879, Santa Cruz Biotechnology, Inc.), followed
by species-specific peroxidase-linked secondary antibodies
(1:2.000; Santa Cruz Biotechnology, Inc.) for 1 h at room
temperature. Immunodetection of protein bands was
performed with enhanced chemiluminescence kit (Western
Blotting Luminol Reagent, Santa Cruz Biotechnology, Inc)
f o l l owed by exposu r e to X- r ay fi lms (U l t r a c ruz
Autoradiography Film, Santa Cruz Biotechnology, Inc). ImageJ
software (National Institutes of Health, Bethesda, MD) was used
for densitometric analysis of the bands.
Frontiers in Immunology | www.frontiersin.org 3
Immunofluorescence
Immunohistochemistry was performed on paraformaldehyde-
fixed brains and spleens, dissected 24h after 1-h MCAo, and
sectioned into 40 µm-thick slices. Coronal brain slices were
collected at the level of the territory perfused by the middle
cerebral artery (1.18 to -0.10 mm from Bregma) (53). Using a
previously reported procedure (54, 55), the sections were
incubated with the following primary antibodies: rabbit anti
mouse Ym1 (1:100, StemCell Technologies, UK) to label
alternatively-activated myeloid cells (56, 57); rat anti mouse
Ly-6B.2 (1:200; clone 7/4; AbD Serotec, Kidlington, UK) to
label Ly-6G+ neutrophils and Ly-6C+ inflammatory
monocytes/macrophages (58–60); rat anti-mouse Ly-6G (1:200;
clone 1A8; BD Pharmingen, Italy) to label neutrophils; rat anti-
mouse Ly-6C (1:100; clone HK1.4; Biolegened, San Diego, USA);
rat anti mouse CD11b (1:200; clone M1/70.15; AbD Serotec,
Kidlington, UK) to label myeloid cells (comprising microglia,
monocytes/macrophages, neutrophils and dendritic cells); goat
anti-Iba1 (Thermo Fisher Scientific) to label microglia/
macrophages (61). Primary antibodies were labelled with
appropriate secondary antibodies conjugated with AlexaFluor
488 or AlexaFluor 568 (1:200 dilution; Invitrogen, Thermo
Fisher Scientific, Italy); whereas, nuclei were counterstained
with 4’,6-diamidino-2-phenylindole (DAPI, 1:500; Sigma-
Aldrich, Milan, Italy). Fluorescence was examined under a
confocal laser scanning microscope (Fluoview FV300,
Olympus) equipped with a dedicated software module
(cellSens) for image analysis.

To quantify CD11b immunopositive myeloid cells, three
coronal brain sections were collected from each brain (n= 4
mice per experimental group) at 0.98, 0.38 and -0.22 mm from
bregma, corresponding to the middle cerebral artery territory.
Digitized images were acquired under identical microscope
settings and cells were counted off-line, using ImageJ software,
in 3-4 different optic fields of the confocal images (acquired
through the 20× objective) of the ispilateral frontoparietal cortex.
For each optic field, the total number of DAPI+ cells labelled for
CD11b were counted and expressed as CD11b+ cells/0.31 mm2.

Flow Cytometry
The expression of specific cell surface markers was assessed in
leukocytes isolated from mouse blood samples collected in
K3EDTA-containing tubes as previously reported (17). Briefly,
after separating plasma by centrifugation at 300g for 10 min, the
pellet was resuspended 2-3 times in BD Pharm Lyse™ (BD
Bioscience) until complete erythrocyte lysis, and then incubated
with anti-mouse CD16/32 antibody (1:50, TruStainFcX™,
Biolegend, San Diego, CA, USA) to block non-specific binding
to the Fc receptor. The samples were then incubated for 45 min
at 4°C with the following PE/Dazzle594-labelled primary
antibodies (Biolegend, San Diego, CA, USA): rat anti-mouse
Ly-6G (1.5:100; #127648) or rat anti-mouse Ly-6C (1.5:100;
#128044). After washing, the samples were analysed on a
FACScan flow cytometer (Becton Dickinson, Mountain View,
CA, USA) using CellQuest software. Neutrophils and monocytes
populations were determined both by morphological features
March 2022 | Volume 13 | Article 825834
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(i.e., forward and side scatter, FSC vs. SSC) and relative
expression of Ly-6C and Ly-6G. Neutrophils were identified as
FSChigh/SSChigh events expressing Ly-6G; whereas, monocytes
were identified as Ly-6C+/Ly-6G- events after gating for FSChigh/
SSCmed population.

Quantitative Polymerase Chain
Reaction (PCR)
Quantitative real-time PCR analysis was performed on blood
samples and on ipsilateral and contralateral brain cortices
collected 24 h after 1h-MCAo (preceded or not by PC) or
SHAM surgery, or 72 h after PC.

Total RNA was isolated from brain tissue using TRIzol
Reagent (Thermo Fisher Scientific, MA, USA) according to the
manufacturer’s protocol, and then dissolved in RNase-free water
to determine concentration and quality using a Nanodrop 2000
spectrophotometer (Thermo Fisher). For each sample, 1 µg of
total RNA was used for reverse transcription (RT) with the High
Capacity RNA to cDNA kit (#4387406l, Applied Biosystems),
following supplier’s instructions. PCR reactions were performed
on the StepOnePlus Real-Time PCR system (Thermo Fisher)
Primers for interleukin(IL)-1b (Mm00434228_m1), IL-10
(Mm01288386_m1) and the housekeeping reference gene
glyceraldehyde 3-phosphate dehydrogenase (GAPDH ;
Mm99999915_g1) were purchased from Thermo Fisher and
quantification of gene expression was performed by the
comparative cycle threshold (Ct) method.

Plasma was separated from blood samples, collected in EDTA
Vacutainer® tubes, by centrifugation at 1.500g for 15 min at 4°C,
followed by centrifugation of the supernatant at 12.000g for 15
min at 4°C to pellet any debris and insoluble components.
MicroRNA was isolated from of plasma samples using the
miRNeasy Serum/Plasma Kit (Qiagen, Inc., Valencia, CA,
USA) using A. Thaliana miR-159a (478411_mir, Thermo
Fisher) as spike-in control. cDNA was synthetized by using
TaqMan Advanced miRNA Assays Kit (Thermo Fisher) and
miRNAs expression was detected by quantitative real-time PCR.
Relative expression level of miR-329-5p (mmu482631_mir,
Thermo Fisher) was calculated using the comparative Ct
method and normalized to the expression of miR-669c-3p
Frontiers in Immunology | www.frontiersin.org 4
(mmu483332_mir, Thermo Fisher) that remained constant in
all the samples analysed.

Statistical Analysis
Data are expressed as scatter plots along with mean ± 95%
confidence interval (CI) for quantitative variables, or medians
with interquartile range for categorical ordinal variables (i.e.,
neuroscore). Data were subjected to statistical analysis using
Graph-Pad Prism software for Windows (version 6.0, GraphPad
Software, San Diego, CA) and Statistic Kingdom calculator
(http://www.statskingdom.com, Melbourne, Australia) applying
a fixed-effect statistical model. Comparisons between multiple
experimental groups were performed using one- or two-way
ANOVA followed by Tukey or Bonferroni post-tests,
respectively. The neurological deficit scores, being ordinal in
nature, were analyzed using the Kruskal-Wallis test followed by
Bonferroni’s correction method for multiple comparisons.
Values of P < 0.05 were considered to be significant.
RESULTS

In order to assess whether ischemic PC affects the peripheral
inflammatory status, we measured the number of circulating Ly-
6G+ neutrophils and Ly-6C+ monocytes in mice subjected to
transient MCAo preceded or not by ischemic PC (i.e., 15-min
MCAo) 72h before. As compared with SHAM surgery, 1h MCAo
resulted in significant elevation of blood inflammatory
neutrophils and monocytes measured 24h after reperfusion.
Both effects were prevented in mice pre-exposed to ischemic
PC (Figure 1A). Regarding monocyte subtypes, we observed that
both Ly-6Chigh and Ly-6Clow monocytes were reduced (by
35.71% and 47.06%, respect ive ly) in the blood of
preconditioned mice as compared with the MCAo group (data
not shown). We next assessed modulation of plasma levels of
miR-329-5p, identified by reverse target prediction analysis
based on its potential to regulate inflammatory and immune
mediators (e.g., TLR-4, IL-1 and TNF-related signaling
pathways) involved in ischemia and PC. As shown in Figure 1,
we originally observed that transient focal ischemia was
A B C

FIGURE 1 | Ischemic PC attenuates the systemic inflammatory status caused by severe ischemia. (A) Circulating Ly-6G+ neutrophils, (B) Ly-6C+ monocytes and
(C) plasma miR-329-5p levels in mice subjected to SHAM surgery, 1h MCAo preceded by sham surgery (MCAo) or by ischemic PC (15min MCAo) 72h before
(PC+MCAo). *P = 0.0463 vs SHAM and P = 0.0412 vs PC+MCAo, **P = 0.0049 vs sham and P = 0.0080 vs PC+MCAo, ***P = 0.000003 vs SHAM and P =
0.00004 vs PC+MCAo (one-way ANOVA followed by Tukey’s post-hoc test, n=6-10 mice per experimental group).
March 2022 | Volume 13 | Article 825834
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associated with a significant elevation of miR-329-5p plasma
levels that was abolished when mice were previously exposed to
the PC stimulus. These findings suggest that a brief (i.e., 15-min),
sublethal cerebral ischemia may exert beneficial effects by
attenuating the peripheral inflammatory response evoked by a
more severe ischemic insult.

Given the crucial role of the spleen in orchestrating the
immune response occurring in the periphery and in the brain
following ischemia (41, 62, 63), we investigated the effects of
ischemic PC on this secondary lymphoid organ. Under our
experimental conditions, spleen contraction occurred in mice
subjected to either ischemic PC, MCAo or a combination of both
(Figure 2). However, only the experimental groups PC and
PC+MCAo (but not MCAo) showed increased protein
expression of the M2 marker Ym1 in spleen homogenates as
compared with tissue from sham-operated animals (Figure 2).
Immunofluorescence analysis revealed that Ym1 was expressed
in CD11b immunopositive myeloid cells, representing
amoeboid-shaped monocytes and Ly-6G immunopositive
neutrophils (Figure 1). Conversely, elevation of Ym1
expression was observed only in circulating leukocytes from
Frontiers in Immunology | www.frontiersin.org 5
mice subjected to 1h MCAo (Figure 2), despite its elevation in
the spleen of mice belonging to the other experimental groups as
compared to sham (Figure 2).

In order to clarify the significance of this latter finding, we
analysed the expression of Ym1 in the brain cortex of mice. As
compared with sham tissue, exposure to 15-min or 1-h MCAo
elevated Ym1 protein levels in the ipsilateral cortex (Figure 3).
This effect was further potentiated in the animals
undergone ischemic PC before the more severe ischemia (i.e.,
PC+MCAo group, Figure 3). By immunofluorescence analysis
(Figure 3), we observed that the signal corresponding to CD11b
immunopositive myeloid cells was significantly (P=0.0286, Mann
Whitney test, n=4 mice per experimental group) increased in the
cortex of animals pre-exposed to PC before MCAo (66.94 ± 1.56
CD11b+ cells/0.31 mm2) as compared with MCAo alone (44.90 ±
11.18 CD11b+ cells/0.31 mm2). Amoeboid-shaped myeloid
cells express Ym1 (arrows in Figure 3), likely corresponding
to microglia/macrophages, since Ym1 signal was also detected
in amoeboid Iba1 immunopositive cells (arrows in Figure 3).
Interestingly, Ym1 immuno-signal almost completely overlapped
with Ly-6B.2 (Figure 3), a glycophosphatidylinositol-anchored,
A B

D

C

FIGURE 2 | Ischemic PC does not affect spleen contraction induced by MCAo, while it elevates expression of the M2 marker Ym1 in spleen but not in
circulating leukocytes. (A) Spleen weight and protein expression levels of Ym1 in spleen (B) and in circulating leukocytes (D) of mice subjected to SHAM
surgery, ischemic PC (15 min MCAo followed by 72h of reperfusion), 1h MCAo followed by 24h of reperfusion (MCAo) or PC+MCAo. (C) Representative
immunofluorescence images showing Ym1 expression (green fluorescence) in CD11b immunopositive myeloid cells and Ly-6G immunopositive neutrophils
(red fluorescence) in the spleen parenchyma of mice undergone 1h MCAo preceded (72h before) by sham surgery (MCAo) or by ischemic PC (PC+MCAo).
Scale bars = 50 mm. Data were analysed by one-way ANOVA followed by Tukey’s post-hoc test [(A) #P = 0.0083, ##P = 0.0057 and ###P = 0.0002 vs
SHAM, n = 10-13 mice per experimental group; (B) **P = 0.0046 vs SHAM, ***P = 0.0001 vs SHAM and P = 0.0037 vs MCAo, n = 8-13 mice per
experimental group; (D) §§P = 0.0098 vs SHAM, P = 0.0013 vs PC and P = 0.0051 vs PC+MCAo, n = 5-6 mice per experimental group].
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heavily glycosylated protein expressed on myeloid cells,
including Ly-6G+ neutrophils, Ly-6C+ inflammatory
monocytes and some activated macrophages (58–60).
Accordingly, Ym1-expressing cells mainly represent Ly6C+
monocytes/macrophages and Ly-6G+ neutrophils (Figure 4).
The latter evidence, together with the presence of Ym1 signal
in amoeboid-shaped CD11b+ myeloid cells lining the
endothelium and populating perivascular regions (Figure 4),
strongly suggest their recruitment from the periphery.

These finding demonstrate that ischemic PC is associated
with spleen contraction and elevation of Ym1 expression in
this lymphoid organ, which correspond to increased brain
recruitment of M2-like myeloid cells. This latter evidence
was coincident with reduced inflammatory reactions in the
ischemic hemisphere, since ischemic PC prevented elevation of
mRNA levels of the pro-inflammatory cytokine IL-1b in the
ipsilateral cortex (Figure 5). By contrast, brain elevation of the
mRNA levels of IL-10 induced by MCAo, was unaffected by
previous exposure to ischemic PC (Figure 5), which is
consistent with the elevation of M2-like anti-inflammatory
phenotypes (Figure 3).

Overall, the increased anti-inflammatory/pro-inflammatory
ratio observed in the PC+MCAo group corresponded to reduced
brain infarct volume (Figure 6) and ischemic edema (Figure 6)
as compared with 1h MCAo. Histological protection was
associated with amelioration of functional outcome, since both
focal and general deficits caused by 1h MCAo were prevented by
ischemic PC (Figure 6).
A B

DC

FIGURE 3 | Ischemic PC potentiates the elevation of the M2/N2 marker Ym1 caused by 1h MCAo in myeloid cells of the ischemic cortex of mice. (A) Western
blotting analysis of Ym1 expression in tissue homogenates from the contralateral (C) and ipsilateral (ischemic, I) cortex of mice subjected to SHAM surgery, ischemic
PC (15 min MCAo followed by 72h of reperfusion), 1h MCAo followed by 24h of reperfusion (MCAo) or PC+MCAo. *P = 0.0479, **P = 0.0079 and ***P = 0.0004 vs
corresponding contralateral; ##P = 0.0059 and ###P = 0.0003 vs ipsilateral SHAM (two-way ANOVA followed by Bonferroni post-test, n=4-5 mice per experimental
group). Representative immunofluoresce images showing Ym1 expression (green fluorescence) in CD11b immunopositive myeloid cells [red fluorescence in (B)],
Iba1 immunopositive microglia/macrophages [red fluorescence in (C)] or Ly-6B.2 immunopositive myeloid cells [granulocytes and monocytes/macrophages, red
fluorescence in (D)] in the cortex of mice undergone 1h MCAo preceded (72h before) by sham surgery (MCAo) or by ischemic PC (PC+MCAo). Arrows indicate
co-localization of Ym1 with CD11b or Iba1 in amoeboid-shaped cells. Scale bars = 100 mm.
Frontiers in Immunology | www.frontiersin.org 6
FIGURE 4 | Ym1 is expressed in myeloid cells infiltrating from the periphery,
resembling monocytes/macrophages and neutrophils. Representative
immunofluorescence images showing Ym1 expression (green fluorescence) in
CD11b immunopositive myeloid cells (lining the blood vessels and populating
the perivascular space), in Ly-6C immunopositive monocytes/macrophages
and in Ly-6G immunopositive neutrophils. Nuclei are counterstained with
DAPI (blue signal). Scale bars = 50 mm.
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DISCUSSION

The results of the present work confirm previous findings
demonstrating that PC by short-term focal ischemia protects
the brain and reduces neurological deficits when applied 72h
before severe MCAo in rats (64–66) or mice (12, 25, 48, 49).
Moreover, we extend previous observations by demonstrating
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that ischemic PC attenuates cellular (i.e., elevation of circulating
inflammatory myeloid cells) and soluble (i.e., elevation of plasma
miR-329-5p) inflammatory responses triggered by a severe
ischemic insult. In the periphery, we originally observed
elevation of the M2/N2 marker Ym1 in the spleen after PC
(regardless of whether it was followed by 1h MCAo) that was
coincident with spleen contraction. In fact, pre-exposure to
A B

FIGURE 5 | Ischemic PC prevents elevation of IL-1b mRNA levels, while not affecting elevation of IL-10 mRNA levels caused by 1h MCAo in the ipsilateral cortex of
mice. Quantitative PCR was used to quantify mRNA levels of (A) IL-1b and (B) IL-10 in the ipsilateral cortex of mice subjected to SHAM surgery, ischemic PC (15
min MCAo followed by 72h of reperfusion), 1h MCAo followed by 24h of reperfusion (MCAo) or PC+MCAo. Data were analysed by one-way ANOVA followed by
Tukey’s post-hoc test (§P = 0.0001 vs SHAM and P = 0.0001 vs PC and P = 0.0063 vs MCAo; *P = 0.0173 vs SHAM and P = 0.0290 vs PC; #P = 0.0401 vs
SHAM; n = 6-7 mice per experimental group).
A B

C

FIGURE 6 | Ischemic PC significantly reduces brain damage and neurological deficits caused by 1h MCAo. (A) Cerebral infarct volume and (B) brain edema in mice
subjected to 1h MCAo followed by 24h of reperfusion preceded 72h before by sham surgery (MCAo) or by ischemic PC (PC+MCAo); §§§P = 0.0005 and @@@P = 0.0009
vs MCAo (unpaired t-test, n = 12 mice per experimental group). (C) General, focal and total deficits caused in mice by SHAM surgery, ischemic PC (15min MCAo,
followed by 72h of reperfusion), 1h MCAo followed by 24h of reperfusion (MCAo) or ischemic PC 72h before MCAo (PC+MCAo). Data were analysed by Kruskal-Wallis
test followed by Bonferroni’s correction (*P = 0.0227 vs corresponding SHAM, **P = 0.0088 vs corresponding SHAM and P = 0.0182 vs corresponding PC, ***P =
0.0212 vs corresponding SHAM, #P = 0.0111 vs corresponding SHAM, ##P = 0.0080 vs corresponding SHAM and P = 0.0044 vs corresponding PC, ###P = 0.0339 vs
corresponding SHAM, §P = 0.0145 vs corresponding SHAM, §§P = 0.0088 vs corresponding SHAM and P = 0.0045 vs corresponding PC, §§§P = 0.0278 vs
corresponding SHAM; n = 5-7 mice per experimental group).
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ischemic PC potentiated the ischemia-induced elevation of Ym1
in the lesioned cortex, where Ym1 immunopositive signal was
detected in amoeboid myeloid cells infiltrating from the
periphery, likely representing monocytes/macrophages and
neutrophils. This was coincident with reduction of pro/anti-
inflammatory ratio in the brain, since pre-exposure to PC
prevented elevation of IL-1b mRNA induced by 1h MCAo,
while it did not affect ischemia-induced elevation of IL-10
mRNA levels in the ipsilateral ischemic cortex.

The development of ischemic tolerance has been associated
with a significant transcriptomic response to ischemic PC (12,
25, 48, 67). Our findings are in line with the evidence that the
transcriptional response to severe ischemia is dominated by
cerebral upregulation of genes that coordinate immune
responses and host defence; whereas, when ischemia is
preceded by ischemic PC this response is reprogrammed and
returns to basal levels (12). Toll-like receptors (4 and 9) and
downstream cerebral activation of inflammatory reactions,
including microglia stimulation, Type-I interferon pathways
and release of inflammatory cytokines such as TNF-a, have
been reported to underlie protection by ischemic PC in rodents
(26, 36, 68).

Using TargetScan database (www.targetscan.org), we
performed a reverse target prediction analysis to identify miR-
329-5p based on its potential to regulate inflammatory and
immune mediators, including TLR-4, IL-1 and TNF-related
signalling pathways, with a relevant role in ischemia and PC.
Our findings demonstrate that ischemic PC prevents elevation of
miR-329-5p occurring in the plasma of mice subjected to 1-h
MCAo. This suggests that reduced inflammatory status in the
periphery underlies neuroprotection by PC. In fact, miR-329 has
been implicated in the modulation of inflammatory responses
during ischemia, since knockdown of its expression inhibits the
release of TNF-a and nitric oxide in the supernatant of OGD-
stimulated microglial cells. The underlying mechanism involves
the long noncoding RNA (lncRNA) small nucleolar RNA host
gene 1 (SNHG1) with relevant neuroprotective and
immunomodulatory functions (69–72). Moreover, miR-329
downregulates the expression of its target gene TGF-b1 (73)
that codes for a cytokine with known anti-inflammatory and
beneficial functions in ischemic stroke (74, 75). MiR-329 also
regulates TLR4/tumor necrosis factor receptor associated factor 6
(TRAF6)/nuclear factor (NF)-kB signaling (76), a pathway
involved in ischemic damage and preconditioning, as well as in
the regulation of neutrophil dynamics (26, 77–79). Our finding
that miR-329 plasma levels modulation by PC/MCAo is
paralleled by similar fluctuations in the number of circulating
inflammatory myeloid cells, is in line with the evidence that
proatherogenic cells in the circulation (i.e., inflammatory Ly-6Chi

monocytes, neutrophils, and blood platelets) were decreased
upon miRNA-329 inhibition (80). Moreover, increased
expression of miR-329 in peripheral blood mononuclear cells
(PBMCs) of the patients with coronary artery disease may lead to
progression of atherosclerosis plaque (81).

A recent in vivo microarray study has demonstrated that
ischemic PC triggers in cortical microglia a transcriptomic
Frontiers in Immunology | www.frontiersin.org 8
profile dominated by upregulation of cellular proliferation
genes that is coincident with the time of peak neuroprotection
in the mouse brain (25). Accordingly, proliferation of myeloid
cells underlies protection against ischemic injury (31), while
elevation of infiltrating myeloid cells and fractalkine-dependent
microglia proliferation were observed in the ischemic
hemisphere of preconditioned mice (25). Fractalkine signalling
attenuates inflammatory responses in microglia and promotes
M1-to-M2 polarization in other experimental contexts (82, 83),
suggesting that these pathways may also be shared by
preconditioning. The latter hypothesis is supported by our
evidence that ischemic PC enhances the expression of the M2
marker Ym1 in amoeboid-shaped myeloid cells populating the
ischemic hemisphere, as also previously reported (84–86).
Actually, the majority of Ym1-expressing cells were Ly-6B.2
immunopositive, thus corresponding to monocytes/
macrophages and Ly-6G+ neutrophils, likely infiltrating from
the periphery. Thus, our findings strongly suggest that an
increased recruitment of M2/N2-polarized innate immune cells
underlies neuroprotection exerted by ischemic PC in mice. This
extends previous evidence documenting that monocytes isolated
and adoptively transferred from lipopolysaccharide (LPS)-
preconditioned mice confer protection against a prolonged
subsequent MCAo (41). Cell-tracking studies have revealed
that these protective monocytes are mobilized from the spleen
and reach the brain and meninges, where they mitigate
inflammation and neutrophil influx induced by ischemia (41).

In the blood of mice subjected to transient MCAo we
observed elevation of Ly-6G+ and Ly-6C+ inflammatory
leukocytes after 24h of reperfusion. Both effects were
attenuated by ischemic PC and coincided with reduced brain
damage and inflammation. This is consistent with the evidence
that higher leukocytes and neutrophils blood counts are
associated with larger infarct volumes (87) and with poor
functional outcomes in acute ischemic stroke patients with
neurological deterioration (88). Neutrophils are among the first
peripheral immune cells recruited to the ischemic brain, entering
the tissue through inflamed blood vessels, soft meninges or the
choroid plexus. Previous work has documented that the peak
elevation of neutrophil count in blood of mice subjected to 60-
min MCAo occurs 24h after injury, whereas their infiltration to
the brain can be observed from 12 h after stroke, reaching a
maximum after 1-3 days (89, 90). In patients, higher neutrophil
counts are associated with more severe strokes at admission (91)
and larger infarct volumes (87); while elevated neutrophil-to-
lymphocyte (NLR) ratio is significantly associated with poor
prognosis (92) and risk of hemorrhagic transformation (93).
Although blockade of their recruitment has been shown to be
neuroprotective in models of acute brain injury (94), suggesting
their potential to aggravate damage, neutrophils also display
beneficial roles (77, 95, 96). This latter evidence does not seem to
apply to PC, since we observed that elevation of the number of
circulating neutrophils induced after MCAo is prevented by the
neuroprotective ischemic PC. Similarly, LPS preconditioning
reduced neutrophil composition in the blood after transient
MCAo compared with non-preconditioned control mice,
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which was suggested to contribute to reduced infiltration in the
ischemic brain (97)

Besides neutrophils, circulating monocytes are recruited by
monocyte chemoattractant protein (MCP)-1 and extensively
infiltrate into the ischemic parenchyma, reaching a peak 2-3
days after the insult (90, 98). A higher monocyte blood count
has been associated with ischemic stroke severity and adverse
prognosis of patients (99–102). This is coherent with the
elevated number of Ly-6C+ monocytes that we observed in
the blood of mice subjected to transient MCAo, an effect that is
attenuated by pre-exposure to the neuroprotective PC stimulus.
Accordingly, Ly-6Chigh monocytes are increased in the blood of
mice subjected to transient MCAo (103). Once recruited to the
brain, Ly-6Chigh monocytes can mature into macrophages
bearing M2-like phenotypes (104–106). By contrast, Ly-6Clow

patrolling monocytes are redundant in this experimental
context, since they do not affect progression and/or recovery
after ischemic stroke (107). In human, classical CD14+
monocytes secrete IL-1b, TNF-a and IL-6 to exert a pro-
inflammatory effect (108) and their number increases in the
blood of acute stroke patients, being independently associated
with poor outcome (109, 110); whereas, nonclassical and
intermediate CD16+ monocytes display an inverse correlation
with mortality and poor functional and histological
outcomes (110).

Bona fide undifferentiated monocytes are present in a
reservoir within the red pulp of the spleen and, upon distal
tissue injury (i.e., myocardial ischemia), they can be mobilized
and migrate to the damaged site to promote damage or healing
(41, 62, 63). Splenic atrophy is considered a hallmark of post-
stroke peripheral immune activation and, in agreement with
previous evidence (111–113), we detected reduced spleen size
after 24h of reperfusion as compared with sham surgery.
Splenic contraction occurs by 3 hours until 7 days after
transient focal cerebral ischemia in mice and is accompanied
by monocytes mobilization and migration to the stroked brain
(114, 115). Splenic atrophy was believed to affect ischemic brain
injury by exacerbating the inflammatory response though the
release of spleen-derived immune cells into the circulation,
their migration to the brain and the activation of microglial
cells (111, 112, 116–120). Various data confirm the existence of
a correlation between ischemia-induced splenic atrophy and
the histological and functional outcome (54, 121, 122).
Nevertheless, in some contexts, spleen size does not directly
reflect mobilization of cells to the brain, but it is indeed
correlated with the inflammatory cerebral milieu (123). In
fact, post-stroke spleen contraction was accompanied by
decreased number of Ly-6Chigh and Ly-6Clow subsets in the
spleen that temporally coincided with respective increases in
the ischemic brain (114). Although this latter effect was
prevented by splenectomy, infarct size and swelling were not
reduced in the asplenic mice, strongly supporting a distinct
effect of the two monocyte subtypes in stroke outcome (114). In
fact, a negative correlation between splenic macrophage, T, and
B cells and the neurological deficit score suggests that these
splenic immune cells may aid in stroke recovery (62).
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Accordingly, the spleen was required to unleash the
neuroprotective capacity of adoptively transferred LPS-
preconditioned monocytes (41), thus suggesting that homing
to the spleen may be necessary to acquire the reparative
phenotype. Under our experimental conditions, exposure to
PC (followed or not by MCAo) resulted in significant elevation
of Ym1 expression in the mouse spleen, despite its reduced
weight vs sham (strongly suggesting elevated M2/M1 or N2/N1
ratios), that was coincident with elevated brain levels of M2-
polarized myeloid cells recruited to the ischemic hemisphere.
The evidence that the number of circulating neutrophils and
monocytes is reduced in the PC+MCAo experimental group
may reflect the fact that although immune cells may migrate to
the brain through blood circulation, they may also traffic
through other means such as lymphatic vessels; thus the
blood does not necessarily reflect migration of immune cells
from the periphery to the brain. However, confirmation of our
hypothesis would require demonstration of the effects of
adoptively transferred M2/N2 myeloid cells in asplenic
animals: the lack of such evidence represents a major
limitation of our work.

Genes associated with alternative macrophage polarization,
including Ym1 (Chi3l1), IL-10 and Arginase 1, are up-regulated
in LPS-preconditioned monocytes that exert protective roles in
mice subjected to MCAo (41). In the meninges, LPS-primed
monocytes suppress post-ischemic expression of inflammatory
cytokines involved in leukocytes trafficking to the brain, thus
resulting in decreased immune cell (mainly neutrophils)
accumulation in the ischemic brain (41). In line with this
observation, we observe that ischemic PC is associated with
elevated brain expression of the M2 marker Ym1, predominantly
expressed in myeloid cells likely infiltrating from the periphery,
but also in amoeboid-shaped Iba1-immunopositive microglia/
macrophages. As brain resident immune cells, microglia exert a
dualistic role in ischemic stroke, displaying pleiotropic functions
depending on their phenotypes: pro-inflammatory, or ‘M1’
phenotype prevailing in the acute stage, and beneficial ‘M2’
phenotypes occurring at later stages after the insult. The latter
phagocytose non viable, necrotic tissue, and set the stage for
reparative processes such as the restoration of synapses,
angiogenesis, neurogenesis and gliogenesis (38, 124).
Microarray data demonstrate that the transcriptomic response
of preconditioned cortical microglia is dominated by
upregulation of genes involved in cell cycle activation and
cellular proliferation (36). In particular, ischemic PC triggers
microglia proliferation in the ipsilateral cortex in the absence of
tissue infarction, a process dependent on signalling through the
fractalkine receptor CX3CR1 (25). This latter finding strongly
suggests the occurrence of polarization towards M2-like
reparative phenotypes, since aberrant activation of microglia
toward a neurotoxic profile was observed in mice lacking
CX3CR1 (29, 125). Moreover, fractalkine was shown to
promote the M1-to-M2 shift of microglia phenotype (83).
Accordingly, hypoxic preconditioning attenuates ischemia-
induced inflammatory reactions and elevates the ratio of M2/
M1 polarization markers of microglia in rat brain (126).
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Moreover, after ischemic PC, both microglia and peripheral
immune cells (i.e., monocytes and neutrophils) are increased in
the ischemic cortex (25, 37). CCR2-dependent brain infiltration
of LPS-preconditioned monocytes that acquire an alternatively
activated phenotype, has been reported to provide
neuroprotection in mice undergone MCAo, likely trough their
production of IL-10 and activation of i-NOS (41). Interestingly,
CCR2 is the major receptor involved in brain infiltration of
monocytes triggered by ischemia and plays a crucial role in their
repairing functions (103, 104, 127, 128). The fact that hypoxic/
ischemic PC is also dependent on CCL2/CCR2 signalling (129,
130), together with our evidence of increased brain infiltration of
Ym1 immunopositive myeloid cells following PC, strongly
suggest that cerebral recruitment of beneficial/reparative
monocytes may represent a general mechanism of
ischemic tolerance.

Thus, it is intriguing to speculate that modulation of the
peripheral immune system towards protective phenotypes may
represent a crucial endogenous mechanism triggered by ischemic
preconditioning to protect against ischemic brain damage and
inflammation. In fact, the elevation of IL-1b expression caused
by transient MCAo in the ischemic cortex is prevented by
ischemic PC, thus suggesting that tolerance is associated with
attenuation of the inflammatory and detrimental effects of this
cytokine in the lesioned tissue (131–135).

Moreover, our findings are consistent with the elevation of
IL-10 protein levels observed in the rodent brain after 24h of
permanent or transient MCAo (136, 137), with neurons being
the major source of this cytokine and its receptor at this time-
point (137). Since LPS-induced PC was associated with
e leva t ion of IL-10 leve l s in mouse b lood and in
preconditioned monocytes (41, 138), while hypoxic PC
promotes the expression of IL-10 in the ischemic cortex of
rats subjected to transient focal ischemia (126), we were
expecting elevation of this cytokine following brain
recruitment of M2 monocytes in the ischemic hemisphere.
However, we found that IL-10 mRNA levels did not change
in the brain of PC+MCAo experimental group as compared to
MCAo. This evidence, together with the effect on brain mRNA
levels of IL-1b strongly suggest that ischemic PC exerts
protection by reducing the ratio pro-inflammatory/anti-
inflammatory responses. In fact, both in vitro and in vivo
hypoxia/ischemia models have revealed that IL-10 exerts
neuroprotective effects by mitigating the production of
inflammatory cytokines and by inhibiting the activation and
brain recruitment of detrimental immune cells (139). Our
hypothesis is further supported by the evidence that either
chemical and ischemic preconditioning was shown to attenuate
ischemia-induced mRNA elevations of inflammatory cytokines
(i.e., IL-1b and IL-6), while not affecting the elevation of the
protective TGF-b occurring in the ischemic cortex (66).

In conclusion, our data demonstrate that ischemic PC
attenuates the elevation of cellular (i.e., monocytes and
neutrophils) and soluble (i.e., miR-329-5p) inflammatory
mediators triggered by severe ischemia in mouse blood.
Moreover, when 1h MCAo was preceded by the PC stimulus,
Frontiers in Immunology | www.frontiersin.org 10
spleen contraction was associated with increased levels of the
M2/N2 marker Ym1 that coincided with elevated brain levels of
Ym1-immunopositive innate immune cells, including amoeboid
microglia/macrophages, monocytes and neutrophils. The
elevation of these anti-inflammatory phenotypes produced by
PC in the ischemic hemisphere was coincident with reduced pro-
inflammatory/anti-inflammatory ratio (measured as IL-1b/IL-10
mRNA levels) and in amelioration of histological and functional
outcomes after 24h of reperfusion. These data reaffirm the crucial
role of the peripheral innate immune system in the progression
of cerebral ischemic damage and highlight the possibility of
targeting these endogenous peripheral responses to develop
novel effective stroke therapies.

The fact that the present study was conducted in young adult,
male mice limits its relevance to an exploratory phase. In fact, the
mechanisms implicated in tolerance induced by ischemic PC
require validation in larger, more clinically relevant contexts,
including both sexes, aged animals, comorbidity (i.e.,
hypertension and diabetes), at least two species and results
from multiple centres, as recently recommended by the Stroke
Treatment Academic Industry Roundtable (140).
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