
Reparametrization dependence and holographic complexity of black holes

Ayoub Mounim and Wolfgang Mück *

Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli,
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We refine the calculation of holographic complexity of black holes in the complexity equals action
approach by applying the recently introduced criterion that the action of any causal diamond in static
vacuum regions must vanish identically. This criterion fixes empty anti–de Sitter (AdS) spacetime as the
reference state with vanishing complexity and renders holographic complexity explicitly finite in all the
cases we consider. The cases considered here include the Reissner-Nordström-AdS black hole, the rotating
BTZ black hole, the Kerr-AdS black hole, and AdS-Vaidya spacetime. The criterion is equivalent to
imposing that the corner contributions vanish. Contrary to earlier results, we find that the generalized Lloyd
bound always holds in the Reissner-Nordström-AdS and BTZ cases.
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I. INTRODUCTION

In recent years, the application of concepts and ideas of
information theory to quantum field theory and gravity has
been proven to be a fruitful line of research, especially in
the context of the AdS=CFT correspondence [1–6].
Holographic complexity is an example of this approach.
In information theory, computational complexity is a

measure of how difficult it is (or how many steps it takes) to
approximately compute a desired target state starting from a
given reference state and using a certain set of elementary
operations [7]. By definition, the reference state is “simple”
and has zero complexity. The definition of computational,
or circuit, complexity depends on the system under con-
sideration, the set of elementary operations, the reference
state and a parameter ϵ that specifies the tolerance with
which the target state is reached. Typically, the computa-
tional complexity diverges when ϵ → 0. A geometric
approach to complexity, which can be applied to quantum
field theory, was developed in [8], defining complexity in
terms of a weight function evaluated on a trajectory
connecting the target and the reference state in some space
of unitary operators. Several proposals for the weight
function have been investigated in [9–14].
A different notion of complexity is operator, or Krylov,

complexity [15]. Operator complexity is a measure of how

much a given operator spreads out in the space of operators
under Heisenberg evolution. It is a function of time and
depends on the system under consideration, the choice of
an inner product in the space of operators and the initial
operator. By definition, the initial operator is simple, i.e.,
operator complexity vanishes initially. In contrast to com-
putational complexity, operator complexity is intrinsically
finite.
Given the variety of complexity measures that one can

define in quantum and information theory, it is no surprise
that several gravitational observables in asymptotically
anti–de Sitter (AdS) spacetime have been proposed as
holographic duals of complexity. These proposals fall into
two classes.1 The first proposal is known as the “complex-
ity equals volume” (C ¼ V) approach [17,18], which
derives from the observation that the interior of a black
hole continues to grow linearly for an exponentially long
time after the black hole has formed. The second proposal
is the “complexity equals action” (C ¼ A) [19,20]
approach, in which complexity is identified with the action
evaluated in a bulk region called the Wheeler-de Witt
(WdW) patch,2

C ¼ SWdW

πℏ
: ð1:1Þ

The WdW patch is defined as the region bounded by the
null surfaces anchored at certain times on the spacetime
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1A new infinite family of observables that are viable as
gravitational duals of complexity has been defined in [16].

2In the rest of the paper, we will work with the reduced action,
I ¼ 16πGS.
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boundary (left and right boundaries in the case of two-sided
black holes) and, possibly, the black hole singularity.
In a recent paper [21], we have proposed a refinement of

the C ¼ A approach introducing the criterion that the action
in any causal diamond in static vacuum regions should
vanish. With this criterion, the complexity of the state dual
to pure AdS spacetime vanishes by construction, which
identifies this state as the reference state. Moreover,
because the asymptotic region does not contribute when
this criterion is applied, the holographic complexity of
AdS-Schwarzschild black holes turns out to be finite [21].
The freedom to introduce this criterion derives from the fact
that the minimal action terms on the null boundaries of the
WdW patch, which are required by the variational princi-
ple, are not reparametrization invariant. To be more precise,
if Φ ¼ 0 specifies a null boundary, i.e., the vector ∂μΦ is
null, then the tangent vector along the null direction is
given by

kμ ¼ ∂xμ
∂λ ¼ eσ∂μΦ; ð1:2Þ

where σ can be an arbitrary function of the intrinsic
coordinates on the null hypersurface, amongst which λ
parametrizes the null direction. It is known [22] that the
action depends on the choice of σ. Reparametrization
dependence is typically regarded as unphysical.
Therefore, the usual approach to avoiding this ambiguity
is to add a counterterm to the null boundary action, which
does not interfere with the variational principle [22] and
renders the full action reparametrization invariant. Further
counterterms can be added to cancel divergences [23], in
line with the principles of holographic renormalization
[24–28].
Instead, the approach taken in [21] aims to identify a

privileged choice of parametrization by imposing the
criterion of vanishing action on any static vacuum causal
diamond. This criterion defines the state dual to empty AdS
space as the reference state, because it has zero complexity
by construction. In addition, the complexity of AdS-
Schwarzschild spacetime was found to be finite. As a
function of time τ, it remains constant (equal to the
complexity of formation) from τ ¼ 0 up to a certain critical
time τc and grows linearly thereafter, with a growth rate
saturating the Lloyd bound [20,29]. We remark that looking
for a privileged class of parametrizations is justified,
because the noninvariant null boundary terms carry a
physical meaning as the heat flux through the boundary
[30], so that different parametrizations may describe
physically different situations.
In the present article, we follow up on our initial proposal

[21] and reconsider holographic complexity in the C ¼ A
approach in the cases of Reissner-Nordström-AdS (RN-
AdS) black holes, the rotating BTZ black hole, the Kerr-
AdS black holes, and AdS-Vaidya spacetime. All of these

black holes have been considered before, for example, in
[19,20,22,23,31–46], so that our work is not entirely new.
What is new, though, is the choice of parametrization of the
null boundaries and the fact that the counterterm is
deliberately omitted. In particular, we will demonstrate
that the complexity is finite in all of the cases we consider.
We will also investigate whether or not the complexity
growth rate satisfies Lloyd’s bound or a suitable generali-
zation thereof [47]. In the cases of the RN-AdS and rotating
BTZ black holes, the answer will be affirmative for the
generalized bound [47]. These results contradict the find-
ings of [31,35,46], which also shows that our approach is
an improvement of the C ¼ A proposal. In the case of Kerr-
AdS, we are not able to give a definite answer, but we can
establish that the limiting value is approached from below
at late times.3

The rest of the paper is organized as follows. For the sake
of brevity, we avoid repeating the details regarding the
action in the WdW patch and refer readers to Sec. 2 of [21],
also for what concerns our notation. In Sec. II, we compute
the complexity of the charged Reissner-Nordström-AdS
black hole. As examples for rotating black holes, the
rotating BTZ solution and Kerr-AdS spacetime are con-
sidered in Secs. III and IV, respectively. In Sec. V, we study
the complexity of Vaidya spacetime, which describes the
formation of a spherically symmetric black hole by
gravitational collapse of a null fluid. Finally, we conclude
in Sec. VI.

II. REISSNER-NORDSTRÖM-AdS BLACK HOLE

A. Setup

In this section, we will compute the complexity of an
(electrically charged) RN-AdS spacetime with respect to
empty AdS. Because of the presence of the electric field,
there is no vacuum region in RN-AdS. We will first
compute the action in a generic causal diamond, and then
use the criterion introduced in [21] to pick a specific
parametrization.
RN-AdS spacetime is a solution of the Maxwell-Einstein

theory defined by the action

I ¼
Z

dxnþ2 ffiffiffiffiffiffi
−g

p ðR − 2Λ − FμνFμνÞ: ð2:1Þ

The solution is given by an electric potential4

Aμdxμ ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
2ðn − 1Þ

r �
1

rn−1þ
−

1

rn−1

�
dt; ð2:2Þ

and the metric

3For AdS-Vaidya, the validity of the bound follows from AdS-
Schwarzschild.

4rþ denotes the outer horizon radius; see below.
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ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
n; ð2:3Þ

with the blackening function fðrÞ defined by

fðrÞ ¼ 1þ r2

L2
−
ωn−1

rn−1
þ q2

r2ðn−1Þ
: ð2:4Þ

The parameter ω is related to the total mass5

M ¼ nΩn

16πG
ωn−1; ð2:5Þ

while the parameter q determines the electric charge of the
black hole

Q ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðn − 1Þ

p Ωn

8πG
: ð2:6Þ

The horizon radii are defined by the zeros of fðrÞ. Let us,
for the moment, consider the nonextremal case, in which
there are two horizons at r ¼ rþ and r ¼ r− < rþ. The
relevant thermodynamic variables are associated with the
outer horizon, rþ. The chemical potential, temperature, and
entropy are given by

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
2ðn − 1Þ

r
q

rn−1þ
; ð2:7Þ

T ¼ 1

4π

�
2rþ
L2

þ ðn − 1Þωn−1

rnþ
−
2ðn − 1Þq2

r2n−1þ

�
; ð2:8Þ

S ¼ Ωnrnþ
4G

; ð2:9Þ

respectively.
The Penrose diagram of part of the extended (nonex-

tremal) RN-AdS spacetime is shown in Fig. 1. Each of the
numbered regions is covered by a set of coordinates ðt; rÞ
with metric (2.3), with r > rþ in regions I and III, r− <
r < rþ in II and IV, and 0 < r < r− in regions V and VI.
The curvature singularities are situated at r ¼ 0. Similarly
to the AdS-Schwarzschild black hole case, it will be useful
to work with Eddington-Finkelstein coordinates. The tor-
toise coordinate can be defined by

r�ðrÞ ¼
Zr
R

dr
fðrÞ ; ð2:10Þ

where R is identified with the cutoff radius in the asymp-
totic region, which will be sent to ∞ at the end. With
ingoing Eddington-Finkelstein coordinates, v ¼ tþ r�, the
metric is

ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2dΩ2
n: ð2:11Þ

The ingoing Eddington-Finkelstein coordinate patches
extend over three numbered regions, I ∪ II ∪ VI,
III ∪ IV ∪ V, or any of their periodic repetitions.
Likewise, with outgoing coordinates, u ¼ t − r�, the

metric is

ds2 ¼ −fðrÞdu2 − 2dudrþ r2dΩ2
n: ð2:12Þ

The outgoing Eddington-Finkelstein coordinates cover the
patches I ∪ IV ∪ VI00, II ∪ III ∪ V0, or any of their periodic
repetitions.

B. Action in a causal diamond

We focus on a generic causal diamond embedded in
RN-AdS spacetime. A causal diamond is bounded by four
null surfaces, which we label N1;…; N4, counting them
clockwise starting from the north east. The four intersec-
tion points are counted clockwise starting from the north.
Obviously, their coordinates satisfy v1 ¼ v2, u2 ¼ u3,
v3 ¼ v4, and u4 ¼ u1. The setup is illustrated in Fig. 2.
In what follows, we work in outgoing Eddington-
Finkelstein coordinates (2.12).
The four scalar functions defining the null surfaces are

given by

Φ1ðu; rÞ ¼ uþ 2r�ðrÞ − v1; ð2:13aÞ

FIG. 1. Penrose diagram of the RN-AdS black hole. The
diagram repeats itself periodically above and below.

5Ωn denotes the volume of a unit n-sphere.
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Φ2ðu; rÞ ¼ u2 − u; ð2:13bÞ
Φ3ðu; rÞ ¼ v3 − u − 2r�ðrÞ; ð2:13cÞ
Φ4ðu; rÞ ¼ u − u4: ð2:13dÞ

From these, we obtain the following expressions for the
null tangent vectors:

kα1 ¼ eσ1
�
−
2

f
; 1; 0⃗

�
; ð2:14aÞ

kα2 ¼ eσ2ð0; 1; 0⃗Þ; ð2:14bÞ

kα3 ¼ eσ3
�
2

f
;−1; 0⃗

�
; ð2:14cÞ

kα4 ¼ eσ4ð0;−1; 0⃗Þ: ð2:14dÞ

The four functions σ1;…; σ4 implement the parametriza-
tion dependence.
Let us start with the surface terms. The orientation of the

λ-integrals can be read off from (2.14a)–(2.14d), because
kα ¼ ∂λxα. From (2.14a)–(2.14d) it can also be shown that
the nonaffinity parameter on each null boundary is
κi ¼ ∂λσi. Computing the contribution of the four boun-
daries, we find, after an integration by parts,

IN
2Ωn

¼ −n
Zr2
r1

dr rn−1σ1 − n
Zr2
r3

dr rn−1σ2 − n
Zr4
r3

dr rn−1σ3 − n
Zr4
r1

dr rn−1σ4

− rn1½σ1ðr1Þ þ σ4ðr1Þ� þ rn2½σ1ðr2Þ þ σ2ðr2Þ� − rn3½σ2ðr3Þ þ σ3ðr3Þ� þ rn4½σ3ðr4Þ þ σ4ðr4Þ�: ð2:15Þ

We now consider the bulk contribution. From (2.2) we have

FμνFμν ¼ −
nðn − 1Þq2

r2n
; ð2:16Þ

while from Einstein’s equation

R ¼ 2ðnþ 2Þ
n

Λþ n − 2

n
FμνFμν: ð2:17Þ

Thus, the on-shell action (2.1) reads

IB ¼ Ωn

Z
dr durn

�
−
2ðnþ 1Þ

L2
þ 2ðn − 1Þq2

r2n

�

¼ 2Ωn

Zu4
u2

du

�
1

L2
ðρnþ1

3 − ρnþ1
1 Þ þ q2ðρ1−n3 − ρ1−n1 Þ

�

¼ 2Ωn

Zu4
u2

du
�
ρn1

d ln jfj
du

− ρn3
d ln jfj
du

þ nq2ðρ1−n3 − ρ1−n1 Þ
�
: ð2:18Þ

The functions ρ1ðuÞ and ρ3ðuÞ are defined implicitly by Φ1ðu; ρ1Þ ¼ 0 and Φ3ðu; ρ3Þ ¼ 0, respectively, and in the last line
we have used the identity

FIG. 2. Setup of the causal diamond computation. The labels of
the null boundaries and the corners used in the text are shown.
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ρ

L2
¼ −

d
du

ln jfj − ðn − 1Þωn−1

2ρn
þ q2ðn − 1Þ

ρ2n−1
: ð2:19Þ

After integrating by parts and changing the integration variable, (2.18) becomes

IB
2Ωn

¼ n
Zr2
r1

dr rn−1 ln jfj þ n
Zr4
r3

dr rn−1 ln jfj − 2nq2
Zr4
r3

dr
r1−n

f
− 2nq2

Zr2
r1

dr
r1−n

f

þ rn1 ln jfðr1Þj − rn2 ln jfðr2Þj þ rn3 ln jfðr3Þj − rn4 ln jfðr4Þj: ð2:20Þ

This is identical to

IB
2Ωn

¼ nau

Zr2
r1

dr rn−1 ln jfj þ nau

Zr4
r3

dr rn−1 ln jfj

þ nav

Zr2
r3

dr rn−1 ln jfj þ nav

Zr4
r1

dr rn−1 ln jfj

− 2nq2
Zr4
r3

dr
r1−n

f
− 2nq2

Zr2
r1

dr
r1−n

f

þ rn1 ln jfðr1Þj − rn2 ln jfðr2Þj þ rn3 ln jfðr3Þj − rn4 ln jfðr4Þj; ð2:21Þ

where au and av are two real constants that are constrained by au þ av ¼ 1.
The corner terms contribute

IC
2Ωn

¼ rn1½σ1ðr1Þ þ σ4ðr1Þ − ln jfðr1Þj� − rn2½σ1ðr2Þ þ σ2ðr2Þ − ln jfðr2Þj�

þ rn3½σ2ðr3Þ þ σ3ðr3Þ − ln jfðr3Þj� − rn4½σ3ðr4Þ þ σ4ðr4Þ − ln jfðr4Þj�: ð2:22Þ

In the above equations, the manipulations we have done are such that the terms arising from the integration by parts of the
surface and bulk contributions precisely cancel the corner terms. We now choose a particular parametrization of the null
boundary hypersurfaces by specifying the parametrization functions σiðrÞ. The choice is driven by analogy to the
Schwarzschild-AdS case discussed in [21], where, in order to measure the complexity of the black hole with respect to
empty AdS space, the parametrization functions turned out to be proportional to the logarithm of the blackening factor of
the black hole. Concretely,

onN1∶ σ1ðλÞ ¼ au ln jfðrðλÞÞj; onN3∶ σ3ðλÞ ¼ au ln jfðrðλÞÞj;
onN2∶ σ2ðλÞ ¼ av ln jfðrðλÞÞj; onN4∶ σ4ðλÞ ¼ av ln jfðrðλÞÞj: ð2:23Þ

With this choice, we note that also the corner term
contribution (2.22) vanishes identically. Adding (2.21)
and (2.15) yields the total action of the causal diamond

I ¼ 4nq2Ωn

�Zr3
r4

dr
r1−n

f
þ
Zr1
r2

dr
r1−n

f

�
: ð2:24Þ

Clearly, when the electric charge of the black hole is set to
zero while keeping fixed the positions ri of the four corners

of the causal diamond, the action vanishes, as required by
our criterion. However, this does not imply that the q → 0
limit results in a vanishing complexity, because τ should be
held fixed in this limit, not the r-variables of the corners.

C. Complexity =Action

The WdW patch is bounded by the null surfaces
intersecting the left and right boundaries at the cutoff
radius R at times tL and tR, respectively. This is illustrated
in Fig. 3. To simplify, we can use time translation
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invariance to set tR ¼ −tL ¼ τ. Contrary to the AdS-
Schwarzschild case, the WdW patch does not reach the
singularity.6 Therefore, it is always a causal diamond. The
future and past vertices of this diamond are located in the
regions II and IV, respectively, at the radii r ¼ rþm and r ¼
r−m determined by

r�ðr�mÞ ¼ �τ; ðr− < r�m < rþÞ: ð2:25Þ

This implies r−m ¼ rþm for τ ¼ 0, and r�m → r∓ for τ → ∞.
We restrict our attention to τ > 0.
The result (2.24) is straightforwardly translated into

complexity using (1.1). Substituting the radial positions
of the four corners of the WdW patch, one finds

C ¼ −
nΩnq2

4π2Gℏ

�Zr−m
rþm

dr
r1−n

f
þ 2

ZR
r−m

dr
r1−n

f

�
: ð2:26Þ

The integrand in the second term of (2.26) has an integrable
singularity at the outer horizon, r ¼ rþ. Moreover, the
second term is also integrable in the R → ∞ limit, so that
the cutoff R can be safely removed. In other words, the
complexity is finite in our approach.
The time τ appears in the complexity only implicitly

through the integration limits r�m. Using (2.25) and (2.10),
the complexity growth rate is found to be

dC
dτ

¼ nΩnq2

4π2Gℏ
½ðrþmÞ1−n − ðr−mÞ1−n�: ð2:27Þ

This vanishes at τ ¼ 0, is always positive for τ > 0, and
approaches, at late times, the value known from the
literature [20,22,47,48],

lim
τ→∞

dC
dτ

¼ nΩnq2

4π2Gℏ
½ðr−Þ1−n − ðrþÞ1−n�: ð2:28Þ

In contrast to earlier results [31], this limiting value is
approached from below. To see this, calculate the second
time derivative of the complexity,

d2C
dτ2

¼ −
nðn − 1ÞΩnq2

4π2Gℏ

�
fðr−mÞ
ðr−mÞn

þ fðrþmÞ
ðrþmÞn

�
: ð2:29Þ

Because fðr−mÞ and fðrþmÞ are both negative for all times,
(2.29) is always positive, and the complexity growth rate
can only approach (2.28) from below.
This has an implication for the validity of the (gener-

alized) Lloyd bound. It has been observed [20] that the late-
time value (2.28) violates the conjectured Lloyd bound7

dC
dτ

≤
4

πℏ
½ðM − μQÞ − ðM − μQÞgs�; ð2:30Þ

where “gs” stands for the ground state. In [47] it was
proposed to consider the limiting value (2.28) as the Lloyd
bound and reinterpret it as

dC
dτ

≤
2

πℏ
½ðM − μþQÞ − ðM − μ−QÞ�; ð2:31Þ

where μ� are the chemical potentials associated with the
outer and inner horizons. If one adopts this viewpoint, our
result implies that the Lloyd bound is never violated, in
contrast to the findings of [31], where it was violated at
intermediate times. This improvement is a direct result of
our parametrization of the null boundaries.
A short comment is in order for the extremal case. The

causal structure of the extremal black hole is different from
the nonextremal cases. In particular, the extremal black
hole is one-sided, i.e., the WdW patch is anchored only on
one asymptotic boundary. This, together with time trans-
lation symmetry, implies that the action of the WdW patch
is time independent. As a consequence, extremal black
holes do not complexify [20]. This agrees with taking the
extremal limit of our results above. In particular, in the
extremal limit the interval in which fðrÞ < 0 shrinks to a
point, so that all of rþ, r−, rþm, and r−m approach a common
value, which implies that (2.27)–(2.29) all vanish.

FIG. 3. WdW patch of the RN-AdS black hole.

6The extremal RN-AdS black hole, which has a different
causal structure, is an exception. We shall comment on it at the
end of this section.

7We have included a factor of two in order to adjust for our
differing time convention relative to [20].
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III. ROTATING BTZ BLACK HOLE

A. Setup

Black holes without electric or magnetic charges, but
with angular momentum, are vacuum solutions, but they
are not static. Therefore, they provide another interesting
testing case for our approach. As a first example, we shall
consider the rotating BTZ black hole. The BTZ black hole
is a solution of Einstein gravity with a negative cosmo-
logical constant in (2þ 1)-dimensions. The metric defining
the geometry is [49]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2
�
dϕ −

j
2r2

dt

�
2

; ð3:1Þ

where

fðrÞ ¼ r2

L2
þ j2

4r2
−m; ð3:2Þ

is the blackening function of the black hole. The physical
mass and angular momentum of the black hole areM ¼ m

8G

and J ¼ j
8G. The causal structure of the BTZ black hole is

similar to that of the RN-AdS black hole, with a singularity
at r ¼ 0 and two horizons defined by fðr�Þ ¼ 0. The
horizon radii are

r2� ¼
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

j2

m2L2

r �
mL2

2
: ð3:3Þ

In order to have two distinct positive solutions, the angular
momentum and the mass of the black hole must satisfy the
relation J < ML. The special case J ¼ ML is the extremal
case, in which the black hole has a single horizon, while, if
J > ML, the space time defined by the metric (3.1) has a
naked singularity. We will always assume J < ML in the
rest of the section.
To study the black hole, we will use Eddington-

Finkelstein coordinates. We start by defining the tortoise-
like coordinates

r�ðrÞ¼
Zr
R

dr
f
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2− j2

L2

q �
rþ ln

jr− rþj
rþ rþ

− r− ln
jr− r−j
rþ r−

�
;

r♯ðrÞ¼
Zr
R

dr
j

2r2f
¼ j

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2− j2

L2

q
×

�
1

rþ
ln
jr− rþj
rþ rþ

−
1

r−
ln
jr− r−j
rþ r−

�
: ð3:4Þ

Then, the ingoing null coordinates are

v ¼ tþ r�ðrÞ;
ψ ¼ ϕþ r♯ðrÞ: ð3:5Þ

After the change of coordinates, the metric becomes

ds2 ¼ −
�
f −

j2

2r2

�
dv2 þ 2dvdr − jdvdψ þ r2dψ2: ð3:6Þ

In this system, ingoing light rays follow trajectories with
constant v and ψ . The outgoing system can be constructed
in a similar fashion.
The causal structure of the BTZ is the same as the RN-

AdS case discussed in the previous section and depicted
in Fig. 1.

B. Action in a causal diamond

We now consider a generic causal diamond embedded in
the rotating BTZ spacetime, with the same setup of Fig. 2,
and compute the action.
Adopting the outgoing coordinate system ðv; r;ϕÞ, the

four null boundaries of the diamond are defined by the
scalar functions

Φ1ðv; rÞ ¼ v − v1; ð3:7aÞ

Φ2ðv; rÞ ¼ u2 − vþ 2r�ðrÞ; ð3:7bÞ

Φ3ðv; rÞ ¼ v3 − v; ð3:7cÞ

Φ4ðv; rÞ ¼ v − 2r�ðrÞ − u4: ð3:7dÞ

From these follow the null tangent vectors:

kα1 ¼ eσ1ð0; 1; 0Þ; ð3:8aÞ

kα2 ¼ eσ2
�
2

f
;−1; 0

�
; ð3:8bÞ

kα3 ¼ eσ3ð0;−1; 0Þ; ð3:8cÞ

kα4 ¼ eσ4
�
−
2

f
; 1; 0

�
: ð3:8dÞ

From the definition of the nonaffinity parameter and
(3.8a)–(3.8d) it follows that κi ¼ ∂λσi for each boundary.
With this, the contribution of the four null boundaries is

IN ¼ −4π
Zr2
r3

drσ2 − 4π

Zr2
r1

drσ1 − 4π

Zr4
r3

drσ3 − 4π

Zr4
r1

drσ4

þ 4πrσ2jr2r3 þ 4πrσ1jr2r1 þ 4πrσ3jr4r3 þ 4πrσ4jr4r1 : ð3:9Þ

The contribution of the four joints is
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IC ¼ 4πr1½σ1ðr1Þ þ σ4ðr1Þ − ln jfðr1Þj� − 4πr2½σ1ðr2Þ þ σ2ðr2Þ − ln jfðr2Þj�
þ 4πr3½σ2ðr3Þ þ σ3ðr3Þ − ln jfðr3Þj� − 4πr4½σ3ðr4Þ þ σ4ðr4Þ − ln jfðr4Þj�: ð3:10Þ

Finally, using (3.1) to compute the on-shell Lagrangian, the bulk contribution is given by

IB ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
LjOn-shell ¼ −

8π

L2

Z
dv drr ¼ −

4π

L2

Zv1
v3

dvðρ22 − ρ24Þ

¼ −4π
Zv1
v3

dv
�
ρ2

d ln jfðρ2Þj
dv

þ j2

4ρ22
−
�
ρ4

d ln jfðρ4Þj
dv

þ j2

4ρ24

��

¼ 4πav

Zr2
r3

dr ln jfðrÞj − 4πav

Zr1
r4

dr ln jfðrÞj þ 4πau

Zr2
r1

dr ln jfðrÞj

− 4πau

Zr3
r4

dr ln jfðrÞj þ 2πj2
Zr1
r4

dr
r2fðrÞ − 2πj2

Zr2
r3

dr
r2fðrÞ

þ 4πr1 ln jfðr1Þj − 4πr4 ln jfðr4Þj þ 4πr3 ln jfðr3Þj − 4πr2 ln jfðr2Þj: ð3:11Þ

In these manipulations we have used the identity

ρ2

L2
¼ ρ

d ln jfj
dv

þ j2

4ρ2
; ð3:12Þ

and the constants au and av are again constrained by au þ av ¼ 1.
By fixing the same type of parametrization used for the previous case, with the parametrization functions proportional to

the logarithm of the blackening function

onN1∶ σ1ðλÞ ¼ au ln jfðrðλÞÞj; onN3∶ σ3ðλÞ ¼ au ln jfðrðλÞÞj;
onN2∶ σ2ðλÞ ¼ av ln jfðrðλÞÞj; onN4∶ σ4ðλÞ ¼ av ln jfðrðλÞÞj; ð3:13Þ

the total action in the causal diamond is

I ¼ 2πj2
�Zr1

r4

dr
r2fðrÞ −

Zr2
r3

dr
r2fðrÞ

�
: ð3:14Þ

The parametrization (3.13) is such that the action contri-
bution of any corner vanishes, as can be seen substituting in
(3.10). Moreover, it satisfies our criterion. This is verified
by taking the limit j → 0 of the action in the causal
diamond while keeping fixed the positions ri of its corners.
This limit corresponds to calculating the action in a causal
diamond in empty static AdS spacetime, and the limit of
(3.14) is zero in accordance to the criterion.

C. Complexity =Action

The WdW patch of the rotating BTZ black hole, just like
in the previous RN-AdS case, is a causal diamond. The null
boundaries of the patch meet at radii r�m, defined by

r�ðr�mÞ ¼ �τ. When τ ¼ 0 we have r−m ¼ rþm and, for
τ → ∞, r�m → r∓. Therefore, from (3.14) and (1.1), the
complexity is

C ¼ −
8GJ2

πℏ

�Z
r−m

rþm

dr
r2fðrÞ þ 2

Z
R

r−m

dr
r2fðrÞ

�
: ð3:15Þ

The second integral turns out to be finite for R → ∞,
implying that the complexity is again finite. Moreover, in
this simple case we are able to carry out the integration and
have an expression in closed form,

C ¼ JL

2πℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2L2

J2 − 1

q �
1

rþ
ln

ðrþ − rþmÞðrþ − r−mÞ
ðrþ þ rþmÞðrþ þ r−mÞ

−
1

r−
ln

ðrþm − r−Þðr−m − r−Þ
ðrþm þ r−Þðr−m þ r−Þ

�
: ð3:16Þ

By plotting (3.16) as a function of boundary time τ, as in
Fig. 4, we see that the complexity is always positive and
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increasing, reaching a linear growth regime at late times.
The fact that the complexity is always increasing is also
confirmed by computing its time derivative

dC
dτ

¼ 8GJ2

πℏ

�
1

ðrþmÞ2
−

1

ðr−mÞ2
�
; ð3:17Þ

which, because rþm ≤ r−m for τ ≥ 0, is always non-negative.
A plot of the complexity growth rate (3.17) is shown in
Fig. 5. The complexity growth rate is zero at τ ¼ 0 and then
increases monotonically. At late times, (3.17) reaches the
asymptotic value

lim
τ→∞

dC
dτ

¼ 8GJ2

πℏ

�
1

r2−
−

1

r2þ

�
¼ 4

πℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

J2

L2

r
; ð3:18Þ

which agrees with previous results [20,31,47] and exactly
saturates the upper bound proposed in [47].8 In this case,
the monotonic increase of (3.17) can be proved computing
the second derivative of the complexity

d2C
dτ2

¼ −
16GJ2

πℏ

�
fðrþmÞ
ðrþmÞ3

þ fðr−mÞ
ðr−mÞ3

�
; ð3:19Þ

which is always positive because fðrÞ < 0 when
r− < r < rþ. This shows how the (generalized) Lloyd
bound is never violated during the time evolution of the
black hole.
The simple expression for the complexity (3.15) allows

us to discuss the complexity of formation of the rotating
BTZ black hole. The complexity of formation is defined by
the difference between the complexity of the black hole at
initial time τ ¼ 0 and the complexity of the asymptotic
geometry in which it has formed, in our case pure AdS3
spacetime. In our approach, AdS3 has vanishing complex-
ity, so that the complexity of formation is given by (3.16)
evaluated at τ ¼ 0. The expression of the complexity of
formation is then

ΔC ¼ JL

πℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2L2

J2 − 1

q �
1

rþ
ln
ðrþ − r0mÞ
ðrþ þ r0mÞ

−
1

r−
ln
ðr0m − r−Þ
ðr0m þ r−Þ

�
;

ð3:20Þ

where we have defined r0m ¼ rþmð0Þ ¼ r−mð0Þ. The value of
r0m can be obtained numerically solving r�ðr0mÞ ¼ 0. A plot
of the complexity of formation as a function of the
dimensionless quantity j

mL is shown in Fig. 6. As the
angular momentum parameter j varies in the permitted
range ½0; mL�, the dimensionless ratio varies between 0,
which corresponds to a static BTZ black hole, and 1, which
corresponds to an extremal rotating BTZ black hole. The
plots show that the complexity of formation is zero for
J ¼ 0, which is just the result for the static BTZ black hole
we found in [21], and then monotonically increases with
the angular momentum of the black hole. This is in contrast
with the findings of [46], where the complexity of for-
mation is computed in two ways, with the inclusion of the
counterterm which renders the action reparametrization
invariant, and using the affine parametrization. In both
cases they find that the complexity of formation is negative
and decreasing for small angular momentum of the black
hole, and eventually starts to increase and becomes positive
for big enough angular momentum. In the extremal black
hole limit, when j

mL → 1, or equivalently rþ → r−, the
complexity of formation diverges as

FIG. 5. Growth rate of the complexity of the rotating BTZ black
hole for different values of the angular momentum. Solid line:
J ¼ rþ, dash-dotted line: J ¼ 1.5rþ, dashed line: J ¼ 2.2rþ.
For each value of J Lloyd’s bound is represented by the
dotted horizontal line. (L ¼ 0.8rþ, 8G ¼ ℏ ¼ 1 and m ¼ 3 for
all plots.)

FIG. 4. Time evolution of the complexity of the rotating BTZ
black hole for different values of the angular momentum. Solid
line: J ¼ rþ, dash-dotted line: J ¼ 1.5rþ, dashed line:
J ¼ 2.2rþ. (L ¼ 0.8rþ, 8G ¼ ℏ ¼ 1 and m ¼ 3 for all plots.)

8For the rotating BTZ black hole, this bound and the one
proposed in [20] are equivalent.
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ΔC ∼
1

πℏ
ffiffiffiffi
m

p ln
2rþ

rþ − r−
: ð3:21Þ

This logarithmic divergence is also observed in [46],
although with a different leading coefficient. In particular,
the coefficient of divergence we have found is proportional
to the inverse of the coefficient found by [46].

IV. KERR-AdS BLACK HOLE

A. Setup

Another interesting and more complicated example of a
vacuum solution of Einstein gravity with a negative
cosmological constant is the Kerr-AdS black hole, which
is nonstatic. This solution describes a rotating black hole in
an asymptotically AdS spacetime with more than three
dimensions. For simplicity, we consider a Kerr-AdS black
hole in four dimensions. Its metric is [50]

ds2 ¼ −
Δr − a2Δθsin2θ

Σ2
dt2 þ Σ2

Δr
dr2 þ Σ2

Δθ
dθ2

þ 2asin2θ
Δr − ðr2 þ a2ÞΔθ

Σ2Ξ
dtdϕþ Πsin2θ

Σ2Ξ2
dϕ2;

ð4:1Þ
where9

Δr ¼ ðr2 þ a2Þ
�
1þ r2

L2

�
− 2mr; Δθ ¼ 1 −

a2cos2θ
L2

;

Σ2 ¼ r2 þ a2cos2θ; Ξ ¼ 1 −
a2

L2
;

Π ¼ ðr2 þ a2Þ2Δθ − a2Δrsin2θ: ð4:2Þ

The parameters m > 0 and 0 < a < L determine the
physical mass and angular momentum of the black hole

M ¼ m
GΞ2

; J ¼ am
GΞ2

: ð4:3Þ

For the zeroes of Δr to be positive and distinct, the mass
parameter must satisfy [46]

m >
L

3
ffiffiffi
6

p
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1þ a2

L2

�
2

þ 12a2

L2

s
þ 2a2

L2
þ 2

!

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ a2

L2

�
2

þ 12a2

L2

s
−
a2

L2
− 1

vuut : ð4:4Þ

We will assume (4.4) for the rest of the section. It is,
actually, simpler to rewrite Δr as

Δr ¼
1

L2
ðr − rþÞðr − r−Þ½r2 þ ðr− þ rþÞrþ α�; ð4:5Þ

where α, r−, and rþ satisfy the relations

αr−rþ ¼ a2L2; ð4:6Þ

ðrþ þ r−Þðα − r−rþÞ ¼ 2mL2; ð4:7Þ

αþ r−rþ − ðrþ þ r−Þ2 ¼ a2 þ L2; ð4:8Þ

subject to the condition10

a
rþ

< min

�
L
rþ

;
rþ
L

�
: ð4:9Þ

The geometry defined by (4.1) has a curvature singu-
larity with the topology of a ring at r ¼ 0 and θ ¼ π

2
, as well

as two horizons at r�, defined by Δrðr�Þ ¼ 0. As shown
in [51], the geometry is free of caustics between the
horizons and outside of the outer horizon.
The Penrose diagram of Kerr-AdS spacetime depends on

whether or not θ ¼ π
2
, because of the location of the

curvature singularity mentioned above. The two possible
Penrose diagrams are shown in Fig. 7. When θ ¼ π

2
, which

includes the curvature singularity at r ¼ 0, the Penrose
diagram is similar to the diagram of RN-AdS spacetime.
If θ ≠ π

2
, r ¼ 0 is a regular point, and the spacetime can be

analytically continued to a region with r < 0. In any case,
this distinction is irrelevant for our purposes, because the
WdW patch is located entirely in the regions I–IV.
The relevant thermodynamic quantities are associated

with the outer horizon. They are

FIG. 6. Complexity of formation of the rotating BTZ black hole
for different values of the mass parameter m. Solid line: m ¼ 5,
dashed line: m ¼ 7, dashed-dotted line: m ¼ 9. (8G ¼ ℏ ¼ 1 for
all plots.)

9Notice that our notation differs from [46]. In particular, our Σ2

corresponds to their ρ2, and our Π to their Σ2.

10The condition (4.9) unifies the two conditions a < L and
r2þ > aL necessary to avoid superluminal rotation velocities at
the outer horizon.
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Ωþ ¼ a
L2

r2þ þL2

r2þ þa2
; T ¼ rþ

2πL2

r2þ þL2

r2þ þa2
−

1

4πrþ

�
1−

r2þ
L2

�
;

S¼ πr2þ
4G

; ð4:10Þ

which are the horizon angular velocity, the temperature,
and the entropy, respectively.
To study the black hole, we introduce ingoing and

outgoing Kerr null coordinates

v ¼ tþ r�ðr; θÞ;
u ¼ t − r�ðr; θÞ; ð4:11Þ

where the tortoise coordinate r� is now dependent also on
the angular variable θ. To be specific, let us consider a
v ¼ const null hypersurface. The tangent covector to such a
hypersurface, which we shall call l, is given by

lμ ¼ ∂μv ¼ ð1; ∂rr�; ∂θr�; 0Þ: ð4:12Þ

Its norm ought to be zero, which yields a differential
equation for r�,

Δrð∂rr�Þ2 þ Δθð∂θr�Þ2 ¼
ðr2 þ a2Þ2

Δr
−
a2sin2θ
Δθ

: ð4:13Þ

The solution to (4.13) can be expressed as follows [51,52]:

∂rr�ðr; θÞ ¼
Q
Δr

; ð4:14Þ

∂θr�ðr; θÞ ¼
P
Δθ

; ð4:15Þ

where

Q2 ¼ ðr2 þ a2Þ2 − a2ζΔr;

P2 ¼ a2ðζΔθ − sin2θÞ; ð4:16Þ

and ζðr; θÞ is an auxiliary function. It must obey a
consistency condition imposed by d2r� ¼ 0, which reads

dζ ¼ 1

μ
ðPdr −QdθÞ; ð4:17Þ

where μðr; θÞ is an integrating factor again subject to the
condition d2ζ ¼ 0.
Notice that from (4.16) and (4.2) follows:

Π ¼ ΔθQ2 þ ΔrP2: ð4:18Þ

Similar considerations hold for the outgoing coordinate
u. The tangent covector to a u ¼ const hypersurface, which
we call n, reads

nμ ¼ ∂μu ¼ ð1;−∂rr�;−∂θr�; 0Þ: ð4:19Þ

It is null when r� satisfies again (4.13).
Because ζ satisfies lμ∂μζ ¼ nμ∂μζ ¼ 0, it is convenient

to adopt it as an intrinsic coordinate along a spacelike
direction, together with ϕ. The spacelike tangents are

eμζ ¼
∂xμ
∂ζ ¼ μ

Π
ð0; PΔr;−QΔθ; 0Þ; ð4:20Þ

eμϕ ¼ ∂xμ
∂ϕ ¼ ð0; 0; 0; 1Þ; ð4:21Þ

which determine the nondegenerate induced metric

γab ¼
 

μ2Σ2

Π 0

0 Πsin2θ
Σ2Ξ2

!
: ð4:22Þ

The null coordinate along a v ¼ const hypersurface is
determined implicitly by

kμ ¼ ∂xμ
∂λ ¼ eσðλ;ζÞlμ; ð4:23Þ

and similarly for a u ¼ const hypersurface with nμ instead
of lμ. The function σðλ; ζÞ implements the freedom of
parametrization. By symmetry, we take σ to be independent
of ϕ.

(a) (b)

FIG. 7. The Penrose diagram of Kerr-AdS spacetime. (a) The
singularity is located at r ¼ 0, θ ¼ π

2
. (b) For θ ≠ π

2
, the spacetime

can be continued to r < 0.
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B. Action in a causal diamond

In this subsection, we will discuss the action in a generic
causal diamond in Kerr-AdS spacetime. The setup is of the
causal diamond is the same as in the RN-AdS case; see
Fig. 2. We shall consider the diamond in the coordinates
ðu; r; θ;ϕÞ, with u2 ≤ u ≤ u4 and ρ3ðu; θÞ ≤ r ≤ ρ1ðu; θÞ,
where ρ1 and ρ3 are implicitly determined by the defining
relations of the null boundaries N1 and N3,

uþ 2r�ðρ1; θÞ ¼ v1; uþ 2r�ðρ3; θÞ ¼ v3: ð4:24Þ

First, we consider the contribution of the four joints.
Taking the first joint as an example, the null tangent vectors
that meet in the joint are kμ1 ¼ eσ1lμ and kμ4 ¼ eσ4nμ.
Therefore, the contribution of this joint reads

IC41
¼ 2

Z
dϕ dζ

ffiffiffi
γ

p
ln

���� k1 · k42

����
¼ 4π

Ξ

Z
dζ

�
jμj sin θ ln

���� Πeσ1þσ4

Σ2ΔrΔθ

����
�
C41

: ð4:25Þ

The other three joints yield analogous contributions.
We proceed fixing the parametrization functions

σ1;…; σ4. Motivated by analogy with the simpler cases
of the Schwarzschild-AdS black hole [21], the RN-AdS
black hole and the rotating BTZ black hole, we shall choose
a parametrization, in which the corner terms vanish. For
simplicity, let us take

σ1ðλ; ζÞ ¼ ln

����Σ2ΔrΔθ

Π

����
N1

; σ3ðλ; ζÞ ¼ ln

����Σ2ΔrΔθ

Π

����
N3

;

σ2ðλ; ζÞ ¼ σ4ðλ; ζÞ ¼ 0; ð4:26Þ

which correspond to au ¼ 1 and av ¼ 0 in the previous
cases. The suffixes N1 and N3 indicate pull-backs to the
null surfaces.
Next, we consider the contributions of the null bounda-

ries. For a v ¼ const boundary (N1 or N3), the tangent
vector kμ is given by (4.23), kμ ¼ eσlμ. Because lν∇νlμ ¼ 0
from (4.12), one easily computes

kν∇νkμ ¼ ð∂λσÞkμ; ð4:27Þ

so that the nonaffinity parameter is κ ¼ ∂λσ. Hence, for N1,
we have the contribution

IN1
¼ 4π

Ξ

Z
dλ dζjμj sin θ∂λσ1: ð4:28Þ

An analogous contribution arises from N3. Instead, N2 and
N4 do not contribute, because of our choice (4.26).
It is convenient to rewrite (4.28) by changing coordi-

nates from ðλ; ζÞ to ðu; θÞ. The Jacobian of the coordinate
change is

∂ðu; θÞ
∂ðλ; ζÞ ¼

 
− 2Πeσ1

Σ2ΔrΔθ
0

Peσ1
Σ2 − μΔθQ

Π

!
: ð4:29Þ

We observe in passing that the choice (4.26) implies
u ¼∓2λþ const, where the sign depends on the sign
of Δr. After the change of coordinates, (4.28) becomes

IN1
¼ 2π

Ξ

Zπ
0

dθ sin θ
Zu4
u2

du

�
ΔrΣ2

Q
lμ∂μσ1

�
r¼ρ1

: ð4:30Þ

The choice (4.26) implies that σ depends only on the
spacetime coordinates r and θ. After calculating also lμ by
raising the index in (4.12), (4.30) reads

IN1
¼ 2π

Ξ

Z
π

0

dθ sin θ
Z

u4

u2

du

�
Δr

�
∂r þ

P
Q
∂θ

�
σ1

�
r¼ρ1

:

ð4:31Þ

Finally, substituting (4.26) and adding also the contribution
fromN3, the action contribution from the null boundaries is
found to be

IN ¼ IN1
þ IN3

¼ 2π

Ξ

Zπ
0

dθ sin θ

×
Zu4
u2

du

�
Δr

�
∂r þ

P
Q
∂θ

�
ln

����Σ2ΔrΔθ

Π

����
�
r¼ρ1

r¼ρ3

: ð4:32Þ

The last ingredient is the bulk action, which is

IB¼−
6

L2

Z
dudθdϕdr

Σ2 sinθ
Ξ

¼−
12π

ΞL2

Z
dudθ sinθdrΣ2

¼−
4π

ΞL2

Zπ
0

dθ sinθ
Zu4
u2

du½r3þ3a2rcos2θ�r¼ρ1
r¼ρ3 : ð4:33Þ

Summing the contributions (4.32) and (4.33), the total
action of the causal diamond is given by

I ¼ 4π

Ξ

Zπ
0

dθ sin θ
Zu4
u2

du½Fðρ3; θÞ − Fðρ1; θÞ�; ð4:34Þ

where we have introduced the function Fðr; θÞ by

Fðr; θÞ ¼ −
r3 þ 3a2rcos2θ

L2
þ r2

2
∂r

�
Δr

r2

�

−
Δr

2

�
∂r þ

P
Q
∂θ

�
ln

���� Π
r2Σ2Δθ

����: ð4:35Þ
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This can be slightly simplified by noting that

∂r

�
Δr

r2

�
¼ 2

�
r
L2

−
a2

r3
þ m
r2

�
; ð4:36Þ

which gives

Fðr; θÞ ¼ −
3a2rcos2θ

L2
þm −

a2

r

−
Δr

2

�
∂r þ

P
Q
∂θ

�
ln

���� Π
r2Σ2Δθ

����: ð4:37Þ

The term m can be omitted in this expression, because it
cancels in (4.34). We also have the following identity:

Π
r2Σ2

¼ Ξ
�
1þ a2

r2
þ 2ma2sin2θ

rΣ2Ξ

�
: ð4:38Þ

This immediately shows that (4.34) vanishes for a ¼ 0, in
agreement with the result that the action in any causal
diamond of Schwarzschild-AdS vanishes [21].
For the following, it will be convenient to express the

result (4.34) using r as the integration variable instead of u.
Taking into account the above comment on m, we get

I ¼ 8π

Ξ

Zπ
0

dθ sin θ

� Zr2ðθÞ
r1ðθÞ

dr
QðF −mÞ

Δr
þ
Zr4ðθÞ
r3ðθÞ

dr
QðF −mÞ

Δr

�
:

ð4:39Þ

C. Complexity =Action

The WdW patch of the Kerr-AdS black hole is a causal
diamond anchored at two cutoff boundaries located at
r ¼ R ≫ L. It is located entirely in the quadrants I–IV; see
Fig. 8. As before, we use time translation invariance to fix

t ¼ τ and t ¼ −τ on the right and left boundaries, respec-
tively. The null boundaries of the WdW patch meet in the
quadrants II and IV at the locations r ¼ rþm and r ¼ r−m,
respectively. These satisfy

r�ðr�m; θÞ ¼ �τ þ r�ðR; θÞ; ð4:40Þ

together with r− < r�m < rþ. For τ > 0, we have rþm < r−m
(rþm ¼ r−m for τ ¼ 0), and r�m → r∓ for τ → ∞.
From (4.40) and (4.14) one obtains the derivative of r�m

with respect to τ,

∂τr�m ¼ �Δr

Q

����
r¼r�m

: ð4:41Þ

We are now ready to write down the complexity.
Applying (4.39) to the WdW patch and translating to
complexity, we get

C ¼ 1

2πℏΞG

Zπ
0

dθ sin θ

�ZR
rþm

dr
Q
Δr

ðF −mÞ

þ
ZR
r−m

dr
Q
Δr

ðF −mÞ
�
: ð4:42Þ

The integrands of (4.42) have a pole at r ¼ rþ. This is,
however, an integrable singularity.
It turns out that the integrals do not diverge for large R,

so that the cutoff can be removed. To show this, it is
necessary to obtain P and Q for large r. For the auxiliary
variable ζ in (4.16), let us use the ansatz

ζ ¼ sin2θ
Δθ

þ α2ðθÞ
r2

þ � � � ð4:43Þ

with an undetermined function αðθÞ. Here and henceforth,
the ellipses denote irrelevant subleading terms in r.
Together with (4.16), (4.43) implies

Q ¼ r2

ffiffiffiffiffiffi
Ξ
Δθ

s
þ � � � ; P ¼ a

r
αðθÞ

ffiffiffiffiffiffi
Δθ

p
þ � � � : ð4:44Þ

Furthermore, (4.17) gives

Q
μ
¼ −2 sinθ cosθ

Ξ
Δ2

θ

þ � � � ; P
μ
¼ −

2α2ðθÞ
r3

þ � � � : ð4:45Þ

From (4.45) and (4.44) one can determine αðθÞ and,
subsequently,

FIG. 8. WdW patch in Kerr-AdS spacetime.
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P ¼ a2

r

ffiffiffiffiffiffi
Ξ
Δθ

s
sin θ cos θ þ � � � : ð4:46Þ

Returning to the complexity (4.42), the dominant term in
the integrand goes like 1=r for large r and has three
contributions, which correspond to the terms that grow as r
in (4.37). The first contribution is simply the first term on
the right-hand side, the second one arises from the term
with ∂r upon using (4.38), and the last contribution is
P
2Δθ

∂θΔθ. Summing up these three contributions, one gets

Q
Δr

ðF−mÞ ¼ a2

r

ffiffiffiffiffiffi
Ξ
Δθ

s �
−3cos2θþ 1þ a2sin2θcos2θ

L2Δθ

�
þ � � �

¼ a2

r

ffiffiffiffiffiffi
Ξ
Δ3

θ

s �
1− 3cos2θþ 2

a2

L2
cos4θ

�
þ � � � :

ð4:47Þ
Therefore,

Zπ
0

dθ sin θ
Z

R
dr

Q
Δr

ðF −mÞ ¼ lnRa2
ffiffiffiffi
Ξ

p
Alog þ � � � ;

ð4:48Þ

where

Alog ¼
Zπ
0

dθ sinθΔ−3
2

θ

�
1− 3cos2θþ 2

a2

L2
cos4θ

�
: ð4:49Þ

After a change of the integration variable, this can be
rewritten as

Alog ¼
Z1
−1

dx
1 − 3x2 þ 2 a2

L2 x4

ð1 − a2

L2 x2Þ32
¼
Z

1

−1
dx ∂x

x − x3

ð1 − a2

L2 x2Þ12
¼ 0:

ð4:50Þ

Therefore, the lnR term in (4.48) vanishes, which proves
that the complexity (4.42) is finite in the limit R → ∞.
It is not possible to analytically compute the integrals in

(4.42) and to find a closed form for the complexity as a
function of τ. However, noting that (4.42) depends on τ
only through the integration extrema r�m via (4.40), the
complexity growth rate can be obtained as

dC
dτ

¼ 1

2πℏGΞ

Zπ
0

dθ sin θ½Fðr−m; θÞ − Fðrþm; θÞ�: ð4:51Þ

Note that r�m depend on θ (and on τ). We can easily extract
the following information from (4.51). First the

complexification rate is initially zero, because rþm ¼ r−m
by symmetry for τ ¼ 0. Second, it approaches a constant
value at late times. To find this value, use r�m → r∓ for
τ → ∞ and the fact that Δrðr�Þ ¼ 0. This implies

Fðr�; θÞ ¼ m −
3a2r�cos2θ

L2
−
a2

r�

¼ a2r�
L2

ð1 − 3cos2θÞ þ r3�
L2

þ r� −m: ð4:52Þ

Substituting in (4.51), the late time complexity growth rate
is obtained as

lim
τ→∞

dC
dτ

¼ r3þ − r3− þ L2ðrþ − r−Þ
πℏGðL2 − a2Þ : ð4:53Þ

The result (4.53) agrees with the result found in [46].11

Using (4.3) and (4.10), it can be rewritten as [46]

lim
τ→∞

dC
dτ

¼ 2

πℏ
½ðM −ΩþJÞ − ðM − Ω−JÞ�; ð4:54Þ

where Ωþ ¼ Ω, and Ω− is the analogous quantity asso-
ciated with the inner horizon. This saturates the bound
of [47].
We would like to establish whether the (4.53) is

approached from below or above, so we need to calculate
another derivative with respect to τ. To make progress, first
note that (4.40) implies

Q
Δr

����
r�m

dr�m
dθ

þ P
Δθ

����
r�m

¼ P
Δθ

����
R

¼
R→∞

0: ð4:55Þ

This can be used to substitute, in (4.51), the fraction P
Q that

appears in Fðr�m; θÞ [c.f. (4.37)]. Hence,

Fðr�m; θÞ ¼ m −
3a2rcos2θ

L2
−
a2

r
−
a2

L2

�
dr
dθ

�
sin θ cos θ

−
1

2

�
Δr∂r − Δθ

�
dr
dθ

�
∂θ

�
ln

���� Π
r2Σ2

����; ð4:56Þ

where r ¼ r�m is implied on the right-hand side.
Substituting (4.56) into (4.51) and integrating by parts
the fourth term yields

dC
dτ

¼ 1

2πℏGΞ

Zπ
0

dθ sin θ½F̃ðr−m; θÞ − F̃ðrþm; θÞ�; ð4:57Þ

where

11The extra factor of two with respect to [46] is due to our
definition of τ.
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F̃ðr�m; θÞ ¼ m −
a2ðr2 þ L2Þ

L2r

−
1

2

�
Δr∂r − Δθ

�
dr
dθ

�
∂θ

�
ln

���� Π
r2Σ2

����
¼ −mþ r

�
1þ r2

L2

�

−
1

2

�
Δr∂r − Δθ

�
dr
dθ

�
∂θ

�
ln

���� ΠΣ2

����: ð4:58Þ

Again, r ¼ r�m is implied on the right-hand side.
We are now ready to take another derivative with respect

to τ, using again (4.40). From (4.58), there will be terms
involving

d
dτ

d
dθ

r�m ¼ d
dθ

�
�Δr

Q

�����
r�m

: ð4:59Þ

Such terms can be integrated by parts. After a few lines, one
finds

d2C
dτ2

¼ 1

2πℏGΞ

Zπ
0

dθ sin θ½Gðr−m; θÞ þ Gðrþm; θÞ�; ð4:60Þ

where we have abbreviated

Gðr;θÞ ¼ −
Δr

2Q

�
2þ 6r2

L2
− ð∂rΔrÞ∂r ln

Π
Σ2

−Δr∂2
r ln

Π
Σ2

− ð∂θΔθÞ∂θ ln
Π
Σ2

−Δθ∂2
θ ln

Π
Σ2

−Δθð∂θ ln sinθÞ∂θ ln
Π
Σ2

�
: ð4:61Þ

Notice that the terms with mixed derivatives, ∂r∂θ ln Π
Σ2,

have canceled.
If the term in the brackets in (4.61) were non-negative for

all r ∈ ðr−; rþÞ and θ ∈ ð0; πÞ, then it would follow
immediately that (4.60) is positive. Unfortunately, this is
not the case, as we illustrate in Fig. 9. It is impossible to
make a general statement, because generically positive
values at r−m may be offset by possibly negative values at
rþm, and both, r−m and rþm, are functions of θ. One can show,
however, that the term in question is non-negative in the
late time limit, when r∓m → r�. In this limit, the term in the
brackets reduces to12

a2ðr2� þ L2Þ2½3r4� þ r2�a
2ð1þ cos2θÞ − a4cos2θ�2sin2θ

L4Δθr2�ðr2� þ a2Þ2ðr2� þ a2cos2θÞ2 ;

ð4:62Þ

which is manifestly non-negative. This concludes the proof
that the complexity growth rate approaches the limit (4.54)
from below.

V. AdS-VAIDYA SPACETIME

A. Setup

We now consider the AdS-Vaidya spacetime, which
gives a description of a process in which a shock wake
collapses within an initial AdS geometry, and a one-sided
AdS-Schwarzschild black hole is formed. The collapse can
be caused, for example, by the insertion of a homogeneous
shell of null fluid. The action functional for such a fluid
coupled to gravity has extensively been discussed in
[53,54] and references therein. The action is

I ¼
Z

dxnþ2 ffiffiffiffiffiffi
−g

p ðR − 2Λþ LfluidÞ; ð5:1Þ

where

Lfluid ¼ λgμνlμlν þ slμ∂μϕ: ð5:2Þ
Here, lμ is the velocity of the null fluid, gμν is the metric,
and the rest of the fields are auxiliary. In particular, λ is a
Lagrange multiplier that enforces the constraint lμlμ ¼ 0, s
can be interpreted as an entropy density, and ϕ plays the
role of a velocity potential. The on-shell stress-energy
tensor is

Tμν ¼ 2λlμlν: ð5:3Þ

FIG. 9. Illustration of the term in the brackets in (4.61) for
r ∈ ðr−; rþÞ and θ ∈ ð0; π=2Þ with the parameters r− ¼ 0.2,
rþ ¼ 1.2, L ¼ 1 (a ¼ 0.9268, m ¼ 2.3373). The gray plane
corresponds to zero. The term in question is negative, where
the gray plane is visible.

12We have eliminated m in favor of r�.
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By comparison with the stress tensor of a regular fluid we
can identify the energy density of the null fluid as ϵ ¼ 2λ.
The Vaidya metric in ingoing Eddington-Finkelstein

coordinates is

ds2 ¼ −Fðv; rÞdv2 þ 2dvdrþ rnΩ2
n; ð5:4Þ

with

Fðv; rÞ ¼ 1þ r2

L2
−
fPðvÞ
rn−1

: ð5:5Þ

fPðvÞ is known as the profile function. From Einstein’s
equation we find

λ ¼ n
32πG

f0PðvÞ
rn

: ð5:6Þ

This shows that the derivative of the profile function is
proportional to the energy density and, as such, should
always be non-negative. When fP is a constant, there is no
collapsing null fluid, and we simply have the AdS-
Schwarzschild black hole geometry, or pure AdS if
fP ¼ 0. Using the equation of motion one can also show
that the null fluid Lagrangian (5.2) vanishes on shell.
Therefore, the null-fluid contributes only implicitly through
the gravity action.

B. Action in a causal diamond

We focus on a causal diamond entirely contained in the
null fluid region. Like we did in the previous sections, we
will compute the action in the diamond, and then fix a
parametrization.

The action contribution of the four null boundaries is

IN
2Ωn

¼ −n
Zr2
r1

dr rn−1σ1 − n
Zr2
r3

dr rn−1σ2

− n
Zr4
r3

dr rn−1σ3 − n
Zr4
r1

dr rn−1σ4

− rn1½σ1ðr1Þ þ σ4ðr1Þ� þ rn2½σ1ðr2Þ þ σ2ðr2Þ�
− rn3½σ2ðr3Þ þ σ3ðr3Þ� þ rn4½σ3ðr4Þ þ σ4ðr4Þ�: ð5:7Þ

The bulk contribution is

IB ¼ −
2Ωn

L2

Zv1
v3

ðρnþ1
2 − ρnþ1

4 Þ: ð5:8Þ

The functions ρðvÞ correspond to the radial coordinates of
the null boundaries as a function of v and satisfy
dρ
dv ¼ 1

2
Fðv; ρÞ. As before, we rewrite the bulk contribution

using the identity

ρðvÞ
L2

¼ d ln jFðv; ρðvÞÞj
dv

−
ðn − 1ÞfPðvÞ

2ρn
þ f0PðvÞ
Fðv; ρðvÞÞρn−1 ;

ð5:9Þ

where the prime denotes a derivative with respect to v.
After some manipulation, we find

IB
2Ωn

¼ nau

Zr2
r1

dr rn−1 ln jFðvðrÞ; rÞj þ nau

Zr4
r3

dr rn−1 ln jFðvðrÞ; rÞj

þ nav

Zr2
r3

dr rn−1 ln jFðvðrÞ; rÞj þ nav

Zr4
r1

dr rn−1 ln jFðvðrÞ; rÞj

−
Zv1
v3

dvf0PðvÞ
�

ρ2
Fðv; ρ2Þ

−
ρ4

Fðv; ρ4Þ
�

þ rn1 ln jFðv1; r1Þj − rn2 ln jFðv1; r2Þj þ rn3 ln jFðv3; r3Þj − rn4 ln jFðv3; r4Þj; ð5:10Þ

with constants au and av ¼ 1 − au.
We do not write the contribution of the corners since, just like in the AdS-Schwarzschild and the RN-AdS cases, these are

canceled by the surface terms in (5.10) and (5.7). From (5.4) and (5.5) one can see that the function Fðr; vÞ plays the role of
the blackening factor for the Vaidya spacetime. Therefore, we fix

onN1∶ σ1ðλÞ ¼ au ln jFðvðλÞ; rðλÞÞj; onN3∶ σ3ðλÞ ¼ au ln jFðvðλÞ; rðλÞÞj;
onN2∶ σ2ðλÞ ¼ av ln jFðvðλÞ; rðλÞÞj; onN4∶ σ4ðλÞ ¼ av ln jFðvðλÞ; rðλÞÞj: ð5:11Þ
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The total action on the causal diamond is then

I
2Ωn

¼
Zv3
v1

dv f0PðvÞ
�

ρ2
Fðv; ρ2Þ

−
ρ4

Fðv; ρ4Þ
�
: ð5:12Þ

One can check that the parametrization (5.11) is compatible
with the criterion of vanishing action in a static vacuum.
Again, although we have not written it explicitly, the corner
contributions vanish separately.

C. Complexity =Action

We suppose for simplicity that the collapsing shell of
null fluid is centered at v ¼ 0 and has thickness 2δ, as
illustrated in Fig. 10. We want to model a situation in
which, after the collapse of a shell of null fluid in AdS
space, a one-sided Schwarzschild black hole is formed. The
profile function of the fluid must then interpolate between

the two regimes, i.e., fPð−δÞ ¼ 0 and fPðþδÞ ¼ ωn−1,
with the condition that f0P > 0. We can divide the WdW
patch in three subregions. As shown in [21], using the
appropriate parametrization, the subregion with pure AdS
geometry has zero action, while the black hole region
contributes13

IBH ¼ 2nΩnω
n−1ðτ − δÞ: ð5:13Þ

To evaluate the action on the subregion of the WdW
patch filled by the null fluid we, use the parametrization
(5.11) with av ¼ 1. We remark that the functions σ on the
null boundaries that traverse different subregions of the
WdW patch, should be continuous. The contribution of
the null boundary is then

IN ¼ 2Ωn

Zþδ

−δ

dv

�
ρnþ1
s

L2
þ ðn − 1ÞfPðvÞ

2
− f0P

ρs
Fðv; ρsÞ

�
:

ð5:14Þ

ρsðvÞ is radial coordinate of the boundary along the shell of
null fluid. The bulk contribution of this subregion is

IB ¼ −
2Ωn

L2

Zþδ

−δ

dv ρnþ1
s : ð5:15Þ

Finally, the contribution of the spacelike boundary at
r ¼ 0 is

IS ¼ ðnþ 1ÞΩn

Zþδ

−δ

dv fPðvÞ: ð5:16Þ

Adding up the contributions (5.14), (5.15), and (5.16), we
find the total action of the fluid subregion of the WdW,

Ifluid

2Ωn
¼
Zþδ

−δ

dv

�
nfPðvÞ − f0P

ρs
Fðv; ρsÞ

�
: ð5:17Þ

Now, we can write the action of the whole WdW patch

I ¼

8>>><
>>>:

0 for τ < −δ;
2Ωn

R
τ
−δ dvðnfPðvÞ − f0P

ρs
Fðv;ρsÞÞ for jτj ≤ δ;

2Ωn

h
nωn−1ðτ − δÞ þ Rþδ

−δ dvðnfPðvÞ − f0P
ρs

Fðv;ρsÞÞ
i

for τ > δ:

ð5:18Þ

FIG. 10. WdW patch for Vaidya spacetime. The shell of null
fluid is centred on v ¼ 0 and has thickness 2δ.

13The result appears to be one half of what was found in [21] for an eternal AdS-Schwarzschild black hole, because the black hole
formed by a collapse is one-sided.
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The action (5.18) depends on the shape of the profile function. As a particular case, we study the infinitely thin shell limit,
i.e., δ → 0. In this limit, the profile function can be approximated by fPðvÞ ¼ 1

2
ωn−1ð1þ v

δÞ. Furthermore, since the radial
coordinate is continuous across the shell, we can write ρsðvÞ ¼ rs þOðδÞ, where rs ¼ ρsð0Þ. Then, the integral in the third
case of (5.18) becomes Z þδ

−δ
dv

�
nfPðvÞ − f0P

ρs
Fðv; ρsÞ

�
¼ −

Z þδ

−δ
dv

rns
v
þOðδÞ ¼ OðδÞ: ð5:19Þ

This shows that in the infinitely thin shell limit, the
complexity of Vaidya spacetime is simply

C ¼
�
0 for τ < 0;
2M
πℏ τ for τ ≥ 0:

ð5:20Þ

As we could have expected, the complexity is zero before
the collapse, and afterwards we have the linearly growing
black hole contribution.

VI. CONCLUSIONS

In this paper, we have reconsidered the computation of
holographic complexity in theC ¼ A approach for different
types of asymptotically AdS black holes. The difference
with previous works is that we do not require the gravi-
tational action to be invariant under reparametrization of
the null boundaries, and we do not add the covariance
counterterm. On the bulk side, the parametrization of the
null boundaries describes the heat content on these boun-
daries [30]. On the CFT side, we interpret the freedom in
the choice of the parametrization as the choice of the details
involved in the definition of computational complexity,
such as the reference state and the set of elementary gates.
Following our earlier proposal [21], we choose the para-
metrization according to the principle that the action in any
vacuum stationary causal diamond vanishes. Incidentally,
this criterion seems to imply that the corner contributions
to the action of a causal diamond vanish separately. This is
actually easier to implement than the original criterion.

In the considered cases, namely RN-AdS, rotating BTZ
black holes and shock wave geometries, we find that the
complexity growth rate at late times agrees with previous
results in the literature. There are, however, important
differences between our and the earlier results. First, within
our approach, the complexity turns out to be finite when the
cutoff R is removed. This suggests that the action of the
WdW patch, calculated with a parametrization such that
the corner terms vanish, may not be dual to computational
complexity, but to a sort of operator complexity [15].
Second, we were able to prove, except for the Kerr-AdS
case, that the complexity growth rate always satisfies a
generalized bound and saturates it at late times. In contrast,
with the standard C ¼ A procedure using an affine para-
metrization of the null boundaries and adding the counter-
term, this bound is typically violated.
Therefore, we have confirmed that the application of our

criterion successfully computes the complexity of a large
class of black holes in Einstein-Hilbert gravity and provides
an important improvement over the standard C ¼ A pro-
cedure with the counterterm. It would be interesting to
investigate the application to more general gravitational
theories, such as Gauss-Bonnet gravity or higher derivative
theories.
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