
Chapter 7

Nonholonomic rolling nonprehensile
manipulation primitive

Alejandro Gutierrez-Giles, Aykut C. Satici, Alejandro Donaire, Fabio
Ruggiero, Vincenzo Lippiello, Bruno Siciliano

Abstract This chapter reviews the problem of nonholonomic rolling in non-
prehensile manipulation tasks through two challenging and illustrative exam-
ples: the robotic hula-hoop and the ballbot system. The hula-hoop consists
of an actuated stick and an unactuated hoop. First, the corresponding kine-
matic model is derived. Second, the dynamic model is derived through the
Lagrange-D’Alembert equations. Then a control strategy is designed to ro-
tate the hoop at some desired constant speed whereas positioning it over a
desired point on the stick surface. A stability analysis, which guarantees ul-
timate boundedness of all signals of interest, is carried out. The ballbot is
an underactuated and nonholonomic constrained mobile robot whose upward
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Table 7.1: Main symbols used in this chapter (pole and hoop are referred to
the hula hoop system, ball and top are referred to the ballbot system).

Definition Symbol

Frame attached to the pole’s and ball’s CoM H
Frame attached to the hoop’s and top’s CoM O
Frame attached to the contact point between the
hoop and the pole

C

Radius of the pole and the ball rh > 0
Pole metric tensor Mh 2 R2⇥2

Pole curvature tensor Kh 2 R2⇥2

Pole torsion form Th 2 R1⇥2

Radius of the hoop lo > 0
Thickness of the hoop 2ro > 0
Hoop metric tensor Mo 2 R2⇥2

Hoop curvature tensor Ko 2 R2⇥2

Hoop torsion form To 2 R1⇥2

Relative curvature tensor eKh 2 R2⇥2

Relative angular velocities between the contact
frames

!x,!y inR

Pfa�an matrix Ac 2 R3⇥5

Generalised coordinates of the pole qh 2 Rm

Position of the hoop’s centre in H ph
o 2 R3

Mass of the hoop mo > 0
Mass of the pole mh > 0
Gravity acceleration g ' 9.81 m/s2

Hoop inertia tensor with respect to H Io 2 R3⇥3

Rotation of O with respect to W Rst 2 SO(3)
Angular velocity of the hoop in W !o 2 R3

Standard unit vectors e2 =
⇥
0 1 0

⇤T
, e3 =

⇥
0 0 1

⇤T

Distance from the ball’s CoM and the top’s CoM l > 0
Position of the ball with respect to W psb 2 R3

Angular velocity of the ball with respect to W !sb 2 R3

Rotation of H with respect to W Rsb 2 SO(3)
Angular velocity of the top with respect to W !st 2 R3

Linear velocity of the top with respect to W vst 2 R3

Linear velocity of the ball with respect to W vsb 2 R3

Angular velocity of the top with respect to the ball !bt 2 R3

Position of the top with respect to W pst 2 R3

Inertia tensor of the ball with respect to W Ib 2 R3⇥3

Inertia tensor of the top with respect to W It 2 R3⇥3

Mass of the ball mb > 0
Mass of the top mt > 0

equilibrium point must be stabilised by active controls. Coordinate-invariant
equations of motion are derived for the ballbot. The linearised equations of
motion are then derived, followed by the detailed controllability analysis.
Excluding the rotary degree of freedom of the ball in the inertial vertical
direction, the linear system turns out to be controllable. It follows that the
nonlinear system is locally controllable, and a proportional-derivative type
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controller is designed to locally exponentially stabilise the upward equilib-
rium point and the translation of the ball. Numerical simulations for these
two examples illustrate the e↵ectiveness of the proposed methods.
This chapter is based on the works presented in [117, 118, 268, 270].

7.1 Brief introduction

In the previous chapter, the manipulation problem of nonprehensile planar
rolling systems has been addressed. In planar rolling systems, the kinematic
constraint associated with the pure rolling motion (only rolling, no sliding)
is integrable. Therefore, the system is holonomic. In this chapter, the focus
is shifted towards 3D systems in which the pure rolling constraint is not
integrable. A system with a set of kinematic constraints, expressed in the
so-called Pfa�an form [284], in which at least one of these constraints is not
integrable is said to be a nonholonomic system. A nonholonomic constraint
implies that some motion directions are instantaneously not allowed.

Therefore, this chapter tackles controlling an object manipulated through
nonholonomic rolling motions without form or force closure grasps. The ball-
on-plate gives the most illustrative example of it [276]. The primary objective
is to steer the free-rolling sphere toward the desired position and/or orien-
tation or along a desired path. It is worth pointing out that most of the
works addressing the ball-and-plate application consider the prehensile case
obtained by caging the sphere between two plates [74, 190, 234]. In such a
configuration, one plate is actuated while the other one is fixed. Dismissing
the fixed plate, the ball-and-plate application is addressed as a nonprehensile
rolling manipulation system in which the sole supporting moving plate con-
trols the ball. Therefore, position control of a basketball on a plate is tackled
in [166]. An analysis of the kinematics of rolling, based on a coordinate-
free approach, considering the cases of either pure rolling or twist-rolling, is
proposed in [71]. An extension of the DoD to the 3D case is given by the sta-
bilization of a ball free to roll on an actuated sphere in full gravity [103, 177].

This chapter first presents a control design for the hula-hoop task, which
belongs to the nonholonomic rolling nonprehensile manipulation primitive.
From a robotic point of view, this can be schematized through a hoop freely
rolling around an actuated pole. A first mathematical derivation was proposed
in [227] without taking correctly into account the nonholonomic constraints.
This issue is overcome in [117], in which a control approach without velocity
measurement is proposed. A formal mathematical analysis that guarantees
ultimate boundedness of all coordinates is developed in [118].

Afterwards, this chapter addresses the control design for the ballbot. The
ballbot is an underactuated, nonholonomically constrained, mobile robot
whose upward equilibrium point has to be stabilised by active controls [270,
268]. The ballbot is thus a spherical robot with a turret that is actively con-
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trolled on a plane. It is very similar to the ball-on-plate problem but, in this
case, the actuation is in the sphere and not in the plate.

The outline of the chapter shows then the two examples depicted above
with modelling, control design, and simulation results.

7.2 The hula-hoop problem

The task consists of spinning the hoop around a stick at some desired angular
speed while simultaneously driving the hoop to an arbitrarily desired point
over the pole surface. First, the kinematic model is derived. Second, the dy-
namic model is derived through the Lagrange–D’Alembert equations. Then a
control strategy is designed to rotate the hoop at some desired constant speed
whereas positioning it over a desired point on the stick surface. A stability
analysis, which guarantees ultimate boundedness of all signals of interest, is
carried out. Finally, numerical simulations illustrate the e↵ectiveness of the
proposed method.

7.2.1 Contact kinematics

A draw of the hoop and pole system considered in this work is shown in
Figure 7.1, where the inertial, pole (hand), hoop (object), and contact Carte-
sian frames are displayed, which in the subsequent are denoted by W, H, O,
and C, respectively. A given coordinate frame X consists of an origin vector
ox 2 R3, and three orthonormal unit vectors xx,yx

, zx 2 R3. The contact
frame C is defined as follows: oc is located at the contact point, xc is in the
line connecting the hoop centre with the contact point and pointing outwards
the pole, zc is normal to the hoop equatorial plane passing through oc, and
y
c
is chosen to form an orthonormal frame.
In this section, the following notation is adopted: vj

i
means that the vector

vi is referenced to the j frame. When a vector or matrix is referenced to the
world coordinate frame the superscript (·)w is obviated.

The next coordinates are defined to describe the pole surface:

• ✓ 2 R: an angle from one arbitrarily defined point on the pole surface to
the contact point, measured by taking zh as the rotation axis.

• zo > 0: a distance form the origin oh to the contact point over the zh axis.

Defining the vector ↵h =
⇥
✓ z0

⇤T 2 R2, the pole surface in local coordi-
nates is described by

ch(↵h) =
⇥
rhc✓ rhs✓ zo

⇤T 2 R3 , (7.1)



7 Nonholonomic rolling nonprehensile manipulation primitive 161

Fig. 7.1: Sketch of the pole and hoop system.

where c✓ = cos(✓) and s✓ = sin(✓) . The tangent vectors are computed as

chu =
⇥
�rhs✓ rhc✓ 0

⇤T 2 R3 (7.2)

chv =
⇥
0 0 1

⇤T 2 R3 . (7.3)

It can be easily verified that kchuk= rh and kchvk= 1. The corresponding
normal vector is given by

nh =
⇥
c✓ s✓ 0

⇤T 2 R3 , (7.4)

with partial derivatives

nhu =
⇥
�s✓ c✓ 0

⇤T 2 R3 (7.5)

nhv = 03. (7.6)

The second-order partial derivatives of chu , necessary to compute the torsion,
are

chuu =
⇥
�rhc✓ �rhs✓ 0

⇤T 2 R3 (7.7)

chuv = 03. (7.8)

Therefore, following the definitions given in [207], the metric and curvature
tensors and the torsion form of the pole surface are

Mh =


rh 0
0 1

�
, Kh =


1/rh 0
0 0

�
, Th =

⇥
0 0

⇤
.
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On the other hand, the following local coordinates for describing the hoop
surface are defined:

• � 2 R: an angle from one arbitrarily defined point in the hoop surface to
the contact point measured by taking zo as the rotation axis.

•  2 R: an angle of the equatorial plane of the hoop over y
c
.

Collect ↵o =
⇥
�  

⇤T 2 R2 such that the hoop surface in local coordinates
is described by

co(↵o) =
⇥
�(lo � roc )c� (lo � roc )s� �ros 

⇤T 2 R3. (7.9)

Therefore, the corresponding tangent vectors are computed as

cou =
⇥
�(lo � roc )s� (lo � roc )c� 0

⇤T 2 R3 (7.10)

cfv =
⇥
roc�s ros�s �roc 

⇤T 2 R3 . (7.11)

In such case, kcouk= lo � roc and kcovk= ro. The normal vector is given by

no =
⇥
�c�c �s�c �s 

⇤T 2 R3 , (7.12)

with partial derivatives

nou =
⇥
s�c �c�c 0

⇤T 2 R3 (7.13)

nov =
⇥
c�s s�s �c 

⇤T 2 R3 . (7.14)

The second order partial derivatives of cou are

couu =
⇥
�(lo � roc )c� �(lo � roc )s� 0

⇤T 2 R3 (7.15)

couv =
⇥
�ros�s roc�s 0

⇤T 2 R3 . (7.16)

Regarding the hoop’s surface, the metric and curvature tensors and the tor-
sion form are given by

Mo =


lo � roc 0

0 ro

�
, Ko =


�c /(lo � roc ) 0

0 1/ro

�
,

To =
⇥
�s /(lo � roc ) 0

⇤
.

An additional coordinate, necessary to compute the contact kinematics,
� 2 R is the angle form chu to cou, measured over the xc axis. Thus, the
relative curvature is computed to be

eKh =
1

rh


c2
�

�s�c�
�s�c� s2

�

�
. (7.17)
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Now, by combining both surface geometric parameters, the Montana’s
equations in terms of the relative velocities between the contact frames, as-
suming a pure rolling, are given by


�̇
 ̇

�
=

1

loc2� � (rh + ro)c 


rh + ros2�

(lo � roc )s�c�

ros�c�
(lo � roc )c2� � rhc 

� 
�!y

!x

�

(7.18)

✓̇
żo

�
=

1

loc2� � (rh + ro)c 


(lo � roc )c�

�(lo � roc )(rh + ro)s�

ros�c 
�roc� (lo � (rh + ro)c )

� 
�!y

!x

�

(7.19)

�̇ =
(rh + ros2�)s !y � ros�c�s !x

loc2� � (rh + ro)c 
. (7.20)

Let the contact coordinates vector be defined by

q
c
=
⇥
�  ✓ zo �

⇤T 2 R5. (7.21)

Thus, the kinematic equations (7.18)–(7.20) can be rewritten as

q̇
c
= g1!x + g2!y , (7.22)

where

g1 =
1

loc2� � (ro + ro)c 

2

66664

ros�c�
(lo � roc )c2� � roc 

ros�c 
�roc� (lo � (ro + ro)c )

�ros�c�s 

3

77775
2 R5 (7.23)

g2 =
1

loc2� � (ro + ro)c 

2

66664

�(ro + ros2�)
�(lo � roc )s�c�
�(lo � roc )c�

(lo � roc )(ro + ro)s�
(ro + ros2�)s 

3

77775
2 R5. (7.24)

Assume that the hoop thickness can be neglected, i.e., ro = 0. Therefore,
by choosing a basis for the left null space of G =

⇥
g1 g2

⇤
, a set of P↵afian

constraints [216, p. 320] can be constructed as follows

Ac(qc
)q̇

c
= 03 , (7.25)

where

Ac(qc
) =

2

4
�loc�/ro 0 1 0 0

s 0 0 1 0
los� 0 0 0 1

3

5 . (7.26)
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At this point, an arbitrary number of degrees of freedom for the pole is con-
sidered. The generalised coordinates of the pole express its pose (position and
orientation) in the Cartesian space. As one of the goals of this work is to have
the best controllability properties with the least actuated coordinates, the
configuration space for the pole will be chosen after the controllability analysis

given later in this section. Now, define the vectors q
r
=
⇥
�  q

h

⇤T 2 Rm+2,

q
s

=
⇥
✓ � zo

⇤T 2 R3, and q =
⇥
q
r

q
s

⇤T 2 Rm+5. Then, the con-
straints (7.26) can be written as

Ar(q)q̇r
+ q̇

s
= 0 , (7.27)

where

Ar(q) =

2

4
�loc�/ro 0 0 · · · 0

s 0 0 · · · 0
los� 0 0 · · · 0

3

5 . (7.28)

7.2.2 Dynamic model

The vector ph

o
can be expressed in terms of the generalised coordinates is

expressed as follows

ph

o
=

2

4
�loc✓c + roc✓ + los✓s�s 
ros✓ � loc s✓ � loc✓s�s 

los + zo

3

5 . (7.29)

Given the expressions Io = diag
�

1
2mol2o,

1
2mol2o,mol2o

 
and

Ro =

2

4
c c✓ � s�s s✓ �c�s✓ c✓s + c s�s✓
c✓s�s + c s✓ c�c✓ �c c✓s� + s s✓

�c�s s� c�c 

3

5 , (7.30)

the hoop angular velocity can be obtained from Rst through S(!o) = ṘoR
T

o
,

where S(!o) is a well–known skew symmetric matrix constructed from !o.
The angular velocity can be computed from

!o =

2

4
c✓�̇� c�s✓ ̇
s✓�̇+ c�c✓ ̇
s� ̇ + ✓̇

3

5 . (7.31)

The Lagrange–d’Alembert equations, subject to the Pfa�an constraints
above, are given by

✓
d

dt

@L
@q̇

r

� @L
@q

r

�⌥r

◆
�AT

r
(q)

✓
d

dt

@L
@q̇

s

� @L
@q

s

◆
= 0m+2 , (7.32)
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where

⌥r =


02

u

�
, (7.33)

with u 2 Rm the vector of generalised forces acting on the pole and L 2 R
the system Lagrangian available in [117].

The vectors q̇
s
and q̈

s
can be eliminated by following the procedure de-

scribed in [216, Ch. 6], which results in the following dynamic model

Bo(q)q̈o
+ co(q, q̇o

) +To(q)q̈h
= 0, (7.34a)

Bh(q)q̈h
+ ch(q, q̇o

) +TT

o
(q)q̈

o
= u , (7.34b)

where q
o
=
⇥
�  

⇤T 2 R2, Bo(q) 2 R2⇥2 is the inertia matrix of the hoop,
Bh(q) 2 Rm⇥m is the inertia matrix of the pole, co(q, q̇o

) 2 R2 is the Coriolis
term related to hoop, ch(q, q̇o

) 2 Rm is the Coriols term related to the pole,
and To(q) 2 R2⇥m is the inertia coupling matrix whose e↵ects are analysed
below. Notice that Bo(q) is always invertible. Thus, equation (7.34b) can be
solved for q̈

h
and substituted into (7.34a) to obtain

Mr(q)q̈o
+ cr(q, q̇o

) = Tr(q)u , (7.35)

where

Mr(q) = Bo(q)�To(q)B
�1
h

(q)TT

o
(q) (7.36)

cr(q, q̇o
) = co(q, q̇o

)�To(q)B
�1
h

(q)ch(q, q̇o
) (7.37)

Tr(q) = �To(q)B
�1
h

(q) . (7.38)

The dynamic model (7.35) can be further simplified to obtain

q̈
o
= f(q, q̇

o
) + g(q)u , (7.39)

with the definitions f(q, q̇
o
) = �M�1

r
(q)cr(q, q̇o

), and g(q) = M�1
r

(q)Tr(q).
The model (7.34) represents the dynamics of the hula-hoop system along with
the nonholonomic constraints (7.27), which are equivalent to

✓̇ =
loc�
rh

�̇ (7.40)

żo = �los��̇ (7.41)

�̇ = �s �̇ . (7.42)

The inertial coupling matrix plays a crucial role for underactuated mechan-
ical systems. In the present case, if rank(To(q)) = 2, 8q, the underactuated
system is said to be strong inertially coupled [296]. Whenever the mechanical
system is strong inertially coupled, the Penrose’s right pseudo-inverse matrix



166 A. Gutierrez-Giles et al.

T+
o
= TT

o

⇣
ToT

T

o

⌘�1
(7.43)

is well defined and the following orthogonal projection matrices can be con-
structed

Po = T+
o
To 2 Rm⇥m (7.44)

Q
o
= Im �Po 2 Rm⇥m . (7.45)

Notice that Po projects every Rm-vector onto the rank space of To. Con-
versely, Q

o
makes the projection into the null space of To. It is straightfor-

ward to verify that the following relations hold: PoT
T

o
= TT

o
, ToPo = To,

Q
o
TT

o
= O2⇥m, and ToQo

= O2.

7.2.2.1 Controllability analysis

The controllability of the system (7.34a)–(7.34b) depends on the configura-
tion of the pole. Several configurations of interest, namely (i) two rotations
(m = 2), (ii) three translations (m = 3), (iii) two rotations plus two trans-
lations (m = 4), and (iv) three rotations plus three translations (m = 6),
have been analysed in this work with the aid of a symbolic computing soft-
ware (Wolfram Mathematica

1). The corresponding dynamic model is strong
inertially coupled for all the configurations mentioned above. Therefore, the
main motivation for the comparison is to find the configuration with fewer
degrees of freedom having the best controllability properties. The conclusions
below are valid for all the cases mentioned.

For the model (7.34a)–(7.34b) the gravity torque of the underactuated part
is not constant. The inertia matrix depends on the unactuated variables, so it
never satisfies the structural necessary and su�cient conditions given in [233],
and the nonholonomic constraints are of the second-order kind. As a conse-
quence, the dynamic system is strongly accessible [258]. That means that, in
principle, every possible configuration can be reached. However, this strong
accessibility property “is far from being su�cient for the existence of a feed-
back control which asymptotically stabilises the underactuated system” [258].
For the system (7.34a)–(7.34b), it turns out from [40] that the Brockett’s nec-
essary condition for the existence of a continuous asymptotically stabilizing
feedback control law is equivalent to check if the image of

B�1
o

(q)co(q, q̇r) (7.46)

contains a neighbourhood of the origin in R2. This condition is satisfied by all
the case studies, although it does not imply that there exists such a control
law.

1 https://www.wolfram.com
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The so-called small time local controllability (STLC) is a stronger notion
of controllability, which guarantees the existence of a piece-wise asymptotic
stabilizing feedback control law [304]. The STLC property also guarantees the
existence of an asymptotic stabilizing continuous time-periodic controller [64].
A su�cient condition to check the STLC property for mechanical systems is
given in [258]. Unfortunately, this condition is not met by any of the case
studies, and thus no conclusion can be made about the STLC property for the
system (7.34a)–(7.34b). A necessary and su�cient condition for the STLC is
given in [305]. Regrettably, this condition is much more challenging to check,
even with the help of symbolic computing software.

Finally, the controller design and the dynamic analysis can be simplified by
transforming the system into a normal form as proposed in [232]. Once again,
this su�cient condition is not met by any of the cases under consideration.

7.2.3 Controller design and stability analysis

The control objective is to spin the hoop at a desired angular velocity �̇d > 0,
while simultaneously driving it to the desired position zod 2 R over the
pole surface, and maintaining it perpendicular to the pole. A design of a
feedback model-based control for (7.34a)–(7.42) is a challenging problem from
the control point of view. Some of the main di�culties are listed below.

• The kinematic constraints (7.40)–(7.42) are completely nonholonomic [216,
p. 320]. In addition, the relative grow vector of the related control system
is (2, 1, 2), and then it cannot be transformed into a chained form [76, p.
319].

• The model (7.34a)–(7.34b) is underactuated, and in the simplest case the
shape coordinates are not actuated. Therefore, the result of [82] cannot
be applied. In the remaining cases, the inertia matrices depend on both
actuated and unactuated coordinates.

• The system trajectories must satisfy the nonholonomic constraints (7.40)–
(7.42), hence it is not clear whether it is possible to induce a periodic mo-
tion for the unactuated coordinates satisfying the control objective stated
above, which is a crucial step to apply the methodology of [281, 282].

• Because of the nonholonomic nature of the system, the control objective
cannot be translated into a regulation problem, but it must be ensured
tracking on the unactuated coordinates, for which the result of [81] does
not apply.

Given the di�culties for designing a standard controller for the system
under study, in the following development an ad-hoc strategy is employed to
satisfy the control objective.

Let the input u be defined as
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u = Bh (PouP +Q
o
uQ) , (7.47)

where uP 2 Rm and uQ 2 Rm are two independent inputs belonging to
orthogonal subspaces. Taking into account (7.35), the noncollocated partial
feedback linearisation (NPFL) [296] input can be defined as

uP = �T+
o
(cr +MrvP ) , (7.48)

with vP 2 R2 a virtual control input to design. Because Mr is always full
rank [115], it can be obtained

q̈
o
= vP , (7.49)

with zero dynamics given in (7.70).
The control objective for the hoop coordinates consists in designing the

input vP to drive �̇ ! �̇d and (zo, ,�) ! (zod, 0, 0), while satisfying the
nonholonomic constraints (7.40)–(7.42). For this purpose, first define

⇠ =

2

4
⇠1
⇠2
⇠3

3

5 =

2

4
zo � zod
�los�
loc�s 

3

5 2 R3, (7.50)

whose time derivative are

⇠̇ =

2

4
⇠̇1
⇠̇2
⇠̇3

3

5 =

2

4
⇠2�̇
⇠3�̇

los�s2 �̇ + loc�c  ̇

3

5 . (7.51)

Next, consider the auxiliary definitions

⌘ =


⌘1
⌘2

�
=


�̇ � �̇d
 ̇ � f 

�
2 R2, (7.52)

where

f = f ( ,�, �̇, ⇠) = �
⇣
los�s

2
 
+ kT

⇠
⇠
⌘ �̇

loc�c 
, (7.53)

defined for �⇡/2 < �, < ⇡/2, with k⇠ =
⇥
k⇠1 k⇠2 k⇠3

⇤T 2 R3 a vector of
positive constant gains. Substituting (7.52) into (7.51) yields

⇠̇ =

2

4
⇠2�̇d + ⇠2⌘1
⇠3�̇d + ⇠3⌘1

�kT

⇠
⇠�̇d � kT

⇠
⇠⌘1 + loc�c ⌘2

3

5 . (7.54)

In order to carry out the dynamic analysis, define the state

⇣ =
⇥
⇠T ⌘T

⇤T 2 R5. (7.55)
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Proposition 7.2.1 [118] Define the region Br = {⇣ : k⇣k lo} and let the
control law be given by

vP =


vP1

vP2

�
=

" �k⌘1⌘1
d

dt
f � k⌘2⌘2

#
, (7.56)

where k⌘1, k⌘2 > 0. There exists a bounded region B� ⇢ Br, and a combina-
tion of gains k⇠, k⌘1, k⌘2 in (7.53) and (7.56), such that if the initial condition
satisfies ⇣(t0) 2 B�, then ⇣(t) 2 Br , 8t � t0. Furthermore, the system tra-
jectories are ultimately bounded within an arbitrarily small region Bµ ⇢ Br,
centred at the origin. ⇤

Proof If ⌘ = 02 in (7.54) one gets

⇠̇ =

2

4
0 1 0
0 0 1

�k⇠1 �k⇠2 �k⇠3

3

5 ⇠ = A⇠⇠ , (7.57)

that is a linear time-invariant system with A⇠ 2 R3⇥3 a Hurwitz matrix. A
well-established result of linear control [152, Theorem 4.6] states that there
exist two symmetric positive definite matrices P⇠ 2 R3⇥3 and Q

⇠
2 R3⇥3

satisfying
AT

⇠
P⇠ +P⇠A⇠ = �Q

⇠
. (7.58)

These matrices satisfy the bounds �Pmkxk2 xTP⇠x  �PMkxk2 and
�Qmkxk2 xTQ

⇠
x  �QMkxk2 for every vector x 2 R3, with 0 < �Pm 

�PM , and 0 < �Qm  �QM , where we denote by �Hm and �HM the minimum
and the maximum eigenvalue, respectively, of a generic matrix H 2 R3⇥3.
Next, let the scalar function

V = ⇠TP⇠⇠ +
1

2
⌘T⌘ > 0 , (7.59)

satisfy the bounds
�Vmk⇣k2 V (⇣)  �VMk⇣k2 , (7.60)

where �Vm = min{1,�Pm} and �VM = max{1,�PM}. Define a region B� =⇢
⇣ : k⇣k<

r
�Vm

�VM

lo

�
and suppose that the initial condition satisfies ⇣(t0) 2

B�. Since
�Vm

�VM

 1, B� is a subset of Br.

By taking the time derivative of V along the system trajectories, one
obtains

V̇ = �(�̇d + ⌘1)⇠
TQ

⇠
⇠ + 2⇠TP⇠b⌘2 + ⌘1⌘̇1 + ⌘2⌘̇2 , (7.61)

where b =
⇥
0 0 loc�c 

⇤T 2 R3. Taking into account (7.49) and (7.52) and
the control law (7.56) yields
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V̇ = ��̇d⇠TQ⇠
⇠ � ⌘1⇠

TQ
⇠
⇠ � k⌘1⌘

2
1 + 2⌘2⇠

TP⇠b� k⌘2⌘
2
2 . (7.62)

Within the set Br, this function can be upper bounded by

V̇ � �̇d⇠
TQ

⇠
⇠ + �QM l2

o
|⌘1|�k⌘1|⌘1|2

+ 2�PM l2
o
|⌘2|�k⌘2|⌘2|2

� �̇d�Qmk⇠k2�|⌘1|
�
k⌘1|⌘1|��QM l2

o

�

� |⌘2|
�
k⌘2|⌘2|�2�PM l2

o

�

=� �̇d�Qmk⇣k2�|⌘1|
�
(k⌘1 � �̇d�Qm) |⌘1|��QM l2

o

�

� |⌘2|
�
(k⌘2 � �̇d�Qm) |⌘2|�2�PM l2

o

�
, (7.63)

since k⇣k2= k⇠k2+|⌘1|2+|⌘2|2. It can be noticed that the term

�|⌘1|
�
(k⌘1 � �̇d�Qm) |⌘1|��QM l2

o

�
(7.64)

is zero for |⌘1|= 0 and negative for |⌘1|> �QM

l2
o

k⌘1 � �̇d�Qm

. Therefore, by

continuity, a maximum for |⌘1| must exist. This maximum can be easily

verified to be at |⌘1|max= �QM

l2
o

2 (k⌘1 � �̇d�Qm)
. Similar arguments can be

used for the last term of (7.63). Overall, one has

V̇  ��̇d�QMk⇣k2+c⌘1 + c⌘2 , (7.65)

where c⌘1 = �2
QM

l4
o

2 (k⌘1 � �̇d�Qm)
and c⌘2 = 2�2

PM

l4
o

(k⌘2 � �̇d�Qm)
, with

k⌘1, k⌘2 > �̇d�Qm. Thus, it can be ensured that V̇  0 for

k⇣k�
s

c⌘1 + c⌘2
�̇d�Qm

= µ , (7.66)

and the system trajectories are ultimately bounded by a region Bµ =
{⇣ : k⇣k µ}. Because k⌘1 and k⌘2 can be chosen freely, the ultimate bound
radius µ can be driven arbitrarily small. Moreover, µ can be easily forced to
satisfy

µ <

r
�Vm

�VM

lo , (7.67)

to guarantee Bµ ⇢ Br.
There is a circularity in the proof2: when obtaining (7.63), it is implicitly

assumed that ⇣ 2 Br, 8t � t0. To show that this is indeed the case, first

notice that k⇣(t0)k2 B� =) k⇣(t0)k<
r
�Vm

�VM

lo  lo. Suppose that ⇣

2 See [325], remarks on Theorem 5.3.1.



7 Nonholonomic rolling nonprehensile manipulation primitive 171

leaves Br. By continuity, a time T > t0 exists such that k⇣(T )k= lo. Notice
that, in order to leave Br, the trajectories cannot enter in Bµ since this set is
positively invariant because V̇  0 in its frontier. Therefore, the trajectories
must remain within Br\Bµ before leaving Br. On one hand, since V̇  0 for
t 2 [t0, T ), and after (7.60)

V (⇣(T ))  V (⇣(t0)) < �Vml2
o
. (7.68)

On the other hand, from the assumption ⇣(T ) = lo and (7.60), one has

V (⇣(T )) = V (lo) � �Vml2
o
. (7.69)

By noticing that (7.68) and (7.69) are in contradiction, we can conclude that
the original assumption is incorrect, and thus ⇣ must remain in Br. ⇤

In the interior of Br, taking into account (7.50) and (7.52), ⇣ ⇡ 0 im-
plies (zo,�, ) ⇡ (zod, 0, 0) and �̇ ⇡ �̇d, fulfilling the control objective. For
simplicity, the upper-bound for the state ⇣, which defines the region Br in
Proposition 7.2.1, is chosen to be lo. This choice makes the stability proof
clearer, yet it is very conservative. However, since this bound is arbitrary, it
can be modified to enlarge the controller’s domain of attraction.

The next step is to design a control strategy to stabilise the pole dynamics.
For this, it is assumed that the hoop has reached stationary state, such that
q̈
o
⌘ 02. From (7.34a)–(7.34b) and (7.47) one has

q̈
h
= fh + fuP +Q

o
uQ , (7.70)

where fh = M�1
h

ch 2 Rm and fuP = PouP 2 Rm.
Investigating the controllability of the nonlinear system (7.70) is challeng-

ing, as discussed earlier. For this reason, only a local result is pursued, based
on the linearisation of (7.70) around its nominal trajectory

q⇤ =
⇥
�̇dt 0 zod (lo/rh)�̇dt 0 q⇤T

h

⇤T
, (7.71)

q̇⇤ =
⇥
�̇d 0 0 (lo/rh)�̇d 0 q̇⇤T

h

⇤T
, (7.72)

where q⇤
h
2 Rm is the vector representing the nominal trajectory for the pole.

Only two of the study cases are analysed here: (i) m = 3, three Cartesian
directions of movement along the xw, yw, and zw axes of W3 and (ii) m = 4,
two Cartesian degree-of-freedom along xw and yw of W, and two rotations
around the same axes. The configuration coordinates for the three Cartesian
degree-of-freedom case are the pole centre of mass coordinates (ohx, ohy, ohz).
For the latter case, the rotation matrix of the pole with respect to the inertial
frame is given by the composition of two basic rotation matrices, namely

Ro = Rx(↵1)Ry(↵2), (7.73)

3 This is the configuration studied in [117].
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with ↵1,↵2 2 R the rotation angles around xw and yw, respectively, and
Rx(↵1),Ry(↵2) 2 SO(3). Hence, the configuration coordinates for the pole
are (ohx, ohy,↵1,↵2) when m = 4. Therefore, the nominal trajectories for the
pole in both cases are q⇤

h
= q̇⇤

h
= 0m.

Definined the state space coordinates x =
⇥
qT

h
q̇T

h

⇤T 2 R2m, the following
linearised model can be obtained

ẋ = A(t)x+B(t)uQ , (7.74)

where

A(t) =


Om Im

A21(t) A22(t)

�
, (7.75)

B(t) =Q
o

�����
q⇤,q̇⇤

, (7.76)

a21(t) =
@fh
@q

h

�����
q⇤,q̇⇤

, (7.77)

a22(t) =
@fh
@q̇

h

�����
q⇤,q̇⇤

. (7.78)

The term fuP in (7.70) is considered as an external bounded input to carry
out the linearisation. The periodic linear time-varying system (7.74) is not

controllable [52, Theorem 6.11] when the three Cartesian inputrs are consid-
ered for the pole (i.e., m = 3), while it is controllable [52, Theorem 6.12]
when the two translations and the two rotations inputs are considered for
the pole (i.e., m = 4). For this last case, it is possible to find a stabilising
controller of the form [280]

uQ = ���1BT (t)R(t)x , (7.79)

where R(t) 2 R8⇥8 is a symmetric positive definite time-varying matrix sat-
isfying the Riccati equation

Ṙ(t) +AT (t)R(t) +R(t)A(t) +G = R(t)B(t)��1BT (t)R(t) , (7.80)

with G 2 R8⇥8 and � 2 R4⇥4 two positive definite matrices of constant
gains. By employing the quasi–linearisation of the periodic Riccati equation

method [30, p. 137], an approximation for the solution of the Riccati equa-
tion (7.80) can be found.
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7.2.3.1 Conditions for maintaining contact

Rolling without slipping between the surfaces of the objects has been as-
sumed for the modelling and control design presented in the above sections.
Intuitively, it can be argued that there must be a minimal spinning speed for
the hoop not to lose contact with the pole. For obtaining an approximation
of the magnitude of this minimum speed, assume that stationary state has
reached, i.e., the hoop is spinning in the orthogonal plane to the main pole
axis. The Lagrange multipliers from the Lagrange-d’Alembert formulation,
which was used to obtain the model (7.34a)–(7.34b), can be employed to
compute the internal forces [216, p. 279]. A direct calculation of the radial
component gives the contact condition

molo✓̇
2 �mog > 0 , (7.81)

which represents the di↵erence between the centripetal and gravity forces
acting on the hoop. This minimum velocity is intended for the best sce-
nario (the hoop perpendicular to the pole), thus the desired velocity and the

initial conditions should satisfy ✓̇ >>

r
g

lo
. If the pole is in the vertical posi-

tion, keeping the contact depends on the static friction between the surfaces.
Hence, the desired and initial condition for the spinning speed must satisfy

✓̇ >>
r

g

fclo
, where fc > 0 is the static friction coe�cient. On the other

hand, the upper limit for the spinning speed depends on the system’s band-
width, which is mainly limited by the signals acquisition and processing time
and the actuators’ maximum speed and acceleration. As an assumption for
maintaining contact as well as to fulfil the requirements of Proposition 7.2.1,
the desired hoop spinning velocity �̇d must be su�ciently close to the initial
speed �̇, which in turn must be strictly greater than zero. The required swing
controller to obtain this initial spinning is considered out of the scope of this
paper, although some planar-motion open-loop controllers can induce it (e.g.,
the one proposed in [278]).

7.2.4 Numerical simulation

A numerical simulation is carried out to test the validity of the proposed ap-
proach. The parameters employed for the simulation are listed in Table 7.2.
The matrices and vectors in (7.34a)–(7.34b) were obtained through a sym-
bolic computing software (Wolfram Mathematica) and are omitted here due
to space constraints. It is assumed that the pole’s apparent inertia can be
assigned by the manipulator e.g., as proposed in [95] for the pole not to be
a↵ected by the hoop motion. Notice that the pole’s actual mass must not
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have to be large, but only its apparent inertia. The pole sample time is con-
sidered to be T = 0.005 s, while the hoop coordinates are measured by means
of a vision system with sample time Tv = 0.02 s.

Table 7.2: Simulation parameters

Parameter Value
mo 0.05 kg
mh 10 kg
lo 0.3 m
ro 0.005 m
rh 0.025 m
lh 0.7 m

Fig. 7.2: Contact coordinates evolution: real (—), desired (- - -).

The desired references are �̇d = 4
⇡rh
lo

⇡ 1.0472 rad/s and zod = 0.3 m.

The gains for the LQR controller in (7.79)–(7.80) are chosen as � =
diag{0.5, 0.5, 1, 1} and G = diag{200, 200, 40000, 40000, 10, 10, 4, 4}. The
hoop controller gains are chosen as k⌘1 = 20, k⌘2 = 10, k⇠1 = 40, k⇠2 = 40,
and k⇠3 = 4. The boundary condition for approximating R(t) is chosen as
R(Ts) = O8⇥8, where Ts is the period of the linearised system (7.74), which
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Fig. 7.3: Asymptotic stabilisation of the  and � coordinates.

Fig. 7.4: Evolution of ✓̇ (—) and the minimum value required to maintain
contact (- - -).

is given by Ts =
lo
rh
�̇d. The initial conditions for the generalised positions

are set to �(t0) = 0 rad,  (t0) = 0.05 rad, zo(t0) = 0.05 m, ✓(t0) = ⇡ rad,
and �(t0) = �0.05 rad, while the initial conditions for the velocities are
set to �̇(t0) = 0.8 rad/s,  ̇(t0) = 0 rad/s, żo(t0) = �lo sin(�(t0))�̇(t0) m/s,

✓̇(t0) = lo cos(�(t0))
�̇(t0)

rh
rad/s, and �̇(t0) = � sin( (t0))�̇(t0) rad/s.

The contact coordinates time evolution is shown in Fig. 7.2, where it can
be seen that the control objective is satisfied. In Fig. 7.3, the graphs of the  
and � coordinates are displayed, showing their ultimate boundedness within a
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Fig. 7.5: Pole’s Cartesian coordinates with respect to the initial position.

Fig. 7.6: Stabilisation of the pole’s rotation angles.

small region around the origin. The ✓̇ coordinate time evolution is displayed
in Fig. 7.4, along with the minimum speed required to maintain contact.
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Fig. 7.7: Force and torque inputs on the pole.

This condition is satisfied during all the simulation time with a considerably
large margin. The Cartesian coordinates of the pole centre of mass are shown
in Fig. 7.5, while the time evolution of the two angles describing the pole
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orientation is shown in Fig. 7.6. It can be seen that the proposed controller
stabilises all the pole coordinates. Finally, the control inputs, i.e., the forces
and torques acting on the pole, for the first 10 seconds of the simulation are
shown in Figure 7.7.

7.3 Ballbot

Contemporary research on robotics has steered towards the incorporation of
robots into the everyday lives of humans. Robots are expected to interact with
humans both outdoors and in human environments safely. This motivation
requires robots not only to be mobile and slim but also tall enough to facilitate
interaction. On the other hand, conventional multi-wheeled statically-stable
robots are typically built to have a low center of gravity to prevent them from
easily tipping over. The satisfaction of these two conflicting requirements
urges the mobile robots to have large, wide, and heavy bases. At the cost of
designing a more complicated controller, a more e�cient method to tackle
the interaction problem is to utilize dynamically stable robots.

One of the most popular dynamically balancing robots is the two-wheeled
Segway [226]. The ballbot was introduced as a mobile robot moving on a
single spherical omnidirectional wheel [164, 165]. The ballbot, whose design is
detailed in [220, 218], is typically slim and as tall as an adult human, rendering
it able to interact with humans while navigating constrained environments.

Even though a variant of this robot has been built by many laborato-
ries [128, 168], its control framework has been restricted to the use of classic
methods such as linearization about the desired equilibrium in coordinates
and PID controllers [168, 157]. Derivation of the equations of motion of the
ballbot with a 3-DoF manipulator mounted on top using both Lagrange’s
and Kane’s methods have been performed in [9]. The authors have confirmed
that the two approaches agree with each other with a numerical simulation.
They have also designed two control laws for the planar motion of the ballbot
and manipulation, respectively, without explicitly addressing stability prop-
erties. Moreover, many controllers are typically developed by restricting the
dynamics of the ballbot to a vertical 2D plane and applied to the 3D robot by
an ad-hoc extension to two distinct vertical planes. This procedure inevitably
ignores the energetic interaction of the full dynamics of the robot along these
planes. Trajectory planning based on motion primitives has been presented
in [217], while in [219], authors plan a trajectory for the ballbot equipped
with right and left arms. A sliding-mode controller has also been designed for
this system in [170]. For the most part, the equations of motion of the whole
dynamics of the ballbot have been derived in coordinates, which injects a
fair bit of unnecessary complexity into the problem formulation, requires the
use of symbolic manipulation software and a decent amount of storage space
in the computer [168]. The only exception to this trend has been provided
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in [138], where the authors derive a dynamic model of the ballbot, which
additionally assumes that the body has no yaw motion relative to the ball
using Newton’s laws. This lengthy procedure, which was omitted from the
chapter due to space considerations, leads to a dynamical model of the sys-
tem, which is not particularly easy to work with for control synthesis. Lastly,
in [163], a stabilization algorithm for a TWMM, which is a robot with simi-
lar characteristics to the ballbot, has been presented. The controller designed
in this chapter utilizes the ZMP idea from the bipedal robotic literature to
asymptotically stabilize the motion of the TWMM.

In this chapter, we derive the Euler-Lagrange equations of motion of the
full dynamics of the ballbot without resort to any coordinate system. This
yields a compact, yet explicit representation of the equations of motion, which
recover the 2D dynamics of the ballbot, restricted to a vertical plane, given in
the literature [218]. Preliminary results on the derivation and linearization of
the intrinsic dynamics of the ballbot are reported in [270]. The Euler-Poincaré
dynamics developed in this chapter yield a reduced set of 10 first-order ODEs
that govern the motion of the ballbot as opposed to the conventional Newton-
Euler approach, which would yield 16 first-order ODEs. We develop energy-
shaping control laws that use the available control inputs to make the system
look like a new Lagrangian system with a desired asymptotically stable equi-
librium point for both the 2D and the 3D dynamics of the ballbot. While in
the 2D case we can follow the procedure outlined in [81] to shape the energy,
this procedure needs to be extended for the 3D-case because the form of
the Euler-Poincaré does not precisely match the form of the Euler-Lagrange
equations as handled in that work. The derivation of the total energy shap-
ing control law for the ballbot shows the approach’s applicability to a system
with considerably more states than the examples previously reported in the
literature. The main contribution of this chapter is providing an intrinsic
and unified framework to study dynamics and control of the balancing sys-
tem consisting of a heavy top on a spherical wheel and providing nonlinear
energy-shaping control law whose basin of attraction is almost global as long
as the mechanism is judiciously designed.

7.3.1 Lagrangian dynamics of the ballbot

In this section, we present the background information to be used in the
remainder of this chapter, including the kinematics and dynamics of the ball-
bot. We start by noting that every vector quantity in this paper is represented
in the spatial world frame W.
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Fig. 7.8: Ballbot: bodies and frames

7.3.1.1 Background and kinematics

The skeleton diagram of the ballbot is depicted in Figure 7.8. It is constructed
via the interconnection of a rigid spherical wheel and a rigid cylindrical body.
The body is unable to translate with respect to the ball but is free to move
otherwise. Therefore, the configuration manifold of the ballbot is Q = R2 ⇥
SO(3) ⇥ SO(3). The world inertial frame W is fixed to a horizontal plane.
The spherical wheel is represented by the frame H and is assumed to have
its center of mass at its geometric center. As a result, the vector from the
point of contact of the ball with the ground and its center of mass is given by
rhe3 in the inertial frame. The cylindrical rigid body situated on the wheel
is referred to as the “top,” and it is denoted by the reference frame O. The
center of mass of the top is assumed to lie on the central axis of its geometrical
shape at a distance l from the center of the ball. The ball is assumed to roll
without slipping, yielding the well-known nonholonomic constraint between
the time derivative of its position vector p

sb
and its spatial angular velocity

!sb

(7.82)ṗ
sb

= rh!sb ⇥ e3 = rh!̂sbe3,

where we introduced the hat ^ operator, which stands for the standard iso-
morphism between R3 and so(3). Its inverse is denoted by the symbol _,
known as the vee map [216].

The kinematics of the orientation of the ball and the top are given in the
frame W by the familiar rigid body orientation kinematics

(7.83)Ṙsb = !̂sbRsb, Ṙst = !̂stRst.

Using notation and methods from [216], we express the velocity of the top
with respect to the inertial frame Vst 2 R6 in terms of the velocity of the
ball with respect to the inertial frame Vsb 2 R6 and the velocity of the top
with respect to the ball Vbt 2 R6

(7.84)Vst =


vst

!st

�
=


vsb + p

sb
⇥Rsb!bt

!sb +Rsb!bt

�
.
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We can now compute the time derivative of p
st

as a function of the time
derivative of p

sb
, the angular velocity of the top with respect to W and the

orientation of the top:

(7.85)ṗ
st

= ṗ
sb

+ l!st ⇥Rste3.

Throughout this chapter, some properties of the hat map that we freely
use in the remainder are as follows

x̂y = x⇥ y = �y ⇥ x = �ŷx,

xT ŷz = yT ẑx = zT x̂y,

x̂ŷẑ =
�
xT z

�
y �

�
xTy

�
z,

for any x,y, z 2 R3.

7.3.1.2 Lagrangian

We write the Lagrangian of the ballbot in W, that is, as seen by an observer
stationary in the inertial frame. Note that it is imperative that the rolling
constraint (7.82) not be inserted into the Lagrangian before its variation is
taken. Suppose the variation of the Lagrangian is taken after the substitution
of the nonholonomic constraints. In that case, this yields the vakonomic equa-
tions, which disagree with the dynamics of rigid bodies. Instead, one should
take the variation before the imposition of the nonholonomic constraints,
leading to the Lagrange-d’Alembert equations, the correct equations of mo-
tion [169, 11].

The kinetic energy of the ball, Kb 2 R, is given by the sum of its rotational
and translational kinetic energies, while its potential energy, Vb 2 R, is zero,
since its height with respect to the inertial frame remains a constant

Kb =
1

2
!T

sb
Ib!sb +

1

2
mbṗ

T

sb
ṗ
sb
,

Vb = 0.

The potential energy of the top, Vt 2 R, is given by the height of its center
of mass from the horizontal multiplied by its mass. The kinetic energy of the
top, Kt 2 R, can be written in terms of the rotational velocity of the top
and the translational velocity of the ball with respect to W by substituting
from (7.85):

Kt =
1

2
!T

st
It!st +

1

2
mtṗ

T

st
ṗT

st

=
1

2
!T

st
It!st +

1

2
mtl

2!T

st
!st +

1

2
mtṗ

T

sb
ṗ
sb

� 1

2
mtl

2
�
!T

st
Rste3

�2
+mtlṗ

T

sb
(!st ⇥Rste3) ,
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Vt = mtgle
T

3 Rste3.

Therefore, the Lagrangian L = K � V = Kt +Kb � Vt 2 R is

(7.86)
L =

1

2
!T

st
It!st +

1

2
mtl

2!T

st
!st +

1

2
!T

sb
Ib!sb +

1

2
(mb +mt)ṗ

T

sb
ṗ
sb

� 1

2
mtl

2
�
!T

st
Rste3

�2
+mtlṗ

T

sb
(!st ⇥Rste3)�mtgle

T

3 Rste3.

Let us define an element of the unit 2-sphere � := Rste3. This quantity
represents the direction of the center of mass of the top expressed in W.
Next, we write the Lagrangian in terms of �, the angular velocity of the top
with respect to W and the angular velocity of the ball with respect to O, all
expressed in W. We represent the latter quantity by !̄tb 2 R3 and compute
it by !̄tb = !sb � !st. When the Lagrangian (7.86) is expressed with these
quantities, it takes the reduced form

(7.87)

` =
1

2

⌦
!st,

�
It + Ib +mtl

2I3
�
!st

↵
+ h!st, Ib!̄tbi

+
1

2
h!̄tb, Ib!̄tbi+

1

2
(mb +mt) hṗsb

, ṗ
sb
i

� 1

2
mtl

2 h!st,�i2 +mtl hṗsb
,!st ⇥ �i �mtgl he3,�i .

7.3.1.3 Euler-Poincaré equations of the ballbot

The equations of motion of the ballbot can be reduced from TQ to so(3) ⇥
so(3) ⇥ S2 ⇥ R2 to yield the Euler-Poincaré equations [273] for the ballbot.
We can derive the evolution of � by di↵erentiating its definition and using
the kinematics of the rigid body

(7.88a)�̇ = Ṙste3 = !st ⇥Rste3 = !st ⇥ �,
(7.88b)�̇ + � ⇥ !st = 03.

We freely make use of the following identities when taking the variation
of the reduced Lagrangian (7.87):

(7.89a)�R�1 = �R�1�RR�1,

(7.89b)�I = �RR�1I� I�RR�1,
(7.89c)�! = ⌘̇ + ⌘ ⇥ !,

(7.89d)�ṗ =
d

dt
(�p) .

where R 2 SO(3), ! 2 so(3), p 2 R3, and so(3) 3 ⌘̂ = �RR�1 are generic
element.
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The action integral is given by s =
R
` dt, whose variation, �s =

R
�` dt is

computed by

�s =

Z ✓
�`

�Rst

�Rst +
�`

�!st

�!st +
�`

�!̄tb

�!̄tb +
�`

��
�� +

�`

�ṗ
sb

�ṗ
sb

◆
dt.

Let us compute the individual terms of the above expression making use of
the additional relation �� = ⌘

st
⇥ �

Z
�`

�Rst

�Rst dt =

Z
1

2
h!st, (⌘̂st

It � It⌘̂st
)!sti dt =

Z
hIt!st ⇥ !st,⌘st

i dt,

Z
�`

�!st

�!st dt =

Z ⌧
@`

@!st

, ⌘̇
st
+ ⌘

st
⇥ !st

�
dt

=

Z ⇢⌧
� d

dt

@`

@!st

+ !st ⇥
@`

@!st

,⌘
st

��
dt

=

Z ⌦
� (!̂stIt � It!̂st)!st �

�
It + Ib +mtl

2I3
�
!̇st � Ib ˙̄!tb

+mtl
2 (h!̇st,�i� + h!st,�i!st ⇥ �)

�mtl ((!st ⇥ �)⇥ ṗ
sb

+ � ⇥ p̈
sb
) + !st

⇥
�
It + Ib +mtl

2I3
�
!st + !st ⇥ Ib!̄tb �mtl

2 h!st,�i!st

⇥ � +mtl (!st ⇥ (� ⇥ ṗ
sb
)) ,⌘

st

↵
dt,Z

�`

�!̄tb

�!̄tb dt =

Z
h� d

dt

@`

@!̄tb

+ !̄tb ⇥
@`

@!̄tb

i dt

=

Z
h�Ib (!̇st + ˙̄!tb) + !̄tb ⇥ Ib (!st + !̄tb) , ⌘̄tb

i dt,
Z

�`

��
�� dt =

Z ⌧
@`

@�
,⌘

st
⇥ �

�
dt =

Z ⌧
� ⇥ @`

@�
,⌘

st

�
dt

=

Z ⌦
�mtl

2h!st,�i� ⇥ !st +mtl (� ⇥ (ṗ
sb

⇥ !st))�mtgl� ⇥ e3,⌘st

↵
dt,

Z
�`

�ṗ
sb

�ṗ
sb
dt =

Z
h� d

dt

@`

@ṗ
sb

, �p
sb
i dt

=

Z
h�(mb+mt)p̈sb

�mtl (!̇st⇥�+!st⇥(!st⇥�)) , �p
sb
i dt

=

Z
h�(mb +mt)rhp̈sb

�mtl (!̇st ⇥ � + !st ⇥ (!st ⇥ �)) , (⌘
st
+ ⌘̄

tb
)⇥ e3i dt

=

Z
h�(mb +mt)rhe3 ⇥ p̈

sb
�mtrhl (e3 ⇥ (!̇st ⇥ �) + e3

⇥ (!st ⇥ (!st ⇥ �))) , (⌘
st
+ ⌘̄

tb
)i dt.

Keeping accordance with the literature, we assume that the rotation of
the ball along the z-axis of W cannot be actuated and is always a constant
during the motion of the ballbot. We consider the scenario where the relative
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orientation between the ball and the top is actuated as in [218, 168]. In other
words, the control input belongs to the subbundle of the cotangent bundle
of Q, characterized by the annihilator of the relative angular velocity !tb:
⌧ 0 2 {� 2 so⇤(3) : h�,!tbi = 0}, after its identification with R3. We notice
that !̂tb = AdRT

st
(!̂sb � !̂st), where Ad is the adjoint action, and using the

dual of this mapping, we find the forced Euler-Lagrange equations of motion
of the ballbot. We add the variations computed above and insert the rolling
constraint (7.82) expressed as ṗ

sb
= r (!st + !̄tb)⇥ e3 to arrive at

(7.90a)

�
It +mtl

2
�
I3 � � ⌦ �T

�
+ Ib

� (mb +mt)r
2
h
ê23 �mtrhl (�̂ê3 + ê3�̂)

�
!̇st

+
⇣
Ib�(mb+mt)r

2
h

ˆbfe
2

3�mtrhl�̂ê3
⌘
˙̄!tb+mtl

2 h!st,�i �̂!st

+mtrhlê3!̂
2
st
�+!st⇥It!st�!st⇥Ib!̄tb�mtgle3⇥� = 03,

(7.90b)

�
Ib � (mb +mt)r

2
h
ê23 �mtrhlê3�̂

�
!̇st

+
�
Ib � (mb +mt)r

2
hê

2
3

�
˙̄!tb

+mtrhlê3!̂
2
st
� � !̄tb ⇥ Ib!st = Rst⌧ ,

with ⌧ 2 R3 the control input. Notice that this system is defined on so(3)⇥
so(3)⇥ S2 ⇥ R2, which has dimension 10, as opposed to the original system,
which is defined on TQ, with a dimension count of 16. In case the translational
dynamics of the ball, which does not a↵ect the stability of the system, is
not considered, the reduced equations evolve on an 8-dimensional manifold,
whereas the original equations of motion evolve on a 12-dimensional one.

We note the following definitions to be utilized as in the subsequent sec-
tions:

M11 = It +mtl
2
�
I3 � � ⌦ �T

�
+ Ib � (mb +mt)r

2
h
ê23 �mtrhl (�̂ê3 + ê3�̂) ,

M12 = Ib � (mb +mt)r
2
h
ê23 �mtrhl�̂ê3,

M22 = Ib � (mb +mt)r
2
h
ê23.

A comparison of the Euler-Poincaré dynamics and the conventional Euler-
Lagrange equations derived using coordinates is made in Figure 7.9, where the
errors in Rst, Rsb, and p

sb
between the two approaches have been plotted

when the ballbot is operated freely under its drift vector field. Since the
numerical integration error margin to be tolerated has been selected to be
10�7, these errors are well within the tolerance range.

7.3.1.4 2D dynamics

We are interested in finding out how the equations of motion restrict to the
plane spanned by the inertial x-z axes of W. In particular, we are going to
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Fig. 7.9: Error between Euler-Poincaré equations and the conventional La-
grangian approach

use coordinates x 2 R and ✓ 2 R on the circle for the rotation of the top with
respect to W and the rotation of the top with respect to the ball, respectively.
With this choice, the relevant quantities take on the values

Rst = Re2,x, !st = ẋe2; Rtb = Re2,✓, !sb = ✓̇e2,

where Re2,⇣ is the simple rotation matrix by ⇣ 2 R radians around the second
standard basis vector e2. When restricted to the plane, the nonholonomic
constraint becomes a holonomic one, and it is given by

(7.91)ṗ
sb

= rh!sb ⇥ e3 =
h
rh
⇣
ẋ+ ✓̇

⌘
0 0

i
T .

Using these quantities, the Lagrangian (7.86) restricted to the inertial x-z
plane of W is computed to be

L =
1

2

�
It +mtl

2 +mtrhl cos (x) + Ib + (mb +mt)r
2
h

�
ẋ2

+
�
Ib + (mb +mt)r

2
h
+mtrhl cos (x)

�
ẋ✓̇

+
1

2

�
Ib + (mb +mt)r

2
h

�
✓̇2 �mtgl cosx,

where Ib and It are the components (2, 2) of the matrices Ib and It, respec-
tively. We can either use the conventional Euler-Lagrange equations with co-
ordinates (x, ✓) or directly the coordinate-invariant equations (7.90) derived
in the previous section to compute the equations of motion of the ballbot
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restricted to the plane. It is readily checked that these two distinct methods
yield exactly the same equations, which are given by

M(q)q̈+C(q, q̇)q̇+ g(q) =


↵+ � + 2� cosx ↵+ � cosx
↵+ � cosx ↵

� 
ẍ
✓̈

�

+


�� sinxẋ 0
�� sinxẋ 0

� 
ẋ
✓̇

�
+


�µ sinx

0

�
=


0
1

�
⌧ ,

(7.92)

complemented by the rolling constraint (7.91) and with ⌧ 2 R the control
input. The various constants in these equations are given by ↵ = Ib + (mb +
mt)r2h, � = mtrhl, � = It +mtl2, and µ = mtgl. These equations correspond
exactly to the ones given in [218].

7.3.2 Passivity based control design

When ⌧ = 03, we can determine the equilibria of the ballbot using the
equations of motion (7.90) with the rolling contraints (7.82) and (7.88). Along
with the fact that the inertial z-axis rotation of the ball is assumed to be
stationary, the rolling constraints yields ṗ

sb
= 03 () !sb = !st+!̄tb = 03.

Inserting p
sb

= constant and !̄tb = 03 into the equations of motion (7.90)
along with !st = 03 yields e3 ⇥ � = 03. In other words, the uncontrolled
equilibria of the ballbot are given by

E± = {(p
sb
,�, ṗ

sb
,!sb,!st) 2 TQ : p

sb
= const, � = ±e3

!st = !̄tb = 03, ṗsb = 03}.

Notice that E+ corresponds to the upward equilibrium point, that is, the top
points in the inertial positive z-direction and E� corresponds to the down-
ward equilibrium point. The control objective is to asymptotically stabilize
the set E+.

7.3.2.1 Passivity and energy considerations for the 2D ballbot

Partial feedback linearization of (7.92) is achieved by the following feedback

⌧ =

 
↵� (↵+ � cos (x))2

↵+ � + 2� cos (x)

!
u+

✓
↵+ � cos (x)

↵+ � + 2� cos (x)
� 1

◆
� sin (x)ẋ2

+
µ (↵+ � cos (x))

↵+ � + 2� cos (x)
sin (x),

which yields
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(7.93a)(↵+�+2� cos (x)) ẍ�� sin (x)ẋ2�µ sin (x) =

� (↵+ � cos (x))u,

(7.93b)✓̈ = u,

with u 2 R a virtual control input.
The following are two passive outputs

(7.94a)y1 = ✓̇,
(7.94b)y2 = � (↵+ � cos (x)) ẋ,

with the corresponding storage functions

(7.95a)H1 =
1

2
✓̇2,

(7.95b)H2 =
1

2
(↵+ � + 2� cos (x)) ẋ2 + µ cos (x).

7.3.2.2 2D Energy-shaping control

Let us consider the following Lyapunov function candidate

Hd = ke (k1H1+k2H2)+
1

2
kk (k1y1+k2y2)

2+
1

2
kI (k1✓�k2 (↵x+� sin (x)))

2 ,

(7.96)

with ke, k1, k2, kk, kI > 0. Notice that this Lyapunov function candidate
comes from the desired energy function that can be written as Hd =

1
2

⇥
✓̇ ẋ

⇤
Md


✓̇
ẋ

�
+ Vd, where

Md =


kek1 + k21kk �k1k2kk
�k1k2kk kek2 (↵+ � + 2� cos (x)) + k22kk (↵+ � cos (x))2

�
,

Vd = kek2µ cos (x) +
1

2
kI (k1✓ � k2 (↵x+ � sin (x)))2 .

The conditions under which Md and Vd can be selected such that Hd is a
Lyapunov function are developed in the next subsection for the 3D-dynamics
of the ballbot. Taking the Lie derivative of (7.96) along the solutions of (7.93),
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we get

Ḣd = (k1y1 + k2y2)

✓
ke + k1kk + k2kk

(↵+ � cos (x))2

↵+ � + 2� cos (x)

◆
u

+ k2kk

✓
�(↵+ �cx)

✓
�sx

↵+ � + 2�cx
ẋ2 +

µsx
↵+ � + 2�cx

◆
+ �sxẋ

2

◆

+ kI (k1✓ � k2 (↵x+ �sx))

�
,

where cx and sx are shortened notations for cos(x) and sin(x), respectively.
Once we select the control as follows

u = �1

k


k2kk

✓
�(↵+ �cx)

✓
�sx

↵+ � + 2�cx
ẋ2 +

µsx
↵+ � + 2�cx

◆
+ �sxẋ

2

◆

+ kI (k1✓ � k2 (↵x+ �sx)) + kp (k1y1 + k2y2)

�
.

where k = ke+k1kk+k2kk
(↵+ �cx)2

↵+ � + 2�cx
. The time derivative of Hd becomes

Ḣd = �kp (k1y1 + k2y2)
2  0.

Once the detectability of the output y = k1y1+k2y2 is proven, this implies
that the desired equilibrium point is asymptotically stable. The detectability
of this output is proven in the next section for the full dynamics of the ballbot.
It is omitted in this section because that calculation can be applied to the
2D dynamics verbatim.

7.3.2.3 Passivity and energy considerations for the 3D ballbot

Partial feedback linearization of the equations of motion (7.90) on the second
factor yields
�
It +mtl

2
�
I3 � � ⌦ �T

�
+ Ib � (mb +mt)r

2
h
ê23 �mtrhl (�̂ê3 + ê3�̂)

�
!̇st

+mtl
2 h!st,�i �̂!st +mtrhlê3!̂

2
st
� + !st ⇥ It!st � !st

⇥ Ib!̄tb �mtgle3 ⇥ � = �
�
Ib � (mb +mt)r

2
h
ê23 �mtrhl�̂ê3

�
u,

(7.97a)

(7.97b)˙̄!tb = u,
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with u 2 R3 a virtual control input and where the feedback linearizing torque
is given by

⌧ = RT

st

⇣
M22 �MT

12M
�1
11 M12

⌘⇣
u+mtrhl

�
I3 �mT

12M
�1
11

�
ê3!̂

2
st
�

�MT

12M
�1
11 mtl

2h!st,�i�̂!st +MT

12M
�1
11 mtgl (e3 ⇥ �)

⌘
.

The following are two passive outputs

(7.98a)y1 = !̄tb,

(7.98b)y2 = �
�
Ib � (mb +mt)r

2
h
ê23 � �ê3�̂

�
!st.

with the corresponding storage functions

(7.99a)H1 =
1

2
!̄T

tb
!̄tb,

(7.99b)
H2 =

1

2
!T

st

�
Ib � (mb +mt)r

2
h
ê23 � � (�̂ê3 + ê3�̂) + It +mtl

2I3
�
!st

� 1

2
mtl

2
�
!T

st
�
�2

+ µe3
T�.

The passivity of the pair (bfy1, H1) is readily seen

dH1

dt
= h!̄tb,ui = hy1,ui.

To prove the same statement for the pair (y2, H2), we calculate

dH2

dt
= !T

st

�
Ib � (mb +mt)r

2
h
ê23 � � (�̂ê3 + ê3�̂) + It +mtl

2
�
!̇st � µe3

⇥ � +
1

2
� (� ⇥ (!st ⇥ (e3 ⇥ !st))� e3 ⇥ (!st ⇥ (� ⇥ !st)))

�

= !T

st


�
�
Ib � (mb +mt)r

2
h
ê23 � ��̂ê3

�
u� � (e3 ⇥ (!st ⇥ (!st ⇥ �)))

� 1

2
� (2e3 ⇥ (!st ⇥ (� ⇥ !st)))

�

=
⌦
�
�
Ib � (mb +mt)r

2
h
ê23 � �ê3�̂

�
!st,u

↵
= hy2,ui,

where the second to the last step follows by noticing that the first two terms
in the final expression below are orthogonal to !st

� ⇥ (!st ⇥ (e3 ⇥ !st)) = �!st ⇥ ((e3 ⇥ !st)⇥ �)� (e3 ⇥ !st)⇥ (� ⇥ !st)

= �!st ⇥ ((e3 ⇥ !st)⇥ �)� !st

⇥ ((� ⇥ !st)⇥ e3)� e3 ⇥ (!st ⇥ (� ⇥ !st)) .

Lemma 7.3.1 The integrals of the passive outputs can be computed to be
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(7.100a)˙̄✓tb = y1,

(7.100b)
d

dt
{�M22✓st � �e3 ⇥ �} = y2,

with ✓̄tb,✓st 2 R3. ⇤
Proof We first compute the integral of part of the second output, ��e3 ⇥
(� ⇥ !st). Let �(�,!st) = �e3 ⇥ �, then

(7.101)
d�

dt
= � (e3 ⇥ �̇) = �� (e3 ⇥ (� ⇥ !st)).

To locally express the integral of the remaining terms, we use the exponential
mapping from so(3) to SO(3) [183] to express the rotation so that

Rst = e
b✓st , Rtb = e

b✓tb = e�
b✓ste

b✓sb .

Upon di↵erentiation and utilization of the rigid body kinematics (7.83), we
have

!̂st = ṘstR
T

st
= ˙̂✓st,

ˆ̄!tb = AdRst
!̂tb = AdRst

⇣
ṘtbR

T

tb

⌘
= � ˙̂✓st +

˙̂✓sb =:
˙̄̂
✓tb.

Combining these with (7.101) yields the assertions of the lemma. ⇤

7.3.2.4 3D energy-shaping control

Let us consider the following Lyapunov function candidate

(7.102)
Hd = ke (k1H1 + k2H2) +

1

2
kk1y1 + k2y2k2Kk

+
1

2
kk1✓̄tb + k2 (�M22✓st � �e3 ⇥ �)k2

KI

,

with Kk,KI 2 R3⇥3 constant matrices. Notice that this Lyapunov function
candidate comes from a desired energy function that can be written as Hd =
1

2

⇥
!tb !st

⇤
Md


!tb

!st

�
+ Vd, where

(7.103a)Md =


kek1I3 + k21Kk �k1k2KkM

T

12

�k1k2M12Kk kek2M11 + k22KkM12M
T

12

�
,

(7.103b)Vd = kek2V +
1

2
kk1✓̄tb + k2 (�M22✓st � �e3 ⇥ �)k2

KI

.

Let q⇤ = (Rst,Rtb,!st, !̄tb) =
⇣
e⇢ê3 , e�ê3 ,03,03

⌘
, for some constants

⇢,� 2 R. In order to qualify Hd as a Lyapunov function, we need to make
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sure that Md (q⇤) is posititve definite, �Vd (q⇤) = 0, �2Vd (q⇤) is full rank
along the directions orthogonal to the combined, but functionally related
rotation of the ball and the top along the inertial vertical axis, and Ḣd  0.
As long as the yaw rotation of the ball is restricted by its friction with the
ground, by Lagrange-Dirichlet stability criterion, these conditions will ensure
that both the ball and the top will converge to the desired orientation.

Theorem 7.3.1 At q⇤, Vd has a global minimum V ⇤
d
, which is shared by a line

of points characterized by a combined rotation of the ball and the top along
the inertial vertical axis. ⇤
Proof We observe from the expression of Vd that it achieves a minimum
only if each term individually achieves a minimum. While the minimum of
the second term is zero, the minimum kek2µ of the first term kek2µeT3 � is
attained when � = e3, provided that k2 < 0 and ke > 0. Computing the first
variation of Vd yields

�Vd = kek2µ⌘
T

st
(� ⇥ e3)

+
�
k1✓̄tb�k2 (M22✓st+�e3⇥�)

�T
KI (k1⌘̄tb

�k2 (M22��ê3�̂)⌘st
) ,

which vanishes at q⇤. Note that when ✓st = 03, it follows that � = Rste3 =

e
ˆ✓ste3 = e0̂3e3 = e3.
Computing the second variation �2Vd of Vd at q⇤ = 0 yields

�2Vd = kek2⌘
T

st
ê23⌘st

+ kk1⌘̄tb
� k2

�
M22 � �ê23

�
⌘
st
k2
KI

.

This expression shows that �2Vd positive semidefinite and is degenerate only

on the subspace spanned by ⌘
st

= e3 and ⌘̄
tb

=
k2
k1

M22e3. Since M22 is a

diagonal matrix, ⌘̄
tb

is a multiple of e3 by a negative constant. ⇤
The assumption that the yaw rotation of the ball is constrained by fric-

tional forces implies that ⌘T

sb
e3 = 0. Since ⌘̄

tb
= �⌘

st
+ ⌘

sb
, it follows that

⌘̄T

tb
e3 = �⌘T

st
e3. Notice that this subspace and the nullspace of �2Vd intersect

only at the zero section of the tangent bundle (state space).

Theorem 7.3.2 If the ballbot is strongly inertially coupled [297], i.e., the rank
of M12 (q) is three, then appropriate gains ke, k1, k2, Kk can be chosen such
that Md (q) is positive definite. ⇤
Proof Md is positive definite if kek1I3 + k21Kk is positive definite and �11

is positive definite, where �11 is the Schur-complement of the (1, 1) block of
Md, that is,

�11 = k2
⇣
keM11 + k2M12KkM

T

12

⌘
� k1k

2
2M12Kk (keI3 + k1Kk)

�1 KkM
T

12.

The condition that kek1I3 + k21Kk is positive definite holds if ke, k1 > 0
and Kk is positive definite. These constraints on the gains will be in force in
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the sequel. Let �
k
2 R be the smallest eigenvalue of Kk, �̄11 2 R denote the

maximum of eigenvalue of M11, and �12 2 R denote the minimum eigenvalue
of M12M

T

12 as � varies over S2. Note that when the hypothesis of the theorem
holds, then �12 is bounded away from zero. Since k2 < 0 and M11 is positive
definite, we have that �11 is positive definite if and only if the matrix

keM11 + k2M12Kk

⇣
I3 � k1 (keI3 + k1Kk)

�1 Kk

⌘
MT

12

is negative definite. This implies that also the matrix

ke�̄11I3 + k2�k

✓
1� k1�k

ke + k1�k

◆
M12M

T

12

is negative definite. Finally, this implies that

ke�̄11 + k2�k

✓
1� k1�k

ke + k1�k

◆
�12 < 0.

This last implication shows that choosing the quantity
|k2|�k
ke

large enough

ensures that the desired mass matrix Md is positive definite at all points q
where the system is strongly inertially coupled. ⇤

Whether or not the system is strongly inertially coupled depends on the de-
sign of the mechanism. If the mass and inertia of the ball are large enough with
respect to the top’s mass, then this property holds everywhere in the configu-
ration space. Therefore, the following control law achieves global asymptotic
stability for those mechanism designs.

Proposition 7.3.1 Consider the partially feedback linearized dynamics of the
ballbot (7.97) in close loop with the control law

(7.104)u = �K�1 [s+Kp (k1y1 + k2y2)] ,

with the expressions for the matrices K 2 R3⇥3 and s 2 R3 that are as
given in the proof, Kp 2 R3⇥3 a positive definite matrix, and k1, k2 satisfy
the conditions that render Md a positive definite matrix, �Vd(q⇤) = 0, and
�2Vd(q⇤) a positive definite matrix.

Then, q⇤ is an asymptotically stable equilibrium of the closed-loop sys-
tem. ⇤
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Proof Taking the Lie derivative of (7.102) along the solutions of (7.97) yields

Ḣd =
D
k1y1 + k2y2,

h⇣
keI3 + k1Kk + k2KkM

T

12M
�1
11 M12

⌘
u

+ k2Kk

⇣
�Ṁ

T

12!st +MT

12M
�1
11 (c1 + g1)

⌘

+KI

�
k1✓̄tb + k2 (�M22✓st � �e3 ⇥ �)

�iE

= hk1y1 + k2y2,Ku+ si ,

where c1 = mtl2 h!st,�i �̂!st + �ê3!̂
2
st
� + !st ⇥ It!st � !st ⇥ Ib!̂tb, g1 =

�µe3 ⇥ �. We thus select

(7.105)u = �K�1 [s+Kp (k1y1 + k2y2)] ,

where K =
⇣
keI3 + k1Kk + k2KkM

T

12M
�1
11 M12

⌘
, s consists of all the terms

not multiplied by u in the second factor of the natural pairing and Kp being
positive definite, yielding

Ḣd = �kk1y1 + k2y2k2Kp

.

This implies that k1y1+k2y2 ���!
t!1

03. Let us analyze the smallest invariant

set within E = {k1y1 + k2y2 = 03}. We have

03 = k1Kkẏ1 + k2Kkẏ2 =
⇣
k1Kk + k2KkM

T
12M

�1
11 M12

⌘
u+ �1,

where �1 = k2Kk

⇣
�Ṁ

T

12!st +MT

12m
�1
11 (c1 + g1)

⌘
. Thus, we can write the

above equation as (K� keI3)u = ��1. From the control law (7.104), we
have Ku = � (�1 + �2), where �2 = KI

�
k1✓̄tb + k2 (�M22✓st � �e3 ⇥ �)

�
.

Therefore, from the following two equations

(K� keI3)u = ��1,
Ku = � (�1 + �2) ,

we deduce that u = � 1

ke
�2 on E . Plugging this into (7.97), shows that

the first of these equations is unstable unless u = �2 = 03. This implies
!̄tb = constant = 03, which, in turn, implies !st = 03 because other-
wise its dynamics would again be unstable. This discussion shows that the
system asymptotically converges to an equilibrium point. Since the closed-
loop system comes from a Lagrangian system, it is readily shown that,
the only stable equilibrium point is the upward equilibrium point, with

✓st =
⇥
0 0 constant

⇤T
and ✓tb =

⇥
0 0 constant

⇤T
, where the inertial z-

axis rotation of the system goes to a certain constant because this motion is
uncontrollable. ⇤
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7.3.2.5 Controlling the ball position

We can use a similar technique as in Section 7.3.2.4 to control the position
of the ball as well as the upward equilibrium point of the top. In order to do
this, we start from (7.97) and switch to the error system dynamics, with the
error defined by ētb = !̄tb � !̄d

tb
, where !̄d

tb
is the desired angular velocity of

the ball with respect to the top expressed in W. We compute this quantity
from the desired angular velocity of the ball with respect to the spatial frame,
!d

sb
2 R3, which is, in turn, computed from the rolling constraint (7.82). In

order to get p
sb

�! pd

sb
, where pd

sb
2 R3 is the desired position of the ball

on the x-y plane (the z component is a constant), we would like the rolling
constraint equation (7.82) to look like

ṗ
sb

= rh!
d

sb
⇥ e3 = ktê

2
3

�
p
sb

� pd

sb

�
.

As a result, we set !d

sb
= � kt

rh
ê3
�
p
sb

� pd

sb

�
, where kt > 0. This implies that

the desired angular velocity of the ball with respect to the top expressed in
W is, !̄d

tb
= !d

sb
� !st. We use (7.82) in the time derivative of this relation

to get
(7.106)˙̄!d

tb
= !̇d

sb
� !̇st = ktê

2
3 (!̄tb + !st)� !̇st.

We set the the control u in equation (7.97) to u = ˙̄!d

tb
+ v, with v 2 R3

a virtual input, which yields the error system dynamics

(7.107a)(M11 �M12) !̇st + c2 + g1 = �M12v,

(7.107b)˙̄etb = v,

where c2 = c1+ktM12ê
2
3 (!̄tb + !st). Solving (7.107) for !̇st and substituting

into (7.106), we derive the form of the control u as

u =
⇣
I3 + (M11 �M12)

�1 M12

⌘
v

+ (M11 �M12)
�1 (c2 + g1) + ktê

2
3 (!̄tb + !st) .

We identify a passive output y1 = ētb with the storage function H1 =
1

2
ēT
tb
ētb. We keep the second output y2 = �MT

12!st and modify its storage

to H 0
2 = H2 � !T

st
M12!st. Note that this output with the storage function

H 0
2 is not passive any more due to the additional terms appearing in c2. It is

also important to note that, we do not need to asymptotically stabilize the
orientation of the ball to a desired value. We would rather asymptotically
stabilize ētb to zero, which implies !sb �! !d

sb
, which, in turn, asymptotically

stabilizes p
sb

to pd

sb
. This observation implies that, we only need to devise a

desired potential energy which has � = e3 a point of minimum. This is easily
achieved by setting Vd = kek2V . Recall that the product kek2 is negative and
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since the original potential energy V has a minimum at � = �e3, this desired
potential energy is good enough.

To shape the kinetic energy of the system, we use the same desired mass
matrix as the one (7.103) used in the previous subsection. We use the follow-
ing desired Hamiltonian (energy) for the closed loop system

Hd = ke (k1H1 + k2H
0
2) +

1

2
kk1y1 + k2y2k2Kk

+
1

2

⌦
p
sb

� pd

sb
,p

sb
� pd

sb

↵
.

Proceeding analogously to Proposition 7.3.1, we compute the time derivative
of Hd to be

Ḣd =
D
k1y1 + k2y2,

h⇣
keI3 + k1Kk + k2KkM

T

12 (M11 �M12)
�1 M12

⌘
v

+ k2Kk

⇣
�Ṁ

T

12!st +MT

12 (M11 �M12)
�1 (c2 + g1)

⌘iE

� �

2

⌦
!st, ê

2
3!̂

2
st
�
↵
+

⌧
�kektê

2
3

✓
y1 �

kt
rh

ê3
�
p
sb

� pd

sb

�◆
, k2y2

�

+
⌦
ktê

2
3

�
p
sb

� pd

sb

�
,p

sb
� pd

sb

↵
+
⌦
rhy1, ê3

�
p
sb

� pd

sb

�↵
,

where the second and third natural pairings arise because of the extra terms
in the new Coriolis term, c2. We select the virtual input term v as

(7.108)v = �K�1
b


sb +Kp (k1y1 + k2y2) +

kek2t
rh

ê23
�
p
sb

� pd

sb

��
,

where Kb =
⇣
keI3 + k1Kk + k2KkM

T

12 (M11 �M12)
�1 M12

⌘
, sb 2 R3 con-

sists of all the terms not multiplied by v in the second factor of the first
natural pairing, and Kp 2 R3⇥3 is a positive definite constant matrix. This
selection yields to the following expression for the time derivative of Hd along
the solutions of the system

Ḣd = �kk1y1 + k2y2k2Kp

+ kek2kt
⌦
ê23y1,y2

↵
� �

2

⌦
!st, ê

2
3!̂

2
st
�
↵

+kt
⌦
ê23
�
p
sb
�pd

sb

�
,p

sb
�pd

sb

↵
+

⌧✓
rh�

k1kek2t
rh

◆
y1, ê3

�
p
sb
�pd

sb

��
.

Selecting kt =
rhp
k1ke

ensures that the last natural pairing in this expression

vanishes. While the first natural pairing may be absorbed into the very first
term, using the Cauchy-Schwarz inequality, by a proper selection of the gain
Kp, the second natural pairing satisfies the linear growth condition as long
as strong inertial coupling condition is satisfied. As a result, this pairing may
also be dominated by the first term semi-globally by increasing the magnitude
of the gain k2. These arguments prove that Ḣd  0. Since the detectability of
the output y = k1y1+k2y2 is proven in exactly the same way as in the proof
of Proposition 7.3.1, we can summarize the result in the following proposition
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Table 7.3: System parameters

Parameter Symbol Value
Ball radius rh 0.1058 m
Ball mass mb 244 kg
Ball inertia Ib 1.821 kg·m2

Top center of mass height l 0.69 m
Roll moment of inertia It,11 12.59 kg·m2

Pitch moment of inertia It,22 12.48 kg·m2

Yaw moment of inertia It,33 0.66 kg·m2

Top mass mt 51.66 kg

Proposition 7.3.2 Consider the partially feedback linearized dynamics of the
ballbot (7.97) in closed loop with the control law

(7.109a)v = �K�1
b


sb +Kp (k1y1 + k2y2) +

kek2t
rh

ê23
�
p
sb

� pd

sb

��
,

(7.109b)u =
⇣
I3 + (M11 �M12)

�1 M12

⌘
v

+ (M11 �M12)
�1 (c2 + g1) + ktê

2
3 (!̄tb + !st) ,

with the expressions for Kb, sb and kt are as given above the proposition,
Kp a positive definite matrix, and k1, k2 satisfy the conditions that render
Md positive definite, �Vd(� = e3) = 0, and �2Vd(� = e3) a positive definite
matrix.

Then, � = e3, !st = 03, !̄tb = 03, and p
sb

= pd

sb
is an asymptotically

stable equilibrium of the closed-loop system. ⇤

Remark 7.1 Although the control design in the section is inspired by the de-
velopment in [81], the technique presented in that work cannot be applied
verbatim. The fundamental reason for this shortcoming is that the dynam-
ics (7.90) is not derived directly from Euler-Lagrange equations, but are re-
duced to yield the Euler-Poincaré equations. Consequently, the construction
of a second passive output in (7.98), a corresponding storage function in (7.99)
and an integral of this passive output (7.100) has to be novelly performed.
Once these quantities have been obtained, we can construct the Lyapunov
function (7.102).

7.3.3 Numerical examples

The inertial properties of the ballbot that are utilized in the simulations are
given in Table 7.3.

First, simulation results for the ballbot whose dynamics is restricted to the
2D x-z plane are presented. The initial conditions and the control gains used
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Fig. 7.10: Asymptotic stabilization of the 2D Ballbot

in the simulation are given in the first row of Table 7.4. The corresponding
simulation results are shown in Fig. 7.10. The top two plots illustrate the
convergence of the orientation of the top and the ball, in other words, the
fact that x and ✓ tend both to zero. The bottom left plot shows the evolution
of the passive output y = k1y1 + k2y2, while the bottom right plot shows the
evolution of the closed-loop energy functional Hd (7.96).

Second, simulation results are presented that show the response of the
ballbot to a feedback control (7.104). In this simulation, the initial conditions
and the control gains are given by the second row of Table 7.4. Notice that
the initial conditions are quite far away from the desired upward equilibrium
Rst = e⇢ê3 and the desired ball orientation Rsb = e�ê3 , where ⇢ and � are
constant real numbers. On the left of Fig. 7.11, we illustrate the asymptotic
stabilization. The top two plots illustrates the fact that both the ball and
the top move to an orientation such that Rste3 = e3 and Rsbe3 = e3, which
is another way to state that Rst = e⇢ê3 and Rsb = e�ê3 for some constant
numbers ⇢ and �. The bottom left plot shows the evolution of the passive
output y = k1y1 + k2y2, while the bottom right plot shows the evolution of
the closed loop energy functional Hd (7.102). The path tracked by the ballbot
on the plane is shown on the right in Fig. 7.11.

Finally, we present the simulation results that use the controller (7.109),
designed to stabilize the position of the ball along with the upward equilib-
rium of the top. The initial conditions and the control gains are selected as
the third row of Table 7.4. On the left of Fig. 7.12, the top left plot shows
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Fig. 7.11: (a) Time evolution of quantities of interest (b) The path tracked
by the Ballbot

that the top asymptotically converges to the upward equilibrium point, where
� = e3. The top left figure depicts the evolution of the position error of the
ball, which converges to zero, indicating that p

sb
�! pd

sb
. Additionally, while

the bottom left plot shows that the passive output is asymptotically driven
to zero, the bottom right plot shows that the closed-loop energy function
Hd converges to its minimum value, as expected due to the detectability of
the passive output y. Again, the path tracked by the ballbot on the plane is
shown on the right of Fig. 7.12.
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Fig. 7.12: (a) Time evolution of quantities of interest. (b) The path tracked
by the Ballbot

7.4 Discussion and conclusion

This chapter investigated the control design for nonprehensile rolling manip-
ulation dealing with nonholonomic constraints. Two systems were addressed,
namely, the hula-hoop and the ballbot.

The considered robotic hula-hoop is an underactuated mechanical system
subject to second-order nonholonomic constraints. We designed a locally sta-
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ble controller scheme by exploiting the null space of the inertia coupling
matrices, making it possible to simultaneously satisfy the control objective
of (i) spinning the hoop at a desired angular velocity on the desired position
over the pole surface and (ii) stabilizing the pole coordinates. A formal proof
that guarantees locally ultimate boundedness of the hoop coordinates was
presented, with arbitrary small ultimate bound on the tracking error and
boundedness of the pole coordinates. To validate the proposed approach,
we presented a numerical simulation that showed our solution’s good per-
formance. The main challenges for the experimental setup are the necessity
of a high-speed reconstruction of the hoop position and orientation (in the
simulation is was considered to be implemented at a 20 Hz rate) with good
resolution and the high velocities and acceleration required for the actuator
(e.g., for the humanoid-like robot used in the simulations).

The ballbot robotic system is made of an actuated ball with a top.
A reduced set of dynamic equations, whose configuration space is Q =
R2 ⇥ SO(3) ⇥ SO(3), was derived. These 10 first-order ODEs can express
the system’s motion comprehensibly, given the kinematic relations that the
system has to satisfy. We can analyze dynamic properties and derive control
laws that achieve asymptotic stabilization for several purposes thanks to the
compact form of these equations of motion. In particular, we identified two
passive outputs for the restricted 2D dynamics and the full 3D dynamics,
which were then used to devise energy-shaping control laws making the sys-
tem behave as a new Lagrangian system whose desired equilibrium point is
asymptotically stable. The basin of attraction was shown to be global as long
as the mechanism is designed to be strongly inertially coupled. We empha-
size that modeling, analysis, and computations can be carried out directly
in a geometric coordinate-free framework, as illustrated for the ballbot in
this chapter. This fact facilitates the analysis of the dynamics and control
synthesis for complex systems such as the ballbot.

Initial conditions Control gains

Sim 1
x(0) =

2⇡

3
✓(0) = 4⇡ k1 = 5 k2 = �70 ke = 20

ẋ(0) = 0 ✓̇ = 0 kk = 11 kp = 10 kI = 1

Sim 2
Rst(0) = R

y,
⇡

3

R
x,�

⇡

2

Rsb(0) = I3 k1 = 5 k2 = �70 ke = 20

!st(0) = !sb = 03 psb = 03 Kk =
11I3

Kp = 10I3 KI = I3

Sim 3
Rst(0) =
R

z,
4⇡

3

Ry,1.74Rx,1

Rsb(0) = I3 k1 = 5 k2 = �70 ke = 20

!st(0) = !sb = 03 p̃sb(0) =

(
1

4
,
2

y
, 0)

Kk =
11I3

Kp = 7.5I3 kt =
r

p
k1ke

Table 7.4: Initial conditions and control gains


